Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 31;73(Pt 6):901–904. doi: 10.1107/S2056989017007629

Crystal structure of N-(4-oxo-2-sulfanyl­idene-1,3-thia­zolidin-3-yl)-2-(thio­phen-3-yl)acetamide

Trung Vu Quoc a, Linh Nguyen Ngoc a, Cong Nguyen Tien b, Chien Thang Pham c, Luc Van Meervelt d,*
PMCID: PMC5458320  PMID: 28638655

The synthesis and crystal structure of a new thio­phene monomer containing an additional rhodanine heterocycle are reported. The crystal packing is sustained by N—H⋯O, C—H⋯O, C—H⋯S and C—H⋯π inter­actions.

Keywords: crystal structure, thia­zolidine, thio­phene, rhodanine, polythio­phene

Abstract

The title compound, C9H8N2O2S3, crystallizes with two mol­ecules (A and B) in the asymmetric unit. Both have similar conformations (overlay r.m.s. deviation = 0.209 Å) and are linked by an N—H⋯O hydrogen bond. In both mol­ecules, the thio­phene rings show orientational disorder, with occupancy factors of 0.6727 (17) and 0.3273 (17) for mol­ecule A, and 0.7916 (19) and 0.2084 (19) for mol­ecule B. The five-membered rings make an angle of 79.7 (2)° in mol­ecule A and an angle of 66.8 (2)° in mol­ecule B. In the crystal, chains of mol­ecules running along the a-axis direction are linked by N—H⋯O hydrogen bonds. The inter­action of adjacent chains through N—H⋯O hydrogen bonds leads to two types of ring structures containing four mol­ecules and described by the graph-set motifs R 4 4(18) and R 4 2(14).

Chemical context  

Thio­phene, C4H4S, belongs to a class of aromatic five-membered heterocycles containing one S heteroatom. Thio­phene and its derivatives occur in petroleum or coal (Orr & White, 1990). Thio­phene-based compounds have applications in modern drug design (Santagati et al., 1994), electronic and optoelectronic devices (Barbarella et al., 2005), and conductive and electroluminescent polymers (Friend et al., 1999). Also, several reviews of various aspects of thio­phene coordination and reactivity in transition-metal complexes have been reported (Barbarella et al., 2005).graphic file with name e-73-00901-scheme1.jpg

Derivatives of rhodanine (or 2-thioxo-1,3-thia­zolidin-4-one) have inter­esting pharmacological properties, such as the drug Epalrestat, which is an aldose reductase inhibitor used to treat diabetic neuropathy (Tomašić & Mašič, 2012). Some other rhodanine derivatives were designed and synthesized for detecting tau pathology in the brains of patients with Alzheimer’s disease (Ono et al., 2011).

As a continuation of our research (Nguyen et al., 2016; Vu et al., 2016) on the chemical, physical and biological properties of new polythio­phenes, a new thio­phene monomer containing rhodanine has been prepared. In the presence of FeCl3, thio­phene monomers can be polymerized by C—C bond formation between the 2- and 5-positions of two subsequent thio­phene monomers, resulting in an extended π-conjugated system. We present here the synthesis and crystal structure of N-(4-oxo-2-sulfanyl­idene-1,3-thia­zolidin-3-yl)-2-(thio­phen-3-yl)acetamide, 3 .

Structural commentary  

Crystals of the title compound belong to the triclinic space group P Inline graphic with two independent mol­ecules (A and B) per asymmetric unit (Fig. 1). In both mol­ecules, the thio­phene ring is disordered over two positions by a rotation of approximately 180° around the C5—C3 or C15—C13 bond for mol­ecules A and B, respectively [occupancy factors = 0.6727 (17) and 0.3273 (17) for mol­ecule A, and 0.7916 (19) and 0.2084 (19) for mol­ecule B]. In the current discussion, only the major components will be considered. The 1,3-thia­zolidine ring is almost planar (r.m.s. deviation = 0.020 Å for ring S2/N2/C7–C9 and 0.010 Å for ring S12/N12/C17–C19) with the N3-substitiuents N1 [0.141 (1) Å] and N11 [0.100 (1) Å] situated in the same plane (deviations from plane given in parenthesis). Both thio­phene rings are also planar as expected (r.m.s. deviation = 0.011 Å for ring S1A/C1A–C4A and 0.002 Å for ring S11A/C11A–C14A), with the substituents C5 [−0.065 (2) Å] and C15 [0.001 (1) Å] coplanar. In mol­ecule A, the heterocyclic rings make an angle of 79.7 (2)°; in mol­ecule B, this angle is 66.8 (2)°. Also, the amide group and the 1,3-thia­zolidine ring are oriented almost perpendicular to each other. In mol­ecule A, the plane through the atoms of the amide group (N1/C6/O1) makes an angle of 76.32 (8)° with the best plane through the 1,3-thia­zolidine ring; for mol­ecule B, this angle is 83.88 (6)°. Both mol­ecules in the asymmetric unit are linked by an N1—H1⋯O11 hydrogen bond (Table 1 and Fig. 1).

Figure 1.

Figure 1

View of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii. The minor component of the disordered thio­phene rings is shown in pale yellow.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the S1A/C1A–C4A and S11A/C11A–C14A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O11 0.824 (19) 1.973 (19) 2.7923 (16) 173.1 (18)
N11—H11⋯O1i 0.819 (19) 2.189 (19) 2.8436 (16) 137.1 (16)
N11—H11⋯O2ii 0.819 (19) 2.519 (18) 3.0965 (16) 128.6 (15)
C5—H5A⋯O12iii 0.99 2.46 3.3901 (19) 156
C9—H9A⋯O2iv 0.99 2.53 3.2443 (19) 129
C9—H9B⋯S13ii 0.99 2.81 3.6570 (17) 144
C15—H15A⋯O2ii 0.99 2.37 3.2862 (19) 154
C9—H9ACg1iv 0.99 2.73 3.276 (3) 115
C19—H19ACg2iii 0.99 2.77 3.480 (2) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

The crystal packing is governed by hydrogen bonding. Chains of mol­ecules are formed along the a-axis direction by alternating N1—H1⋯O11 and N11—H11⋯O1 hydrogen bonds (Table 1 and Fig. 2). The inter­action of adjacent chains through N11—H11⋯O2 hydrogen bonds results in two different types of ring structures, each containing four mol­ecules: (i) a ring structure of graph-set motif Inline graphic(18) showing also additional C—H⋯O and C—H⋯S inter­actions (Table 1 and Fig. 3), and (ii) a ring structure with graph-set motif Inline graphic(14) (Fig. 4). The packing shows a number of additional C—H⋯O, C—H⋯S and weak C—H⋯π inter­actions (Table 1). The crystal packing contains no voids.

Figure 2.

Figure 2

Part of the crystal packing of the title compound, showing a chain of mol­ecules along the a axis formed by N—H⋯O hydrogen-bond inter­actions a and b [see Table 1; symmetry codes: (i) x − 1, y, z; (ii) x + 1, y, z].

Figure 3.

Figure 3

Ring of graph-set motif Inline graphic(18) formed by N—H⋯O hydrogen-bond inter­actions a and c [see Table 1; symmetry code: (i) −x + 1, −y, −z + 1].

Figure 4.

Figure 4

Ring of graph-set motif Inline graphic(14) formed by N—H⋯O hydrogen-bond inter­actions b and c [see Table 1; symmetry codes: (i) x − 1, y, z; (ii) −x, −y, −z + 1; (iii) −x + 1, −y, −z + 1].

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.38, last update February 2017; Groom et al., 2016) for structures containing an N-substituted 2-thioxo-1,3-thia­zolidin-4-one ring gave 26 hits (169 hits when substituents at the 5-position are also allowed). In all cases, the 1,3-thia­zolidine ring can be considered to be planar, as the largest deviation from the best plane through the ring atoms was only 0.070 Å [for the complex bis­(rhodanine)copper(I) iodide; refcode VICJUM; Moers et al., 1986]. The substituent at the N3 position is situated in the 1,3-thia­zolidine plane, with a largest deviation of 0.174 Å for the case with –NH2 as substituent (refcode EDEPUZ01; Jabeen et al., 2007).

Rotational disorder in 3-CH2-thio­phene fragments is frequently observed (25 structures of the 67 fragments present in the CSD).

Synthesis and crystallization  

The reaction scheme to synthesize the title compound, 3, is given in Fig. 5.

Figure 5.

Figure 5

Reaction scheme for the title compound.

Synthesis of methyl 2-(thio­phen-3-yl)acetate, 1  

Methyl thio­phene-2-acetate, 1 (5 mmol), was added to an excess of hydrazine hydrate (40 mmol) in ethanol (20 ml). The mixture was refluxed for 6 h. The reaction mixture was allowed to cool. The resulting precipitate was filtered and recrystallized from ethanol solution to give 0.57 g (yield 74%) of hydrazide 2 in the form of white crystals (m.p. 343 K). IR (Nicolet Impact 410 FTIR, KBr, cm−1): 3323, 3068 (νNH), 3068, 2957 (νCH), 1641 (νC=O), 1526 (νC=C thio­phene). 1H NMR [Bruker XL-500, 500 MHz, d 6-DMSO, δ (ppm), J (Hz)]: 7.22 (dd, 1H, 4 J = 1.0, 5 J = 2.0, H2), 7.01 (d, 1H, 5 J = 5.0, H4), 7.43 (dd, 1H, 2 J = 3.0, 4 J = 4.5, H5), 3.32 (s, 2H, H6), 9.14 (s, 1H, H8), 4.19 (s, 2H, H9). 13C NMR [Bruker XL-500, 125 MHz, d 6-DMSO, δ (ppm)]: 122.06 (C2), 135.95 (C3),128.62 (C4), 125.59 (C5), 35.10 (C7), 169.17 (C8). Calculation for C6H8O2N2S: M = 172 au.

Synthesis of 2-(thio­phen-3-yl)acetohydrazide, 2  

Methyl thio­phene-2-acetate, 1 (5 mmol), was added to an excess of hydrazine hydrate (40 mmol) in ethanol (20 ml). The mixture was refluxed for 6 h. The reaction mixture was allowed to cool. The resulting precipitate was filtered and recrystallized from ethanol solution to give 0.57 g (yield 74%) of hydrazide 2 in the form of white crystals (m.p. 343 K). IR (Nicolet Impact 410 FTIR, KBr, cm−1): 3323, 3068 (νNH), 3068, 2957 (νCH), 1641 (νC=O), 1526 (νC=C thio­phene). 1H NMR [Bruker XL-500, 500 MHz, d 6-DMSO, δ (ppm), J (Hz)]: 7.22 (dd, 1H, 4 J = 1.0, 5 J = 2.0, H2), 7.01 (d, 1H, 5 J = 5.0, H4), 7.43 (dd, 1H, 2 J = 3.0, 4 J = 4.5, H5), 3.32 (s, 2H, H6), 9.14 (s, 1H, H8), 4.19 (s, 2H, H9). 13C NMR [Bruker XL-500, 125 MHz, d 6-DMSO, δ (ppm)]: 122.06 (C2), 135.95 (C3),128.62 (C4), 125.59 (C5), 35.10 (C7), 169.17 (C8). Calculation for C6H8O2N2S: M = 172 au.

Synthesis of N-(4-oxo-2-sulfanyl­idene-1,3-thia­zolidin-3-yl)-2-(thio­phen-3-yl)acetamide, 3  

A mixture of hydrazide 2 (10 mmol) and thio­carbonyl­bis­thio­glycolic acid (10 mmol) in ethanol (5 ml) was refluxed for 8 h. After cooling, the resulting precipitate was filtered off, dried and recrystallized from ethanol solution to give 1.66 g (yield 61%) of 3 as a pale-yellow crystals (m.p. 372 K). IR (Nicolet Impact 410 FTIR, KBr, cm−1): 3442, 3292, 3226 (νNH), 3148, 2965, 2921 (νCH), 1727,1684 (νC=O), 1614, 1532 (νC=C thio­phene), 1244, 1177 (νC=S). Calculation for C9H8O2N2S3: M = 272 au.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Both thio­phene rings are disordered over two positions by a rotation of approximately 180° around the C5—C3 or C15—C13 bond for mol­ecules A and B, respectively. The final occupancy factors are 0.6727 (17) and 0.3273 (17) for mol­ecule A, and 0.7916 (19) and 0.2084 (19) for mol­ecule B. Bond lengths and angles in the disordered thio­phene rings were restrained to target values derived from mean values observed in 3-CH2-thio­phene fragments in the CSD (Groom et al., 2016). The same anisotropic displacement parameters were used for equivalent atoms in the disordered thio­phene rings (e.g. EADP C1A C1B). The H atoms attached to atoms N1 and N11 were found in the difference density Fourier map and refined freely. The other H atoms were placed in idealized positions and refined in riding mode, with U iso(H) values assigned as 1.2U eq of the parent atoms, with C—H distances of 0.95 (aromatic) and 0.99 Å (CH2). In the final cycles of refinement, four outliers were omitted.

Table 2. Experimental details.

Crystal data
Chemical formula C9H8N2O2S3
M r 272.35
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 9.6205 (3), 10.8252 (3), 11.5073 (3)
α, β, γ (°) 97.836 (2), 102.720 (2), 95.047 (2)
V3) 1149.42 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.63
Crystal size (mm) 0.22 × 0.07 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.691, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 37647, 6098, 4985
R int 0.042
(sin θ/λ)max−1) 0.682
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.077, 1.03
No. of reflections 6098
No. of parameters 323
No. of restraints 40
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.25

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2013), SHELXS1997 (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007629/hb7673sup1.cif

e-73-00901-sup1.cif (708.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007629/hb7673Isup2.hkl

e-73-00901-Isup2.hkl (334.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007629/hb7673Isup3.cml

CCDC reference: 1551679

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

LVM thanks VLIR–UOS (project ZEIN2014Z182) for financial support.

supplementary crystallographic information

Crystal data

C9H8N2O2S3 Z = 4
Mr = 272.35 F(000) = 560
Triclinic, P1 Dx = 1.574 Mg m3
a = 9.6205 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.8252 (3) Å Cell parameters from 9925 reflections
c = 11.5073 (3) Å θ = 3.1–30.6°
α = 97.836 (2)° µ = 0.63 mm1
β = 102.720 (2)° T = 100 K
γ = 95.047 (2)° Block, colourless
V = 1149.42 (6) Å3 0.22 × 0.07 × 0.04 mm

Data collection

Bruker APEX-II CCD diffractometer 4985 reflections with I > 2σ(I)
φ and ω scans Rint = 0.042
Absorption correction: multi-scan (SADABS; Bruker, 2014) θmax = 29.0°, θmin = 2.9°
Tmin = 0.691, Tmax = 0.746 h = −13→13
37647 measured reflections k = −14→14
6098 independent reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.3868P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
6098 reflections Δρmax = 0.38 e Å3
323 parameters Δρmin = −0.25 e Å3
40 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1A 0.7012 (6) 0.0875 (6) 0.1304 (5) 0.0435 (14) 0.6727 (17)
H1A 0.627681 0.019090 0.098279 0.052* 0.6727 (17)
C1B 0.8309 (14) 0.1396 (12) 0.0779 (11) 0.0435 (14) 0.3273 (17)
H1B 0.865405 0.109102 0.009449 0.052* 0.3273 (17)
C2A 0.7136 (6) 0.1688 (5) 0.2354 (6) 0.0292 (11) 0.6727 (17)
H2A 0.648572 0.161127 0.286104 0.035* 0.6727 (17)
C2B 0.8979 (13) 0.2418 (14) 0.1659 (11) 0.0292 (11) 0.3273 (17)
H2B 0.982111 0.291811 0.161213 0.035* 0.3273 (17)
C3 0.83043 (16) 0.26481 (14) 0.26249 (13) 0.0229 (3)
C4A 0.9131 (5) 0.2528 (5) 0.1785 (4) 0.0196 (7) 0.6727 (17)
H4A 0.998639 0.306140 0.183286 0.024* 0.6727 (17)
C4B 0.7015 (13) 0.1835 (11) 0.2382 (11) 0.0196 (7) 0.3273 (17)
H4B 0.634214 0.186979 0.287497 0.024* 0.3273 (17)
C5 0.87295 (17) 0.36183 (14) 0.37536 (13) 0.0244 (3)
H5A 0.786386 0.394860 0.394322 0.029*
H5B 0.937159 0.432803 0.362651 0.029*
C6 0.94939 (15) 0.30218 (12) 0.47922 (12) 0.0195 (3)
C7 0.99694 (15) 0.26354 (14) 0.76650 (13) 0.0219 (3)
C8 0.91801 (15) 0.08293 (13) 0.61312 (13) 0.0211 (3)
C9 0.99968 (17) 0.02374 (14) 0.71264 (13) 0.0255 (3)
H9A 1.082011 −0.012463 0.688482 0.031*
H9B 0.936797 −0.044373 0.731533 0.031*
N1 0.87242 (13) 0.28734 (11) 0.56472 (11) 0.0205 (2)
H1 0.784 (2) 0.2785 (16) 0.5452 (15) 0.023 (4)*
N2 0.92535 (12) 0.21256 (11) 0.64903 (10) 0.0200 (2)
O1 1.06854 (11) 0.26997 (10) 0.48825 (10) 0.0263 (2)
O2 0.85315 (11) 0.03015 (10) 0.51434 (10) 0.0263 (2)
S1A 0.84226 (13) 0.12988 (10) 0.06504 (10) 0.0260 (2) 0.6727 (17)
S1B 0.6811 (3) 0.0788 (3) 0.1107 (3) 0.0260 (2) 0.3273 (17)
S2 1.06254 (4) 0.14561 (4) 0.84299 (3) 0.02640 (9)
S3 1.01734 (5) 0.41087 (4) 0.82790 (4) 0.03324 (10)
C11A 0.4107 (4) 0.3665 (5) 0.8615 (4) 0.0348 (9) 0.7916 (19)
H11A 0.353131 0.424722 0.890676 0.042* 0.7916 (19)
C12A 0.3757 (4) 0.2893 (6) 0.7510 (5) 0.0260 (8) 0.7916 (19)
H12A 0.287724 0.288656 0.693747 0.031* 0.7916 (19)
C11B 0.6014 (12) 0.3318 (14) 0.9163 (10) 0.0348 (9) 0.2084 (19)
H11B 0.675966 0.365869 0.985263 0.042* 0.2084 (19)
C12B 0.6096 (19) 0.238 (3) 0.819 (2) 0.0260 (8) 0.2084 (19)
H12B 0.693246 0.198134 0.815566 0.031* 0.2084 (19)
C13 0.48263 (16) 0.20962 (13) 0.72904 (12) 0.0209 (3)
C14A 0.5992 (5) 0.2286 (6) 0.8247 (5) 0.0279 (11) 0.7916 (19)
H14A 0.680976 0.184997 0.826702 0.033* 0.7916 (19)
C14B 0.3780 (19) 0.274 (3) 0.7503 (19) 0.0279 (11) 0.2084 (19)
H14B 0.285834 0.266998 0.697131 0.033* 0.2084 (19)
C15 0.46840 (16) 0.11790 (13) 0.61472 (12) 0.0216 (3)
H15A 0.378555 0.059746 0.598778 0.026*
H15B 0.550170 0.067657 0.623555 0.026*
C16 0.46640 (14) 0.19004 (12) 0.51108 (12) 0.0173 (3)
C17 0.31832 (14) 0.24127 (13) 0.24248 (12) 0.0192 (3)
C18 0.33768 (14) 0.41284 (13) 0.40333 (13) 0.0190 (3)
C19 0.33812 (17) 0.48314 (13) 0.29957 (13) 0.0247 (3)
H19A 0.428495 0.540567 0.315257 0.030*
H19B 0.256618 0.533625 0.288467 0.030*
N11 0.33329 (13) 0.20086 (11) 0.44504 (10) 0.0173 (2)
H11 0.261 (2) 0.1832 (16) 0.4689 (15) 0.025 (4)*
N12 0.32383 (12) 0.28276 (10) 0.36245 (10) 0.0168 (2)
O11 0.57399 (10) 0.23773 (10) 0.48702 (9) 0.0240 (2)
O12 0.34760 (11) 0.45633 (9) 0.50671 (9) 0.0247 (2)
S11A 0.58246 (9) 0.33791 (8) 0.93937 (6) 0.0371 (2) 0.7916 (19)
S11B 0.4286 (6) 0.3711 (5) 0.8833 (4) 0.0371 (2) 0.2084 (19)
S12 0.32221 (5) 0.36801 (4) 0.16587 (3) 0.02777 (9)
S13 0.30889 (4) 0.09510 (3) 0.17993 (3) 0.02742 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.037 (2) 0.057 (3) 0.038 (3) 0.0079 (19) 0.0078 (18) 0.012 (2)
C1B 0.037 (2) 0.057 (3) 0.038 (3) 0.0079 (19) 0.0078 (18) 0.012 (2)
C2A 0.0221 (16) 0.040 (3) 0.0266 (15) 0.0060 (14) 0.0066 (12) 0.0074 (15)
C2B 0.0221 (16) 0.040 (3) 0.0266 (15) 0.0060 (14) 0.0066 (12) 0.0074 (15)
C3 0.0264 (7) 0.0246 (7) 0.0184 (7) 0.0087 (6) 0.0044 (5) 0.0041 (5)
C4A 0.0234 (17) 0.0195 (14) 0.0152 (15) 0.0055 (11) 0.0024 (12) 0.0019 (10)
C4B 0.0234 (17) 0.0195 (14) 0.0152 (15) 0.0055 (11) 0.0024 (12) 0.0019 (10)
C5 0.0303 (8) 0.0230 (7) 0.0212 (7) 0.0101 (6) 0.0067 (6) 0.0028 (5)
C6 0.0185 (7) 0.0173 (6) 0.0204 (7) 0.0017 (5) 0.0028 (5) −0.0019 (5)
C7 0.0181 (7) 0.0271 (7) 0.0210 (7) 0.0045 (6) 0.0049 (5) 0.0035 (5)
C8 0.0162 (6) 0.0232 (7) 0.0246 (7) 0.0002 (5) 0.0080 (5) 0.0026 (5)
C9 0.0300 (8) 0.0213 (7) 0.0251 (7) 0.0012 (6) 0.0061 (6) 0.0049 (6)
N1 0.0147 (6) 0.0262 (6) 0.0206 (6) 0.0072 (5) 0.0024 (5) 0.0033 (5)
N2 0.0177 (6) 0.0224 (6) 0.0195 (6) 0.0038 (5) 0.0034 (4) 0.0027 (4)
O1 0.0170 (5) 0.0314 (6) 0.0313 (6) 0.0057 (4) 0.0068 (4) 0.0042 (4)
O2 0.0220 (5) 0.0260 (5) 0.0268 (5) −0.0008 (4) 0.0025 (4) −0.0017 (4)
S1A 0.0297 (4) 0.0297 (4) 0.0182 (3) 0.0060 (3) 0.0044 (2) 0.0029 (2)
S1B 0.0297 (4) 0.0297 (4) 0.0182 (3) 0.0060 (3) 0.0044 (2) 0.0029 (2)
S2 0.0324 (2) 0.02659 (19) 0.02008 (18) 0.00490 (15) 0.00387 (14) 0.00602 (14)
S3 0.0405 (2) 0.02536 (19) 0.0278 (2) 0.01014 (17) −0.00280 (17) −0.00329 (15)
C11A 0.0280 (16) 0.0542 (18) 0.029 (2) 0.0119 (13) 0.0103 (14) 0.0206 (16)
C12A 0.0257 (11) 0.029 (2) 0.0267 (10) 0.0055 (10) 0.0130 (9) 0.0047 (11)
C11B 0.0280 (16) 0.0542 (18) 0.029 (2) 0.0119 (13) 0.0103 (14) 0.0206 (16)
C12B 0.0257 (11) 0.029 (2) 0.0267 (10) 0.0055 (10) 0.0130 (9) 0.0047 (11)
C13 0.0285 (7) 0.0181 (6) 0.0170 (6) 0.0015 (5) 0.0070 (5) 0.0039 (5)
C14A 0.0390 (17) 0.0221 (15) 0.0190 (12) 0.0073 (14) −0.0020 (12) 0.0030 (11)
C14B 0.0390 (17) 0.0221 (15) 0.0190 (12) 0.0073 (14) −0.0020 (12) 0.0030 (11)
C15 0.0268 (7) 0.0170 (6) 0.0185 (7) 0.0021 (5) 0.0009 (5) 0.0018 (5)
C16 0.0194 (6) 0.0150 (6) 0.0161 (6) 0.0041 (5) 0.0032 (5) −0.0022 (5)
C17 0.0172 (6) 0.0217 (7) 0.0184 (6) 0.0033 (5) 0.0042 (5) 0.0017 (5)
C18 0.0144 (6) 0.0186 (6) 0.0237 (7) 0.0043 (5) 0.0048 (5) 0.0004 (5)
C19 0.0307 (8) 0.0192 (7) 0.0242 (7) 0.0064 (6) 0.0048 (6) 0.0041 (5)
N11 0.0161 (6) 0.0194 (6) 0.0174 (5) 0.0016 (4) 0.0053 (4) 0.0044 (4)
N12 0.0178 (5) 0.0164 (5) 0.0162 (5) 0.0035 (4) 0.0042 (4) 0.0016 (4)
O11 0.0159 (5) 0.0321 (6) 0.0250 (5) 0.0045 (4) 0.0059 (4) 0.0054 (4)
O12 0.0264 (5) 0.0228 (5) 0.0248 (5) 0.0022 (4) 0.0098 (4) −0.0029 (4)
S11A 0.0573 (5) 0.0334 (3) 0.0176 (3) 0.0122 (3) 0.0034 (2) −0.0020 (2)
S11B 0.0573 (5) 0.0334 (3) 0.0176 (3) 0.0122 (3) 0.0034 (2) −0.0020 (2)
S12 0.0389 (2) 0.02616 (19) 0.01882 (18) 0.00436 (16) 0.00618 (15) 0.00631 (14)
S13 0.0352 (2) 0.02192 (18) 0.02263 (18) 0.00242 (15) 0.00702 (15) −0.00483 (13)

Geometric parameters (Å, º)

C1A—H1A 0.9500 C5—C6 1.514 (2)
C1B—H1B 0.9500 C6—N1 1.3730 (18)
C1A—C2A 1.370 (8) C6—O1 1.2141 (17)
C2A—H2A 0.9500 C7—N2 1.3878 (18)
C1B—C2B 1.395 (13) C7—S2 1.7339 (15)
C2B—H2B 0.9500 C7—S3 1.6303 (15)
C2B—C3 1.410 (11) C8—C9 1.494 (2)
C2A—C3 1.412 (6) C8—N2 1.3988 (18)
C4A—H4A 0.9500 C8—O2 1.2065 (17)
C4B—H4B 0.9500 C9—H9A 0.9900
C4A—S1A 1.707 (4) C9—H9B 0.9900
C1A—S1A 1.747 (7) C9—S2 1.8102 (15)
C4B—S1B 1.690 (11) N1—H1 0.825 (18)
C1B—S1B 1.672 (11) N1—N2 1.3874 (16)
C11A—H11A 0.9500 C13—C14A 1.366 (4)
C11A—C12A 1.378 (6) C13—C14B 1.323 (14)
C12A—H12A 0.9500 C13—C15 1.5086 (18)
C11B—H11B 0.9500 C15—H15A 0.9900
C11B—C12B 1.430 (16) C15—H15B 0.9900
C12B—H12B 0.9500 C15—C16 1.5096 (19)
C12A—C13 1.442 (4) C16—N11 1.3613 (17)
C12B—C13 1.395 (15) C16—O11 1.2190 (17)
C14A—H14A 0.9500 C17—N12 1.3802 (17)
C14B—H14B 0.9500 C17—S12 1.7310 (14)
C11A—S11A 1.773 (4) C17—S13 1.6326 (14)
C14A—S11A 1.694 (4) C18—C19 1.501 (2)
C14B—S11B 1.680 (15) C18—N12 1.4073 (17)
C11B—S11B 1.726 (12) C18—O12 1.1982 (16)
C3—C4A 1.380 (5) C19—H19A 0.9900
C3—C4B 1.407 (12) C19—H19B 0.9900
C3—C5 1.509 (2) C19—S12 1.8121 (15)
C5—H5A 0.9900 N11—H11 0.819 (18)
C5—H5B 0.9900 N11—N12 1.3797 (16)
C4A—S1A—C1A 92.8 (2) C8—C9—H9B 110.3
S1A—C1A—H1A 125.5 C8—C9—S2 107.29 (10)
C2A—C1A—H1A 125.5 H9A—C9—H9B 108.5
S1B—C1B—H1B 125.0 S2—C9—H9A 110.3
C2B—C1B—H1B 125.0 S2—C9—H9B 110.3
C1A—C2A—H2A 122.6 C6—N1—H1 119.8 (12)
C1B—C2B—H2B 122.7 C6—N1—N2 116.15 (11)
C1A—C2A—C3 114.8 (4) N2—N1—H1 112.4 (12)
C1B—C2B—C3 114.5 (8) C7—N2—C8 118.28 (12)
S1A—C4A—H4A 124.2 N1—N2—C7 121.89 (12)
C1B—S1B—C4B 94.1 (5) N1—N2—C8 119.59 (11)
S1B—C4B—H4B 124.1 C7—S2—C9 93.85 (7)
C2A—C1A—S1A 109.0 (4) C14B—C13—C15 122.9 (6)
C2B—C1B—S1B 109.9 (7) C13—C15—H15A 109.9
C14A—S11A—C11A 93.1 (2) C3—C2A—H2A 122.6
C12A—C11A—H11A 126.1 C3—C2B—H2B 122.7
S11A—C11A—H11A 126.1 C3—C4A—H4A 124.2
C11A—C12A—H12A 122.6 C3—C4B—H4B 124.1
C14B—S11B—C11B 94.8 (6) C13—C15—H15B 109.9
S11B—C11B—H11B 127.0 C3—C4A—S1A 111.5 (2)
C12B—C11B—H11B 127.0 C3—C4B—S1B 111.7 (6)
C11B—C12B—H12B 123.3 C13—C15—C16 108.99 (11)
C11A—C12A—C13 114.9 (3) H15A—C15—H15B 108.3
S11A—C14A—H14A 123.6 C16—C15—H15A 109.9
S11B—C14B—H14B 124.3 C16—C15—H15B 109.9
C12A—C11A—S11A 107.8 (3) N11—C16—C15 115.08 (12)
C12B—C11B—S11B 106.0 (8) O11—C16—C15 123.93 (12)
C4A—C3—C2A 111.8 (2) O11—C16—N11 120.98 (12)
C4B—C3—C2B 109.4 (6) N12—C17—S12 109.87 (10)
C4A—C3—C5 122.36 (18) N12—C17—S13 125.87 (11)
C4B—C3—C5 120.4 (4) S13—C17—S12 124.26 (8)
C2A—C3—C5 125.5 (2) N12—C18—C19 109.81 (11)
C2B—C3—C5 130.2 (4) O12—C18—C19 127.34 (13)
C3—C5—H5A 109.8 O12—C18—N12 122.85 (13)
C3—C5—H5B 109.8 C18—C19—H19A 110.2
C14A—C13—C12A 111.3 (3) C18—C19—H19B 110.2
C14B—C13—C12B 114.2 (8) C18—C19—S12 107.46 (10)
C14A—C13—C15 124.3 (2) H19A—C19—H19B 108.5
C12B—C13—C15 122.8 (6) S12—C19—H19A 110.2
C12A—C13—C15 124.4 (2) S12—C19—H19B 110.2
C3—C5—C6 109.31 (11) C16—N11—H11 121.5 (12)
H5A—C5—H5B 108.3 C16—N11—N12 117.50 (11)
C6—C5—H5A 109.8 N12—N11—H11 117.0 (12)
C6—C5—H5B 109.8 C17—N12—C18 118.85 (11)
N1—C6—C5 114.18 (12) N11—N12—C17 121.30 (11)
O1—C6—C5 123.98 (13) N11—N12—C18 119.39 (11)
O1—C6—N1 121.84 (13) C17—S12—C19 93.94 (7)
N2—C7—S2 109.78 (10) C13—C12A—H12A 122.6
N2—C7—S3 126.68 (11) C13—C12B—C11B 113.4 (10)
S3—C7—S2 123.53 (9) C13—C12B—H12B 123.3
N2—C8—C9 110.62 (12) C13—C14A—H14A 123.6
O2—C8—C9 126.72 (14) C13—C14B—H14B 124.3
O2—C8—N2 122.66 (14) C13—C14A—S11A 112.9 (3)
C8—C9—H9A 110.3 C13—C14B—S11B 111.5 (9)
C2B—C1B—S1B—C4B 0.0 (13) N2—C8—C9—S2 4.36 (14)
C12A—C11A—S11A—C14A 0.2 (6) O1—C6—N1—N2 −11.93 (19)
C2A—C1A—S1A—C4A 0.2 (5) O2—C8—C9—S2 −175.56 (12)
C12B—C11B—S11B—C14B −2 (2) O2—C8—N2—C7 176.99 (13)
S1B—C1B—C2B—C3 3.4 (18) O2—C8—N2—N1 −8.4 (2)
S1A—C1A—C2A—C3 1.4 (6) S2—C7—N2—C8 −0.09 (15)
S11B—C11B—C12B—C13 2 (3) S2—C7—N2—N1 −174.54 (10)
S11A—C11A—C12A—C13 0.0 (7) S3—C7—N2—C8 −179.36 (11)
C1B—C2B—C3—C4B −5.7 (17) S3—C7—N2—N1 6.2 (2)
C1A—C2A—C3—C4A −2.9 (7) S3—C7—S2—C9 −178.31 (10)
C1A—C2A—C3—C5 −176.5 (4) C12A—C13—C15—C16 65.3 (4)
C1B—C2B—C3—C5 177.4 (9) C12B—C13—C15—C16 −106.2 (18)
C2A—C3—C5—C6 76.8 (3) C14A—C13—C15—C16 −114.1 (4)
C4B—C3—C5—C6 84.8 (6) C14B—C13—C15—C16 70.8 (19)
C4A—C3—C5—C6 −96.2 (4) C13—C14B—S11B—C11B 2 (2)
C11B—C12B—C13—C14B 0 (3) C13—C14A—S11A—C11A −0.4 (5)
C11A—C12A—C13—C14A −0.3 (6) C13—C15—C16—N11 −96.18 (14)
C11A—C12A—C13—C15 −179.8 (4) C13—C15—C16—O11 82.80 (16)
C11B—C12B—C13—C15 176.9 (15) C15—C13—C14B—S11B −178.4 (10)
C2A—C3—C4A—S1A 2.9 (6) C15—C13—C14A—S11A 179.9 (2)
C2B—C3—C4B—S1B 5.5 (12) C15—C16—N11—N12 169.47 (11)
C2B—C3—C5—C6 −98.6 (10) C16—N11—N12—C17 95.69 (15)
C12A—C13—C14A—S11A 0.4 (5) C16—N11—N12—C18 −76.45 (15)
C12B—C13—C14B—S11B −1 (3) C18—C19—S12—C17 −0.76 (11)
C3—C4A—S1A—C1A −1.8 (4) C19—C18—N12—C17 2.19 (17)
C3—C4B—S1B—C1B −3.3 (10) C19—C18—N12—N11 174.53 (11)
C3—C5—C6—N1 −110.03 (14) N12—C17—S12—C19 1.91 (11)
C3—C5—C6—O1 70.25 (18) N12—C18—C19—S12 −0.57 (14)
C5—C3—C4B—S1B −177.2 (4) O11—C16—N11—N12 −9.54 (18)
C5—C3—C4A—S1A 176.8 (2) O12—C18—C19—S12 179.28 (12)
C5—C6—N1—N2 168.34 (12) O12—C18—N12—C17 −177.67 (13)
C6—N1—N2—C7 104.36 (15) O12—C18—N12—N11 −5.33 (19)
C6—N1—N2—C8 −70.01 (16) S12—C17—N12—C18 −2.78 (15)
C8—C9—S2—C7 −3.86 (11) S12—C17—N12—N11 −174.96 (10)
C9—C8—N2—C7 −2.94 (17) S13—C17—N12—C18 177.43 (10)
C9—C8—N2—N1 171.64 (12) S13—C17—N12—N11 5.25 (19)
N2—C7—S2—C9 2.39 (11) S13—C17—S12—C19 −178.29 (10)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the S1A/C1A–C4A and S11A/C11A–C14A rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···O11 0.824 (19) 1.973 (19) 2.7923 (16) 173.1 (18)
N11—H11···O1i 0.819 (19) 2.189 (19) 2.8436 (16) 137.1 (16)
N11—H11···O2ii 0.819 (19) 2.519 (18) 3.0965 (16) 128.6 (15)
C5—H5A···O12iii 0.99 2.46 3.3901 (19) 156
C9—H9A···O2iv 0.99 2.53 3.2443 (19) 129
C9—H9B···S13ii 0.99 2.81 3.6570 (17) 144
C15—H15A···O2ii 0.99 2.37 3.2862 (19) 154
C9—H9A···Cg1iv 0.99 2.73 3.276 (3) 115
C19—H19A···Cg2iii 0.99 2.77 3.480 (2) 129

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y, −z+1.

References

  1. Barbarella, G., Melucci, M. & Sotgiu, G. (2005). Adv. Mater. 17, 1581–1593.
  2. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature, 397, 121–128.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Jabeen, S., Palmer, R. A., Potter, B. S., Helliwell, M., Dines, T. J. & Chowdhry, B. Z. (2007). J. Chem. Crystallogr. 39, 151–156.
  8. Moers, F. G., Smits, J. M. M. & Beurskens, P. T. (1986). J. Crystallogr. Spectrosc. Res. 16, 101–106.
  9. Nguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259–263.
  10. Ono, M., Hayashi, S., Matsumura, K., Kimura, H., Okamoto, Y., Ihara, M., Takahashi, R., Mori, H. & Saji, H. (2011). ACS Chem. Neurosci. 2, 269–275. [DOI] [PMC free article] [PubMed]
  11. Orr, W. L. & White, C. M. (1990). Editors. Geochemistry of Sulfur in fossil fuels. Washington, DC: American Chemical Society.
  12. Santagati, A., Modica, M., Santagati, M., Garuso, A. & Cutuli, V. (1994). Pharmazie, 49, 64–65. [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Tomašić, T. & Mašič, L. P. (2012). Expert Opin. Drug Discov. 7, 549–560. [DOI] [PubMed]
  16. Vu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730–735.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007629/hb7673sup1.cif

e-73-00901-sup1.cif (708.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007629/hb7673Isup2.hkl

e-73-00901-Isup2.hkl (334.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007629/hb7673Isup3.cml

CCDC reference: 1551679

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES