Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 31;73(Pt 6):905–907. doi: 10.1107/S2056989017007642

Crystal structure of 2-azido-1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­lidine

Alex J Veinot a, Amber D Blair a, Jason D Masuda a,*
PMCID: PMC5458321  PMID: 28638656

The synthesis, spectroscopic and crystal structure of 2-azido-1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­lidine is reported.

Keywords: crystal structure; N-heterocyclic phosphine; NHP; 2-azido-1,3,2-di­aza­phospho­lidine

Abstract

The title compound, C26H38N5P, was synthesized by reacting 2-chloro-1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­lidine with sodium azide and a catalytic amount of lithium chloride in tetra­hydro­furan. The title compound is the first structurally characterized 2-azido-1,3,2-di­aza­phospho­lidine and exhibits a P atom in a trigonal pyramidal geometry. The azide P—N bond length of 1.8547 (16) Å is significantly longer than the P—N separations for the chelating di­amine [P—N = 1.6680 (15) and 1.6684 (14) Å]. The sterically hindered 2,6-diiso­propyl­phenyl groups twist away from the central heterocycle, with dihedral angles between the central heteocyclic ring and benzene rings of 76.17 (10) and 79.74 (9)°. In the crystal, a weak C—H⋯N link to the terminal N atom of the azide group leads to [100] chains.

Chemical context  

Phosphine azides possess at least one azide group attached to phospho­rus and display a broad range of reactivity that is directly dependent on the other substituents attached to the P atom. One of the most inter­esting properties of these mol­ecules is that both free and coordinated alkyl and aryl derivatives are much more reactive than their corresponding amino derivatives, as demonstrated by their lower thermal and photochemical stability. For example, the phosphinoazide complex Ph2P(N3)–Cr(CO)5 readily undergoes photolysis under UV light to produce the phosphino–iso­cyanate complex Ph2P(NCO)–Cr(CO)5 (Ocando et al., 1985), while the related bis­(diiso­propyl­amino) complex (iPr2N)2P(N3)–Cr(CO)5 does not (Cowley et al., 1995). The crystal structure of the title compound is the first reported example of a structurally characterized 2-azido-1,3,2-di­aza­phospho­lidine; however, a few closely related compounds are known, such as those derived from 1,3,2-di­aza­phospho­lenes.graphic file with name e-73-00905-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. It crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit. The bond lengths between the P atom and its flanking N atoms are similar [P1—N4 = 1.6680 (15) Å, P1—N5 = 1.6684 (14) Å and N4—P1—N5 = 91.14 (7)°], while the phospho­rus centre adopts a trigonal pyramidal geometry, with the sum of the angles at phospho­rus equal to 294.14 (7)°. The azide group is quasilinear [N3—N2—N1 = 176.6 (2)°], with similar N—N bond lengths [N1—N2 = 1.168 (2) Å and N2—N3 = 1.155 (2) Å]. The phospho­rus–azide bond length (P1—N1) is significantly longer [1.8547 (16) Å] than found for atoms N4 and N5. The average sum of the bond angles at the N4 and N5 positions is 359.87 (12)°, very close to an ideal trigonal planar geometry. This is a strong indication that the nominal lone pairs of atoms N4 and N5 participate in N—P⋯π inter­actions and, when coupled with the significantly longer P1—N1 bond length, suggests a partial ionic character similar to earlier reports in acyclic structures (Cowley et al., 1995). The overall conformation of the C1/C2/N4/N5/P1 ring is well described as an envelope, with atom N5 deviating from the other atoms (r.m.s. deviation = 0.030 Å) by −0.274 (2) Å. The steric demands of the bulky 2,6-diiso­propyl­phenyl groups cause the aromatic rings to twist away from the central five-membered ring, with torsion angles of 103.69 (18) and 101.83 (17)° for P1—N1—C3—C4 and P1—N2—C15—C20, respectively. The isopropyl groups are oriented away from the central five-membered ring, but the ‘congested’ nature of the mol­ecule results in intra­molecular short contacts between all four of the methine H atoms (H9, H12, H21 and H24) and atoms N4 and N5 (Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing 50% displacement ellipsoids. H atoms have been omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N4 1.00 2.43 2.926 (2) 110
C12—H12⋯N4 1.00 2.44 2.913 (2) 109
C21—H21⋯N5 1.00 2.49 2.932 (2) 106
C24—H24⋯N1 1.00 2.66 3.443 (3) 136
C24—H24⋯N5 1.00 2.46 2.955 (2) 110
C22—H22C⋯N3i 0.98 2.69 3.669 (3) 174

Symmetry code: (i) Inline graphic.

Supra­molecular features  

The only significant directional inter­action in the crystal of the title compound is a long [2.69 (3) Å] C—H⋯N hydrogen bond to the terminal N atom of the azide group, which results in [100] chains in the crystal (Fig. 2).

Figure 2.

Figure 2

The packing of the title compound, showing inter­molecular C—H⋯N inter­actions as dashed lines, which result in [100] chains.

Database survey  

A search of the Cambridge Structural Database (Groom et al., 2016) indicated that no other 2-azido-1,3,2-(di­aryl­amino)­phospho­lidine derivatives have been structurally characterized. Some structurally similar compounds were identified, however, namely 2-azido-1,3-bis­(2,6-diiso­propyl­lphen­yl)-1,3,2-di­aza­phospho­lene (CSD refcode CILBAC; Gediga et al., 2014) and its corresponding 2,6-di­methyl­phenyl derivative (GOFHAL; Burck et al., 2008). Acyclic derivatives featuring bis­(diiso­propyl­amino) (PIJZAJ; Englert et al., 1993) and bis­(dicylo­hexyl­amino) (ZABCEK; Cowley et al., 1995) ligands are known, and also 1-azido-N,N′-bis(2,4,6-tri-tert-butyl­phenyl)phosphinedi­amine (YABVUV; Nieger et al., 2016).

Synthesis and crystallization  

The synthesis of the title compound was achieved using a similar method as reported in the literature for 2-azido-1,3-bis­(2,6-diiso­propyl­lphen­yl)-1,3,2-di­aza­phospho­lene (Gediga et al., 2014). In a 20 ml scintillation vial, 0.102 g (0.229 mmol, 1 eq.) of colourless 2-chloro-1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­lidine were dissolved in 1 ml of THF producing a colourless solution. To this solution, 0.016 g (0.246 mmol, 1.1 eq.) of colourless sodium azide and a spatula tip (<1 mg) of lithium chloride were added to solution immediately producing a colourless mixture. The reaction mixture was left to stir for 1 d and monitored using 31P{1H} NMR spectroscopy, and once the starting material was completely consumed the reaction mixture was dried in vacuo. Extraction of the colourless residue with cold pentane, followed by filtration through Celite produced a colourless solution, which afforded 0.060 g (60%) of the title compound as a colourless powder after removal of the solvent. Crystals of the product were obtained by concentrating the filtrate and storing in a 238 K freezer overnight. 1H NMR (CDCl3): δ 7.31 (t, 3 J HH = 7.6 Hz, 2H, p-Dipp), 7.24–7.17 (m, 4H, m-Dipp), 3.88–3.82 (pseudo-q, 2H, NHC-CH2), 3.74 (sept, 3 J HH = 6.8 Hz, 2H, iPr-CH), 3.48–3.39 (m, 4H, iPr-CH, NHC-CH2), 1.33–1.25 (m, 3 J HH = 6.8 Hz, 24H, iPr-CH3). 13C{1H} NMR (CDCl3): δ 150.3, 148.4, 136.2, 128.1, 124.7, 124.2, 54.4, 29.0, 25.3, 24.9, 24.5. 31P{1H} NMR (CDCl3): δ 129.8. IR (KBr pellet): ν 3062 (w), 2963 (s), 2926 (m), 2867 (m), 2500 (w), 2125 (m), 2085 (s, N=N=N), 1678 (w), 1584 (w), 1462 (s), 1445 (s), 1383 (m), 1363 (m), 1324 (m), 1323 (m), 1257 (s), 1211 (w), 1185 (w), 1106 (m), 1075 (s), 1056 (w), 1043 (w), 980 (w), 946 (w), 935 (w), 852 (w), 806 (s), 761 (s), 730 (w), 688 (w), 651 (w), 602 (w), 583 (w), 550 (w), 542 (w), 470 (s), 437 cm−1 (w). M.p. (K): 415.4–417.6 (decomposes, gas was released).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were included in geometrically idealized positions and refined using a riding model. Dihedral angles for the methyl H atoms were allowed to refine freely. The atomic displacement parameters of atoms N1 and N2 were constrained to be approximately equal using an EADP command.

Table 2. Experimental details.

Crystal data
Chemical formula C26H38N5P
M r 451.58
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.0148 (12), 17.343 (2), 15.6270 (19)
β (°) 105.948 (2)
V3) 2609.7 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.39 × 0.35 × 0.27
 
Data collection
Diffractometer Siemens/Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.718, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 29851, 5708, 4350
R int 0.047
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.123, 1.02
No. of reflections 5708
No. of parameters 291
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.39

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXT2014 (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007642/hb7680sup1.cif

e-73-00905-sup1.cif (957.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007642/hb7680Isup2.hkl

e-73-00905-Isup2.hkl (454KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007642/hb7680Isup3.cml

CCDC reference: 1551849

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Sciences and Engineering Research Council of Canada (through the Discovery Grants Program to JDM). JDM also acknowledges support from the Canadian Foundation for Innovation, the Nova Scotia Research and Innovation Trust Fund and Saint Mary’s University.

supplementary crystallographic information

Crystal data

C26H38N5P F(000) = 976
Mr = 451.58 Dx = 1.149 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.0148 (12) Å Cell parameters from 5265 reflections
b = 17.343 (2) Å θ = 2.2–25.2°
c = 15.6270 (19) Å µ = 0.13 mm1
β = 105.948 (2)° T = 150 K
V = 2609.7 (5) Å3 Block, colourless
Z = 4 0.39 × 0.35 × 0.27 mm

Data collection

Siemens/Bruker APEXII diffractometer 4350 reflections with I > 2σ(I)
Detector resolution: 66 pixels mm-1 Rint = 0.047
φ and ω scans θmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −12→12
Tmin = 0.718, Tmax = 0.746 k = −22→22
29851 measured reflections l = −19→19
5708 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0515P)2 + 1.4293P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
5708 reflections Δρmax = 0.36 e Å3
291 parameters Δρmin = −0.39 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.59945 (4) 0.54203 (3) 0.26470 (3) 0.02022 (12)
N1 0.79052 (16) 0.53002 (10) 0.29154 (11) 0.0320 (3)
N2 0.84392 (16) 0.55461 (10) 0.23965 (11) 0.0320 (3)
N3 0.9030 (2) 0.57761 (13) 0.19098 (13) 0.0507 (5)
N4 0.54371 (15) 0.45109 (8) 0.24970 (9) 0.0219 (3)
N5 0.57675 (15) 0.54345 (8) 0.36653 (9) 0.0213 (3)
C1 0.5191 (3) 0.41282 (12) 0.32687 (13) 0.0425 (6)
H1A 0.574471 0.364849 0.340333 0.051*
H1B 0.419615 0.399379 0.315259 0.051*
C2 0.5609 (2) 0.46709 (11) 0.40234 (13) 0.0364 (5)
H2A 0.489221 0.468627 0.435128 0.044*
H2B 0.649678 0.450354 0.443932 0.044*
C3 0.51337 (18) 0.41222 (10) 0.16538 (11) 0.0231 (4)
C4 0.60771 (19) 0.35813 (11) 0.14988 (12) 0.0274 (4)
C5 0.5759 (2) 0.32088 (13) 0.06777 (14) 0.0413 (5)
H5 0.638572 0.283914 0.055981 0.050*
C6 0.4543 (2) 0.33718 (15) 0.00350 (14) 0.0492 (6)
H6 0.434281 0.311734 −0.052431 0.059*
C7 0.3621 (2) 0.38992 (13) 0.01970 (13) 0.0420 (5)
H7 0.278444 0.400226 −0.025191 0.050*
C8 0.38869 (19) 0.42858 (11) 0.10071 (12) 0.0286 (4)
C9 0.7420 (2) 0.33751 (12) 0.21946 (13) 0.0336 (5)
H9 0.750243 0.371828 0.272092 0.040*
C10 0.7379 (3) 0.25436 (14) 0.25043 (17) 0.0561 (7)
H10A 0.731285 0.219361 0.200199 0.084*
H10B 0.656980 0.247168 0.273363 0.084*
H10C 0.822820 0.243131 0.297620 0.084*
C11 0.8689 (2) 0.35145 (16) 0.18521 (17) 0.0519 (6)
H11A 0.865868 0.316548 0.135398 0.078*
H11B 0.953597 0.341772 0.233196 0.078*
H11C 0.868644 0.404983 0.165078 0.078*
C12 0.2812 (2) 0.48372 (12) 0.11812 (14) 0.0367 (5)
H12 0.326243 0.513951 0.172950 0.044*
C13 0.1612 (3) 0.43896 (19) 0.1354 (3) 0.1000 (14)
H13A 0.093897 0.475020 0.148196 0.150*
H13B 0.196137 0.404586 0.186406 0.150*
H13C 0.116090 0.408329 0.082660 0.150*
C14 0.2272 (4) 0.53980 (17) 0.0432 (2) 0.0820 (10)
H14A 0.177132 0.511669 −0.010362 0.123*
H14B 0.305181 0.567885 0.031406 0.123*
H14C 0.164104 0.576421 0.059862 0.123*
C15 0.58170 (17) 0.61147 (10) 0.42027 (11) 0.0207 (3)
C16 0.46359 (18) 0.65928 (10) 0.40491 (11) 0.0219 (4)
C17 0.46834 (19) 0.72263 (10) 0.46045 (12) 0.0274 (4)
H17 0.389882 0.755641 0.450633 0.033*
C18 0.5844 (2) 0.73839 (11) 0.52929 (12) 0.0305 (4)
H18 0.585062 0.781626 0.566744 0.037*
C19 0.6994 (2) 0.69150 (10) 0.54386 (12) 0.0281 (4)
H19 0.779039 0.703016 0.591430 0.034*
C20 0.70149 (18) 0.62737 (10) 0.49017 (11) 0.0231 (4)
C21 0.33327 (18) 0.64485 (11) 0.32984 (12) 0.0277 (4)
H21 0.331695 0.589036 0.313540 0.033*
C22 0.2000 (2) 0.66235 (13) 0.35634 (17) 0.0453 (6)
H22A 0.191522 0.718159 0.363168 0.068*
H22B 0.203732 0.636691 0.412819 0.068*
H22C 0.119651 0.643396 0.309992 0.068*
C23 0.3355 (2) 0.69207 (13) 0.24749 (14) 0.0412 (5)
H23A 0.254521 0.678656 0.198252 0.062*
H23B 0.420602 0.680639 0.230557 0.062*
H23C 0.332647 0.747141 0.260929 0.062*
C24 0.83013 (19) 0.57663 (11) 0.51126 (12) 0.0285 (4)
H24 0.815047 0.535143 0.465149 0.034*
C25 0.8521 (2) 0.53809 (13) 0.60211 (14) 0.0442 (5)
H25A 0.769090 0.508486 0.602823 0.066*
H25B 0.869085 0.577684 0.648599 0.066*
H25C 0.932307 0.503398 0.613113 0.066*
C26 0.9599 (2) 0.62141 (13) 0.50874 (16) 0.0432 (5)
H26A 0.946650 0.644086 0.449550 0.065*
H26B 1.039822 0.586419 0.521593 0.065*
H26C 0.976794 0.662518 0.553468 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0210 (2) 0.0213 (2) 0.0179 (2) −0.00023 (17) 0.00470 (16) 0.00068 (17)
N1 0.0236 (6) 0.0394 (7) 0.0296 (6) 0.0011 (5) 0.0017 (4) −0.0038 (5)
N2 0.0236 (6) 0.0394 (7) 0.0296 (6) 0.0011 (5) 0.0017 (4) −0.0038 (5)
N3 0.0390 (11) 0.0744 (15) 0.0439 (11) −0.0083 (10) 0.0201 (9) −0.0003 (10)
N4 0.0268 (8) 0.0214 (7) 0.0180 (7) −0.0014 (6) 0.0070 (6) −0.0002 (6)
N5 0.0271 (8) 0.0186 (7) 0.0191 (7) 0.0007 (6) 0.0078 (6) 0.0005 (6)
C1 0.0801 (17) 0.0260 (10) 0.0300 (11) −0.0088 (10) 0.0293 (11) −0.0024 (8)
C2 0.0631 (14) 0.0236 (10) 0.0229 (9) −0.0099 (9) 0.0125 (9) 0.0016 (8)
C3 0.0262 (9) 0.0233 (9) 0.0200 (8) −0.0019 (7) 0.0067 (7) −0.0023 (7)
C4 0.0286 (10) 0.0290 (10) 0.0239 (9) 0.0018 (8) 0.0060 (7) −0.0042 (7)
C5 0.0395 (12) 0.0490 (13) 0.0339 (11) 0.0079 (10) 0.0077 (9) −0.0162 (10)
C6 0.0501 (14) 0.0641 (16) 0.0275 (11) 0.0046 (12) 0.0009 (10) −0.0212 (11)
C7 0.0367 (12) 0.0535 (14) 0.0277 (10) 0.0043 (10) −0.0050 (9) −0.0066 (9)
C8 0.0265 (9) 0.0280 (10) 0.0285 (10) 0.0009 (7) 0.0029 (8) −0.0011 (8)
C9 0.0325 (11) 0.0347 (11) 0.0301 (10) 0.0094 (8) 0.0027 (8) −0.0077 (8)
C10 0.0661 (17) 0.0387 (13) 0.0538 (15) 0.0155 (12) −0.0002 (13) 0.0041 (11)
C11 0.0322 (12) 0.0669 (17) 0.0542 (15) 0.0099 (11) 0.0081 (10) −0.0126 (12)
C12 0.0262 (10) 0.0320 (11) 0.0448 (12) 0.0055 (8) −0.0022 (9) −0.0070 (9)
C13 0.073 (2) 0.065 (2) 0.192 (4) 0.0142 (17) 0.086 (3) 0.009 (2)
C14 0.098 (3) 0.0568 (19) 0.082 (2) 0.0371 (17) 0.0091 (19) 0.0182 (16)
C15 0.0260 (9) 0.0196 (8) 0.0177 (8) −0.0012 (7) 0.0080 (7) 0.0004 (6)
C16 0.0245 (9) 0.0198 (8) 0.0223 (9) −0.0013 (7) 0.0079 (7) 0.0033 (7)
C17 0.0320 (10) 0.0206 (9) 0.0304 (10) 0.0035 (7) 0.0100 (8) 0.0000 (7)
C18 0.0400 (11) 0.0231 (9) 0.0285 (10) −0.0017 (8) 0.0093 (8) −0.0069 (8)
C19 0.0321 (10) 0.0280 (10) 0.0219 (9) −0.0041 (8) 0.0035 (7) −0.0014 (7)
C20 0.0261 (9) 0.0222 (9) 0.0212 (8) −0.0006 (7) 0.0068 (7) 0.0025 (7)
C21 0.0247 (9) 0.0230 (9) 0.0329 (10) −0.0002 (7) 0.0036 (8) −0.0010 (8)
C22 0.0250 (11) 0.0445 (13) 0.0645 (15) −0.0016 (9) 0.0090 (10) −0.0103 (11)
C23 0.0414 (12) 0.0395 (12) 0.0344 (11) 0.0035 (9) −0.0038 (9) 0.0086 (9)
C24 0.0284 (10) 0.0263 (9) 0.0272 (10) 0.0026 (8) 0.0015 (7) −0.0014 (8)
C25 0.0451 (13) 0.0438 (13) 0.0366 (12) 0.0078 (10) −0.0009 (10) 0.0118 (10)
C26 0.0291 (11) 0.0429 (13) 0.0576 (14) 0.0040 (9) 0.0120 (10) 0.0013 (11)

Geometric parameters (Å, º)

P1—N4 1.6680 (15) C12—H12 1.0000
P1—N5 1.6684 (14) C13—H13A 0.9800
P1—N1 1.8547 (16) C13—H13B 0.9800
N1—N2 1.168 (2) C13—H13C 0.9800
N2—N3 1.155 (2) C14—H14A 0.9800
N4—C3 1.436 (2) C14—H14B 0.9800
N4—C1 1.456 (2) C14—H14C 0.9800
N5—C15 1.441 (2) C15—C16 1.410 (2)
N5—C2 1.463 (2) C15—C20 1.410 (2)
C1—C2 1.477 (3) C16—C17 1.393 (2)
C1—H1A 0.9900 C16—C21 1.517 (2)
C1—H1B 0.9900 C17—C18 1.377 (3)
C2—H2A 0.9900 C17—H17 0.9500
C2—H2B 0.9900 C18—C19 1.377 (3)
C3—C4 1.399 (2) C18—H18 0.9500
C3—C8 1.403 (2) C19—C20 1.397 (2)
C4—C5 1.393 (3) C19—H19 0.9500
C4—C9 1.521 (3) C20—C24 1.520 (2)
C5—C6 1.378 (3) C21—C23 1.531 (3)
C5—H5 0.9500 C21—C22 1.532 (3)
C6—C7 1.372 (3) C21—H21 1.0000
C6—H6 0.9500 C22—H22A 0.9800
C7—C8 1.392 (3) C22—H22B 0.9800
C7—H7 0.9500 C22—H22C 0.9800
C8—C12 1.519 (3) C23—H23A 0.9800
C9—C10 1.525 (3) C23—H23B 0.9800
C9—C11 1.528 (3) C23—H23C 0.9800
C9—H9 1.0000 C24—C26 1.524 (3)
C10—H10A 0.9800 C24—C25 1.529 (3)
C10—H10B 0.9800 C24—H24 1.0000
C10—H10C 0.9800 C25—H25A 0.9800
C11—H11A 0.9800 C25—H25B 0.9800
C11—H11B 0.9800 C25—H25C 0.9800
C11—H11C 0.9800 C26—H26A 0.9800
C12—C14 1.503 (3) C26—H26B 0.9800
C12—C13 1.516 (4) C26—H26C 0.9800
N4—P1—N5 91.14 (7) C12—C13—H13B 109.5
N4—P1—N1 102.14 (8) H13A—C13—H13B 109.5
N5—P1—N1 100.86 (7) C12—C13—H13C 109.5
N2—N1—P1 116.29 (14) H13A—C13—H13C 109.5
N3—N2—N1 176.6 (2) H13B—C13—H13C 109.5
C3—N4—C1 120.31 (14) C12—C14—H14A 109.5
C3—N4—P1 123.43 (11) C12—C14—H14B 109.5
C1—N4—P1 116.17 (12) H14A—C14—H14B 109.5
C15—N5—C2 120.53 (14) C12—C14—H14C 109.5
C15—N5—P1 125.17 (11) H14A—C14—H14C 109.5
C2—N5—P1 114.15 (12) H14B—C14—H14C 109.5
N4—C1—C2 107.20 (16) C16—C15—C20 120.81 (15)
N4—C1—H1A 110.3 C16—C15—N5 119.29 (15)
C2—C1—H1A 110.3 C20—C15—N5 119.82 (15)
N4—C1—H1B 110.3 C17—C16—C15 118.32 (16)
C2—C1—H1B 110.3 C17—C16—C21 119.13 (16)
H1A—C1—H1B 108.5 C15—C16—C21 122.54 (15)
N5—C2—C1 107.95 (15) C18—C17—C16 121.37 (17)
N5—C2—H2A 110.1 C18—C17—H17 119.3
C1—C2—H2A 110.1 C16—C17—H17 119.3
N5—C2—H2B 110.1 C17—C18—C19 120.01 (17)
C1—C2—H2B 110.1 C17—C18—H18 120.0
H2A—C2—H2B 108.4 C19—C18—H18 120.0
C4—C3—C8 121.38 (16) C18—C19—C20 121.38 (17)
C4—C3—N4 119.40 (15) C18—C19—H19 119.3
C8—C3—N4 119.21 (15) C20—C19—H19 119.3
C5—C4—C3 118.43 (17) C19—C20—C15 118.11 (16)
C5—C4—C9 118.87 (17) C19—C20—C24 118.84 (16)
C3—C4—C9 122.69 (16) C15—C20—C24 123.02 (15)
C6—C5—C4 120.59 (19) C16—C21—C23 110.73 (15)
C6—C5—H5 119.7 C16—C21—C22 112.73 (16)
C4—C5—H5 119.7 C23—C21—C22 109.64 (17)
C7—C6—C5 120.47 (19) C16—C21—H21 107.9
C7—C6—H6 119.8 C23—C21—H21 107.9
C5—C6—H6 119.8 C22—C21—H21 107.9
C6—C7—C8 121.22 (19) C21—C22—H22A 109.5
C6—C7—H7 119.4 C21—C22—H22B 109.5
C8—C7—H7 119.4 H22A—C22—H22B 109.5
C7—C8—C3 117.90 (17) C21—C22—H22C 109.5
C7—C8—C12 119.86 (17) H22A—C22—H22C 109.5
C3—C8—C12 122.18 (17) H22B—C22—H22C 109.5
C4—C9—C10 110.70 (18) C21—C23—H23A 109.5
C4—C9—C11 111.68 (17) C21—C23—H23B 109.5
C10—C9—C11 110.99 (19) H23A—C23—H23B 109.5
C4—C9—H9 107.8 C21—C23—H23C 109.5
C10—C9—H9 107.8 H23A—C23—H23C 109.5
C11—C9—H9 107.8 H23B—C23—H23C 109.5
C9—C10—H10A 109.5 C20—C24—C26 112.19 (16)
C9—C10—H10B 109.5 C20—C24—C25 110.59 (16)
H10A—C10—H10B 109.5 C26—C24—C25 109.90 (17)
C9—C10—H10C 109.5 C20—C24—H24 108.0
H10A—C10—H10C 109.5 C26—C24—H24 108.0
H10B—C10—H10C 109.5 C25—C24—H24 108.0
C9—C11—H11A 109.5 C24—C25—H25A 109.5
C9—C11—H11B 109.5 C24—C25—H25B 109.5
H11A—C11—H11B 109.5 H25A—C25—H25B 109.5
C9—C11—H11C 109.5 C24—C25—H25C 109.5
H11A—C11—H11C 109.5 H25A—C25—H25C 109.5
H11B—C11—H11C 109.5 H25B—C25—H25C 109.5
C14—C12—C13 109.7 (2) C24—C26—H26A 109.5
C14—C12—C8 112.9 (2) C24—C26—H26B 109.5
C13—C12—C8 110.17 (19) H26A—C26—H26B 109.5
C14—C12—H12 108.0 C24—C26—H26C 109.5
C13—C12—H12 108.0 H26A—C26—H26C 109.5
C8—C12—H12 108.0 H26B—C26—H26C 109.5
C12—C13—H13A 109.5
N4—P1—N1—N2 113.83 (16) C3—C4—C9—C10 113.2 (2)
N5—P1—N1—N2 −152.62 (15) C5—C4—C9—C11 58.4 (3)
N5—P1—N4—C3 169.76 (14) C3—C4—C9—C11 −122.6 (2)
N1—P1—N4—C3 −88.87 (14) C7—C8—C12—C14 −48.6 (3)
N5—P1—N4—C1 −6.93 (16) C3—C8—C12—C14 134.2 (2)
N1—P1—N4—C1 94.44 (16) C7—C8—C12—C13 74.3 (3)
N4—P1—N5—C15 −168.59 (14) C3—C8—C12—C13 −102.9 (3)
N1—P1—N5—C15 88.82 (14) C2—N5—C15—C16 −103.4 (2)
N4—P1—N5—C2 15.88 (14) P1—N5—C15—C16 81.30 (19)
N1—P1—N5—C2 −86.71 (14) C2—N5—C15—C20 73.4 (2)
C3—N4—C1—C2 179.70 (17) P1—N5—C15—C20 −101.83 (17)
P1—N4—C1—C2 −3.5 (2) C20—C15—C16—C17 0.1 (2)
C15—N5—C2—C1 163.95 (17) N5—C15—C16—C17 176.90 (15)
P1—N5—C2—C1 −20.3 (2) C20—C15—C16—C21 179.24 (16)
N4—C1—C2—N5 14.1 (3) N5—C15—C16—C21 −3.9 (2)
C1—N4—C3—C4 −79.8 (2) C15—C16—C17—C18 −0.5 (3)
P1—N4—C3—C4 103.69 (18) C21—C16—C17—C18 −179.74 (17)
C1—N4—C3—C8 99.4 (2) C16—C17—C18—C19 0.6 (3)
P1—N4—C3—C8 −77.2 (2) C17—C18—C19—C20 −0.2 (3)
C8—C3—C4—C5 0.6 (3) C18—C19—C20—C15 −0.2 (3)
N4—C3—C4—C5 179.73 (18) C18—C19—C20—C24 −178.33 (17)
C8—C3—C4—C9 −178.35 (18) C16—C15—C20—C19 0.3 (2)
N4—C3—C4—C9 0.8 (3) N5—C15—C20—C19 −176.51 (15)
C3—C4—C5—C6 0.1 (3) C16—C15—C20—C24 178.31 (16)
C9—C4—C5—C6 179.1 (2) N5—C15—C20—C24 1.5 (2)
C4—C5—C6—C7 −0.6 (4) C17—C16—C21—C23 84.6 (2)
C5—C6—C7—C8 0.4 (4) C15—C16—C21—C23 −94.5 (2)
C6—C7—C8—C3 0.3 (3) C17—C16—C21—C22 −38.6 (2)
C6—C7—C8—C12 −177.1 (2) C15—C16—C21—C22 142.23 (18)
C4—C3—C8—C7 −0.8 (3) C19—C20—C24—C26 −58.9 (2)
N4—C3—C8—C7 −179.90 (18) C15—C20—C24—C26 123.11 (19)
C4—C3—C8—C12 176.48 (18) C19—C20—C24—C25 64.2 (2)
N4—C3—C8—C12 −2.6 (3) C15—C20—C24—C25 −113.80 (19)
C5—C4—C9—C10 −65.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···N4 1.00 2.43 2.926 (2) 110
C12—H12···N4 1.00 2.44 2.913 (2) 109
C21—H21···N5 1.00 2.49 2.932 (2) 106
C24—H24···N1 1.00 2.66 3.443 (3) 136
C24—H24···N5 1.00 2.46 2.955 (2) 110
C22—H22C···N3i 0.98 2.69 3.669 (3) 174

Symmetry code: (i) x−1, y, z.

References

  1. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burck, S., Gudat, D., Nieger, M., Schalley, C. A. & Weilandt, T. (2008). Dalton Trans. pp. 3478–3485. [DOI] [PubMed]
  3. Cowley, A. H., Gabbaï, F. P., Bertrand, G., Carrano, C. J. & Bond, M. R. (1995). J. Organomet. Chem. 493, 95–99.
  4. Englert, U., Paetzold, P. & Eversheim, E. (1993). Z. Kristallogr. 208, 307–309.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gediga, M., Burck, S., Bender, J., Förster, D., Nieger, M. & Gudat, D. (2014). Eur. J. Inorg. Chem. pp. 1818–1825.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Nieger, M., Niecke, E. & Larbig, M. (2016). Private communication (refcode YABVUV). CCDC, Cambridge, England.
  9. Ocando, E., Majid, S., Pierre Majoral, J., Baceiredo, A. & Bertrand, G. (1985). Polyhedron, 4, 1667–1668.
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007642/hb7680sup1.cif

e-73-00905-sup1.cif (957.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007642/hb7680Isup2.hkl

e-73-00905-Isup2.hkl (454KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007642/hb7680Isup3.cml

CCDC reference: 1551849

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES