Skip to main content
Medical Science Monitor: International Medical Journal of Experimental and Clinical Research logoLink to Medical Science Monitor: International Medical Journal of Experimental and Clinical Research
. 2017 May 27;23:2565–2583. doi: 10.12659/MSM.904642

MicroRNAs Correlate with Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder in a Chinese Population

Jianglong Chen 1,2,B,D,F, Jiting Zhu 1,B,D, Zeng Wang 3,C,D, Xiaoping Yao 2,B,D, Xuan Wu 1,B,D, Fang Liu 1,D,F, Weidong Zheng 4,B, Zhiwen Li 1,A,D, Aiyu Lin 1,A,D,E,G,
PMCID: PMC5458669  PMID: 28550707

Abstract

Background

Recent studies identified a set of differentially expressed miRNAs in whole blood that may discriminate neuromyelitis optica spectrum disorders (NMOSD) from relapsing-remitting multiple sclerosis (RRMS). This study invalidated 9 known miRNAs in Chinese patients.

Material/Methods

The levels of miRNAs in whole blood were assayed in healthy controls (n=20) and patients with NMOSD (n=45), RRMS (n=17) by quantitative real-time polymerase chain reaction (qRT-PCR), and pairwise-compared between groups. They were further analyzed for association with clinical features and MRI findings of the diseases.

Results

Compared with healthy controls, miR-22b-5p, miR-30b-5p and miR-126-5p were down-regulated in NMOSD, in contrast, both miR-101-5p and miR-126-5p were up-regulated in RRMS. Moreover, the levels of miR-101-5p, miR-126-5p and miR-660-5p, were significantly higher in RRMS than in NMOSD (P=0.04, 0.01 and 0.02, respectively). The level of miR-576-5p was significantly higher in patients underwent relapse for ≤3 times than those for ≥4 times. In addition, its level was significantly higher in patients suffered from a severe visual impairment (visual sight ≤0.1). Moreover, the levels of each of the 9 miRNAs were lower in NMOSD patients with intracranial lesions (NMOSD-IC) than those without (NMOSD-non-IC). Despite correlations of miRNAs with these disease subtypes, all AUCs of ROC generated to discriminate patients and controls, as well as intracranial lesions, were <0.8.

Conclusions

Certain miRNAs are associated with RRMS and NMOSD. They are also related to the clinical features, especially intracranial lesions of NMOSD. However, none of the miRNAs alone or in combination was powerful to ensure the diagnosis and differentiation of the 2 disease subtypes.

MeSH Keywords: MicroRNAs, Multiple Sclerosis, Neuromyelitis Optica

Background

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are autoimmune demyelinating disorder of the central nervous system. Only a few biomarkers are available in the clinical practice, such as cerebrospinal fluid oligoclonal bands and serum anti-aquaporin 4 antibodies. Thus, there is a significant unmet need for biomarkers to assess diagnosis and prognosis. MicroRNAs, a kind of small non-coding RNA present in stable form in the human blood, have attracted much attention as novel diagnostic biomarkers for many diseases, such as tumors and autoimmune diseases [1]. Functionally, these miRNAs regulate gene expression involving cell division, metabolism, stress response, and angiogenesis [25]. Others play roles in proliferation, invasion and migration of cancer [610].

Previous studies demonstrated that miRNA expression profiles in whole blood or purified blood cell subtypes are correlated with MS and that circulating miRNAs are differentially expressed in different stages of MS [1114], making them easily accessible for monitoring MS [15]. Moreover, recent study identified a set of differentially expressed miRNAs in whole blood that may discriminate neuromyelitis optica spectrum disorders (NMOSD) from relapsing- remitting multiple sclerosis (RRMS) in Europeans [16]. However, there are less reports on the correlation between miRNAs and clinical features and pathology of NMOSD. For instance, it is unclear how certain miRNAs contribute specifically to brain pathology in NMOSD.

So far there is no accurate epidemiological data on NMOSD worldwide, but it is well known that NMOSD accounts for a much higher proportion of idiopathic inflammatory demyelinating diseases (IIDDS) (40%) in Asians than in white populations (1%) [17]. Regarding a predominance of NMOSD in Chinese and remarkable differences of clinical features and genetic backgrounds between Eastern and Western populations [18], we sought to re-evaluate the correlation of these miRNAs with NMOS and RRMS Chinese. We also analyzed the association of these miRNAs with the clinical features of these diseases.

Material and Methods

Patients

A total of 62 patients were diagnosed and treated in The First Affiliated Hospital of Fujian Medical University from November 2013 to July 2016. Twenty healthy adults (18 females, 2 males, aged 44.7±9.8 years) were recruited as normal controls. Among all the cases, 45 were diagnosed as NMOSD according to 2015 International Consensus Diagnostic Criteria for Neuromyelitis Optica Spectrum Disorders [18], and 17 were diagnosed with RRMS according to the McDonald 2010 criteria [19] and 2016 MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines [20]. We defined patients within 8 weeks after an acute attack with NMOSD or RRMS as active phase, more than 8 weeks as a stable phase according to the diagnostic criteria for MS [14].

All clinical information including MRI and laboratory tests were collected and evaluated by senior neurologists with expertise in neuroimmunology. The clinical features of the 3 categories of patients were listed in Table 1. The 2 patient groups were significantly different in age and female preponderance. Among 40 NMOSD patients who underwent anti-AQP4 antibody detection by cell-based transfection immunofluorescence assay (CBA, EUROIMMUM Medical Diagnostic, China Co. Ltd.), 34 (85.0%) were positive, the other 5 patients who did not make detection were diagnosed by AQP4 negative diagnostic criteria. Among 10 RRMS patients underwent anti-AQP4 antibody detection, none was positive. The proportion of B lymphocyte in peripheral blood mononuclear cells (PBMCs) was detected in 23 NMOSD patients, among which 8 were decreased and 12 were increased. 15 of 36 NMOSD patients underwent other autoantibodies detection, including ANA, ANA spectrum, dsDNA, ACA, AnCA, and 15(41.7%) were positive. Among 15 RRMS patients underwent autoantibodies detection, 1 (6.7%) was positive. Parenchymal lesions were found in 19(42.2%) NMOSD cases among which 14(31.1%) met the neuroimaging criteria of the 2015 International Consensus Diagnostic Criteria for Neuromyelitis Optica Spectrum Disorders and 2016 MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. These lesions located extensively in the brain regions, including medulla oblongata and area postrema (6/14), midbrain (2/14), thalamus (1/14), periaqueductal, lateral ventricle and the third ventricle (3/14), corpus callosum (3/14) and cerebral hemisphere (4/14). All NMOSD cases received 500–1000 mg of methyl prednisolone treatment in acute stage, which were gradually reduced to 10mg as maintenance dosage for 3 to 36 months. Thirteen patients were treated with gamma globulin 400 mg/kg intravenous injection for 5 days together with prednisolone in the acute phase. Twelve cases used azathioprine 100–150 mg/day for 3 to 60 months, and 3 of them also used cyclosporine 100–150 mg/day for 12 to 36 months. This study was approved by the Ethics Committee of The First Affiliated Hospital of Fujian Medical University (ID: clinical research 2014y0022) and written informed consent was obtained from all study participants.

Table 1.

Clinical features of the studied subjects.

Clinical feature NMOSD (n=45) RRMS (n=17) CIS (n=14) HC (n=20) P value
NMOSD vs. RRMS NMOSD vs. HC RRMS vs. HC
Female/male ratio 6.5:1 1.4:1 2.5:1 9:1 0.02 0.53 0.08
Age at study (year) 40.9±12.8 31.2±9.3 46.4±17.3 44.7±9.8 0.01 0.25 0.06
Age at onset (year) 36.1±13.3 28.9±8.1 44.4±17.3 0.04
Disease duration (year) 4.9±6.6 3.8±4.6 1.8±5.3 0.49
Relapse (time) 3.4±2.1 2.2±0.9 0.03
EDSS score at the last visit 3.4±2.0 2.4±1.1 2.4±1.2 0.06
Ratio of visual impairment (≤0.1/>0.1) 9:36 1:16 6:8 0.17
Ratio of anti-AQP4-Ab positivity (±) 34/6 0/10 0/5 <0.0001
Ratio of autoantibody positivity (±) 15/21 1/14 0/10 0.002

Selection of miRNAs for measurement

A total of 9 miRNAs were selected for verification in our study, including miR-15b-3p (chr3: 160404588-160404685), miR-22b-5p (chr5: 13813148-13813229), miR-30b-5p (chr8: 134800520-134800607), miR-101-5p (chr1: 65058434-65058508), miR-126-5p (chr9: 136670602-136670686), miR-223-5p (chrX: 66018870-66018979), miR-335-3p (chr7: 130496111-130496204), miR-576-5p (chr4: 109488698-109488795) and miR-660-5p (chrX: 50013241-50013337). All of them showed significantly different expression levels in both NMOSD vs. CIS/RRMS and NMOSD vs. healthy controls in whole blood according to the Keller’s study [23].

Peripheral blood RNA isolation and qRT-PCR

A 5-ml blood sample was collected in EDTA tubes from each of the participants and stored at −80°C. MiRNAs was extracted from peripheral whole blood using Tri-Reagent (Life Technologies) according to the manufacturer’s instructions. The purity and concentration of RNA were determined using NanoDrop One (Thermo Scientific). For quantitative detection of miRNA by RT-PCR, purified whole blood miRNA was converted to cDNA by reverse transcription reactions using TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems) and miRNA-specific stem-loop primers were supplied by the TaqMan MicroRNA Assays (Applied Biosystems).

Selected miRNAs were measured by quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) using the qPCR Master Mix (Promega) and QuantStudio® 5 Real-Time PCR System (Applied Biosystems) according to the manufacturer’s instructions. The reactions were incubated in a 96-well optical plate at 95°C for 5 min, followed by 40 cycles at 95°C for 15 s, and 60°C for 40 s. Reactions were performed in triplicate. The cycle threshold (CT) was recorded, which was defined as the number of PCR cycles required for the fluorescent signal to be higher than a threshold indicating baseline variability. Cel-miR-39-3p was chosen as the exogenous reference control. Amplification and melting working curves of all miRNAs are shown in Supplementary Figures 1 and 2. Relative changes of miRNA expression were represented by 2-ΔCT.

Bioinformatics analysis

We used the miEAA (http://www.ccb.uni-saarland.de/mieaa_tool/) as a tool to characterize the association of the miRNAs with molecular pathways. MiEAA is based on GeneTrail [24] and used for standard enrichment analyses, such as over-representation analysis or gene set enrichment analysis in the context of miRNAs. Adjusted p values <0.05 were considered significant enrichment.

Statistical analysis

Numeric data were expressed as mean ± standard deviation (SD). Statistical analyses were performed using the professional statistical computer software, GraphPad Prism 5. Differences between groups were tested using the one-way ANOVA rank test or two-tailed student t-test, P<0.05 for two-tailed test was set as the level of statistical significance. Post hoc testing was carried out between the samples. The P values were corrected by the Tukey-Kramer standard.

Results

Clinical features of the NMOSD and RRMS patients

Clinical features of the patients with NMOSD, RRMS are listed in Table 1 and compared with healthy controls (HCs). Compared to RRMS, NMOSD patients had older onset (P=0.04), more significant female preponderance (P=0.02), higher frequency of recurrence (P=0.03), as well as higher positive rate of anti-AQP4 antibody (P<0.0001) and autoantibody (P=0.002).

Alterations of the miRNA expression level in NMOSD and RRMS

The levels of all measured miRNAs are shown in Figure 1. As compared with healthy controls (HCs), miR-22-5p, miR-30b-5p and miR-126-5p were down-regulated in NMOSD (P=0.02, P<0.001 and P=0.04, respectively). In contrast, miR-101-5p and miR-126-5p were expressed at higher levels in RRMS (P=0.03 and P=0.04) than in controls. Moreover, the levels of miR-101-5p, miR-126-5p as well as miR-660-5p, were significantly higher in RRMS than in NMOSD (P=0.04, 0.01 and 0.02, respectively).

Figure 1.

Figure 1

The expression level of the 9 miRNAs in HCs, NMOSD and RRMS separately, as well as the statistical significance among all groups. NMOSD – neuromyelitis optica spectrum disorders; RRMS – relapsing-remitting multiple sclerosis; HCs – healthy controls. NMOSD (n=45), MS (n=17), HCs (n=20). The bar diagram shows the mean 2-ΔCT values and standard deviations. * P<0.05, ** P <0.01, *** P<0.001.

Correlation between miRNA levels and the clinical features of NMOSD

Based on a significant correlation between miRNAs with the development of NMOSD, we next analyzed the correlation between miRNA expression level and clinical features of NMOSD, including age, gender, disease duration, recurrence times, severity of visual impairment, EDSS score, AQP4 antibody titers, proportion of B lymphocyte subsets, and MRI findings. By comparing the miRNA levels in patients displaying each of the two-categorized clinical features, we found that the level of miR-576-5p was significantly higher in patients underwent relapse for ≤3 times than those for ≥4 times (P=0.01). In addition, its level was significantly higher in patients suffered from a severe visual impairment (visual sight ≤0.1) (P=0.003). Similar changes were revealed in the level of miR-223-5p in patients with more relapses and visual impairment, but with lower statistical significance (P=0.05 and 0.04, respectively). There was no significant correlation between the expression level of the remaining 7 miRNAs and the NMOSD features (Table 2).

Table 2.

Correlation between miRNA expression and the clinical features of NMOSD.

Clinical features Categorized comparisons miR- 15b-3p miR- 22-5p miR- 30b-5p miR- 335-3p miR- 101-5p miR- 126-5p miR- 223-5p miR- 576-5p miR- 660-5p
P P P P P P P P P
Gender Female (n=39) vs. Male (n=6) 0.93 0.89 0.84 0.09 0.51 0.71 0.48 0.67 0.78
Phase of clinical course Active (n=30) vs. stable (n=15) 0.27 0.09 0.26 0.1 0.83 0.71 0.92 0.65 0.36
Times of relapse ≤3 (n=25) vs. ≥4 (n=20) 0.67 0.34 0.09 0.87 0.44 0.3 0.05 0.01 0.08
EDSS score ≤3 (n=23) vs. >3 (n=22) 0.5 0.81 0.52 0.39 1 0.62 0.55 0.48 0.21
Visual impairment Yes (n=18) vs. No (n=27) 0.85 0.74 0.63 0.55 0.28 0.99 0.49 0.16 0.37
≤0.1 (n=9) vs. >0.1 (n=36) 0.53 0.49 0.84 0.78 0.21 0.99 0.04 0.003 0.06
AQP4-Ab(titre) Negative (n=6) vs. Positive (n=34) 0.71 0.47 0.65 0.44 0.32 0.48 0.4 0.48 0.7
≤1: 32 (n=20) vs. ≥1: 100 (n=20) 0.23 0.39 0.11 0.49 0.51 0.25 0.95 0.72 0.86
Autoantibody Positive (n=14) vs. Negative (n=20) 0.52 0.31 0.94 0.77 0.43 0.17 0.8 0.44 0.44
MRI enhancement Positive (n=13) vs. Negative (n=32) 0.31 0.26 0.14 0.18 0.09 0.21 0.49 0.5 0.22
Spinal cord involved (segment) <6 (n=17) vs. >6 (n=19) 0.36 0.38 0.23 0.62 0.59 0.91 0.68 0.64 0.66
B lymphocyte prootion (%) <9.0 (n=8) vs. >14.1 (n=12) 0.29 0.28 0.66 0.36 0.35 0.6 0.56 0.57 0.63

Correlation between miRNAs with intracranial lesions in NMOSD patients

The demyelinating lesions in CNS of NMOSD are mainly confined within the optic nerve and spinal cord. However, it has been demonstrated that intracranial (IC) lesions are also common, and that different molecular mechanisms may account for cases with and without intracranial. Thus, we asked whether this difference may be related to miRNAs. To address this, we further divided the NMOSD patients into 2 subgroups, showing typical intracranial (IC) and without (non-IC) lesions according to MRI findings, and compared the miRNA levels of patients in RRMS patients. Among 45 NMOSD cases, 14 (31.1%) had typical intracranial lesions distributed widely in the white matters, including paraventricular, subcortical regions and corpus callosum. As shown in Figure 2, the levels of each of 9 miRNAs were lower in NMOSD patients with intracranial lesions (NMOSD-IC) than those without (NMOSD-non-IC). In addition, although the level of miR-15b-3p, miR-22b-5p, miR-30b-5p and miR-126b-5p were reduced in NMOSD as a whole, they were only significantly down-regulated in the NMOSD-IC subgroup, as compared with HCs. Similarly, only the NMOSD-IC patients showed lower miR-15b-3p, miR-30b-5p, miR-223-5p and miR-576b-5p levels than the NMOSD-non-IC patients. Interestingly, the level of miR-15b-5p was significantly lower in the NMOSD-IC patients than in RRMS and HCs, although its level in all NMOSD patients was not significantly different from patients with these groups (Figure 1). In contrast, there was no significant difference in the level of any of the 9 miRNAs between NMOSD-non-IC subgroup with RRMS, CIS and HCs. These results collectively suggested that it was the intracranial lesions in the NMOSD that correlate with the peripheral down-regulated miRNAs.

Figure 2.

Figure 2

The expression level of the 9 miRNAs in NMOSD-IC and NMOSD-non-IC, RRMS and HCs. NMOSD-IC – NMOSD patients with intracranial lesions; NMOSD-non-IC –NMOSD patients without intracranial lesions. RRMS – relapsing-remitting multiple sclerosis; HCs – healthy controls. The bar diagram shows the mean 2-ΔCT values and standard deviations. * P<0.05, ** P<0.01, *** P<0.001.

The utility of miRNAs in diagnosis and differentiation of NMOSD and RRMS

The correlation between miRNA levels with the development and clinical features of NMOSD and RRMS suggested that they could help in diagnosing and differentiating them. To test how well these miRNAs discriminate individuals with demyelinating disease and controls and patients with different subtypes, we generated receiver operating characteristic (ROC) curves by plotting the sensitivity of the levels of these miRNAs against 1-specificity and calculating the area under the ROC curves (C statistic) for each population. As shown in Figure 3, the AUCs of miR-101-5p and miR-126-5p for discriminating NMOSD and control were 0.74 and 0.72(A), the AUCs of miR-101-5p, miR-126-5p and miR-660-5p for discriminating NMOSD from RRMS were 0.71, 0.72 and 0.69 respectively(B). When we combined these 3 miRNAs, the AUC was 0.72, 0.69, 0.71 and 0.72 in discriminating these 2 subtypes (C). We also calculated the AUC of ROC for miR-15-5p, miR-30-5p, miR-223-5p and miR-576-5p, alone and in combination, in discriminating NMOSD-IC and NMOSD-non-IC. It turned out that all the AUCs were <0.8 (D). Combined, the results showed that none of the miRNA has enough power in the diagnosis and differential diagnosis of RRMS or NMOSD.

Figure 3.

Figure 3

Discriminating power of miRNAs alone or in combination in differentiating NMOSD, RRMS from healthy controls and between subtypes (A–C), as well as differentiating intracranial lesions in NMOSD (D). Receiver operating characteristic curves (ROCs) were generated by plotting the sensitivity of the levels of these miRNAs against 1-specificity and calculating the area under the ROC curves (C statistic) for each population.

Enrichment of miRNAs in molecular pathways

For the 5 miRNAs differentially expressed in NMOSD patients as compared to controls or RRMS, we found the most enrichment of miRNAs in pathways in cancer (4 of 5 ranked on position 1). Moreover, the neurotrophin signaling pathway, though not ranked before many pathways, was shared by all the 5 miRNAs (Supplementary Table 1)

Discussion

NMOSD miRNA profiling was studied by next-generation sequencing (NGS), and the whole blood is thought to be an appropriate biospecimen for identification with neuroinflammatory diseases [16]. Previous research showed that a part of the miRNAs we selected are associated with inflammatory disease (miR-15b-5p and miR-30b-5p), others are associated with autoimmune disease (miR-22-5p, miR-101-5p, miR-223-5p and miR-660-5p). MiRWalk database showed that all the 9 miRNAs were specifically enriched in neurotrophin signaling pathway. Signaling activated by neurotrophins leads to a series of neuronal functions, such as axonal growth, cell survival, differentiation, dendritic arborization, synapse formation, plasticity and axonal guidance [21,22].

We found that some miRNAs (miR-22-5p, miR-30b-5p and miR-126-5p) were down-regulated in NMOSD, while others (miR-101-5p and miR-126-5p) were up-regulated in RRMS. Moreover, miR-223-5p and miR-576b-5p are associated with the certain clinical features in NMOSD, including the relapse and extent of visual impairment. MiR-30b-5p participates in restoration of injured optic nerve by regulating sema3A [23]. However, we did not observe any different expression between the patients with relapse or visual impairment. Instead, we found that the miR-576b-5p and miR-223-5p levels were associated with severe visual damage. These results confirm that miRNAs are correlated with CNS inflammatory demyelinating diseases, yet different subtypes may have different miRNA profiles. Nonetheless, the numbers of the patients RRMS was too small and the results look preliminary.

A major strength of the study is the finding of a strong reverse correlation between the peripheral miRNA expression levels with the intracranial (IC) lesions in NMOSD. In fact, the down-regulation of miRNAs (such as miR-22b-5p, miR-30b-5p and miR-126b-5p) revealed in NMOSD were confined to patients with intracranial lesions. In contrast, there was no significant difference in any of the 9 miRNAs between NMOSD patients without intracranial lesions (NMOSD-non-IC), RRMS and HCs, suggesting that these miRNAs were only associated with the NMOSD- IC subgroup, but not all the NMOSD patients. These observations are contrasted with Keller’s study, in which miR-30b-5p and miR-15b-5p were demonstrated as differentiation biomarkers for NMOSD and MS/CIS [20]. The explanations for such differences could be multifold, the most important of which could be the considerable variation of incidence of intracranial lesions in NMOSD across different ethnicities, ranging from 12.5 to 89% [2429]. The low incidence of intracranial lesions in our study might be a second explanation, with 5 non-specific small lesions locating in subcortical white matter and less than 3mm excluded from counting according to the MRI definition in the guidelines [20]. However, we do not really understand the causes of NMOSD-IC. In MS patients, Th17/Th1 ≥1 relates to more lesions in brain than in spinal cord. Since NMOSD has more prominent imbalance of Th17/Th1 ratio than RRMS in the peripheral blood [30], the intracranial lesion-specific miRNAs could be also involved in the regulation of Th17 polarization, which, in turn, may increase the permeability and destruction of BBB through ICAM, VCAM, MMP-9 [3133]. Studies have demonstrated the important roles of miR-30b-5p in regulation of humoral immune response as an inflammatory related factor [4], and bioinformatics analysis has also shown its acting on the IL-17 pathway. So, we consider that the cause of NMOSD-IC is the same as that of MS.

The functional significance of these NMOSD-associated miRNAs is not clear. It is interesting to find that these miRNAs were dominantly enriched in the cancer pathways and neurotrophin signaling pathway. Although there is no functional study confirming the involvement of cancer signaling pathway in inflammatory demyelinating diseases, there have been several studies confirming the role of neurotrophin factors, e.g. ciliary neurotrophic factor (CNTF) and p75NTR neurotrophin receptor, in multiple sclerosis [21,22]. Thus, it is intriguing to further investigate what neurotrophin factor genes are targeted by these miRNAs and what mechanisms by which are involved in NMOSD. The difference of miRNA levels in whole blood between patients and controls suggest that they may be candidate diagnostic and differential biomarkers for these disease entities. However, the discriminating power of any of the miRNAs alone or in combination were not strong enough (all AUCs of ROC were less than 0.8) to ensure diagnosis and differentiation of NMOSD or RRMS. Nor was the discrimination ensured by any miRNA alone or in combination between NMOSD patients with intracranial lesions from those without at the diagnostic level.

Conclusions

In summary, in a verification study, we confirmed that certain miRNAs in the whole blood are associated with NMOSD and RRMS with distinct profiles. We also demonstrated that miRNAs are only reversely correlated to the intracranial lesions in NMOSD. However, contrasting to Keller’s study, none of the miRNA alone or in combination was powerful to ensure the diagnosis and differentiation of these disease subtypes. Future studies with expanded sample size (especially that of RRMS and CIS patients) and functional studies are needed to verify our findings.

Suplementary Files

Supplementary Figure 1

Amplification plot of the miRNAs. A is the amplification curves of miR-15b-3p, miR-22b-5p, miR-30b-5p and cel39, B is the amplification curves of miR-101-5p, miR-126-5p, miR-223-5p and cel39, C is the amplification curves of miR-335-3p, miR-576-5p, miR-660-5p and cel39.

Supplementary Figure 2

Melting curves of the miRNAs. A is the melt curves of miR-15b-3p, miR-22b-5p, miR-30b-5p and cel39, B is the melt curves of miR-101-5p, miR-126-5p, miR-223-5p and cel39, C is the melt curves of miR-335-3p, miR-576-5p, miR-660-5p and cel39.

Suplementary Table 1.

Enrichment of NMOSD-associated miRNAs in the molecular pathways.

MiRNA PathName PathFg PathBg GenomeFG GenomeBG P value BH
hsa-miR-101-5p Insulin signaling pathway 87 139 8485 19747 2.34E-06 0.00045371
hsa-miR-101-5p Endocytosis 109 187 8485 19747 1.65E-05 0.003114265
hsa-miR-101-5p Long term potentiation 48 71 8485 19747 2.36E-05 0.004468536
hsa-miR-101-5p Colorectal cancer 56 86 8485 19747 2.78E-05 0.005217761
hsa-miR-101-5p Neurotrophin signaling pathway 78 129 8485 19747 4.52E-05 0.008402147
hsa-miR-101-5p Glioma 44 65 8485 19747 4.89E-05 0.009095575
hsa-miR-101-5p Adherens junction 50 76 8485 19747 4.92E-05 0.009146105
hsa-miR-101-5p Pathways in cancer 176 330 8485 19747 8.55E-05 0.015646108
hsa-miR-101-5p Endometrial cancer 36 52 8485 19747 0.000115328 0.020759015
hsa-miR-101-5p Wnt signaling pathway 88 152 8485 19747 0.000143178 0.025628775
hsa-miR-101-5p Axon guidance 76 129 8485 19747 0.000185502 0.032833892
hsa-miR-101-5p T cell receptor signaling pathway 66 110 8485 19747 0.000231552 0.040753187
hsa-miR-101-5p ErbB signaling pathway 55 89 8485 19747 0.000260331 0.045557925
hsa-miR-101-5p Chronic myeloid leukemia 47 75 8485 19747 0.000452969 0.077910691
hsa-miR-101-5p Phosphatidylinositol signaling system 47 76 8485 19747 0.000695386 0.117520317
hsa-miR-101-5p Calcium signaling pathway 98 178 8485 19747 0.000741421 0.125300102
hsa-miR-101-5p Chemokine signaling pathway 103 189 8485 19747 0.000887525 0.148216608
hsa-miR-101-5p Ubiquitin mediated proteolysis 76 134 8485 19747 0.000905223 0.151172313
hsa-miR-101-5p Melanoma 44 71 8485 19747 0.000956101 0.158712713
hsa-miR-101-5p Renal cell carcinoma 44 71 8485 19747 0.000956101 0.158712713
hsa-miR-101-5p Non small cell lung cancer 35 54 8485 19747 0.000981599 0.16294541
hsa-miR-101-5p B cell receptor signaling pathway 46 75 8485 19747 0.001018064 0.167980536
hsa-miR-101-5p Type II diabetes mellitus 32 49 8485 19747 0.001327476 0.215051074
hsa-miR-101-5p mTOR signaling pathway 34 53 8485 19747 0.001507004 0.241366957
hsa-miR-101-5p Gap junction 53 90 8485 19747 0.001672357 0.265904786
hsa-miR-101-5p Prostate cancer 52 89 8485 19747 0.002335429 0.361991448
hsa-miR-101-5p Fc gamma R mediated phagocytosis 56 97 8485 19747 0.00236227 0.366151908
hsa-miR-101-5p Adipocytokine signaling pathway 42 70 8485 19747 0.00300524 0.453791189
hsa-miR-101-5p MAPK signaling pathway 139 272 8485 19747 0.003964632 0.582800901
hsa-miR-101-5p Pancreatic cancer 44 75 8485 19747 0.004398819 0.637828798
hsa-miR-101-5p Focal adhesion 106 203 8485 19747 0.004776226 0.687776614
hsa-miR-101-5p Purine metabolism 84 158 8485 19747 0.006105552 0.844734415
hsa-miR-101-5p GnRH signaling pathway 58 105 8485 19747 0.00745423 0.994695317
hsa-miR-101-5p Long term depression 40 73 8485 19747 0.027582947 1
hsa-miR-101-5p Jak STAT signaling pathway 82 156 8485 19747 0.009686644 1
hsa-miR-101-5p Small cell lung cancer 46 84 8485 19747 0.019339805 1
hsa-miR-101-5p SNARE interactions in vesicular transport 23 39 8485 19747 0.032118483 1
hsa-miR-101-5p Acute myeloid leukemia 34 58 8485 19747 0.011708417 1
hsa-miR-101-5p Vascular smooth muscle contraction 59 116 8485 19747 0.052274252 1
hsa-miR-101-5p Thyroid cancer 19 29 8485 19747 0.011984069 1
hsa-miR-101-5p Lysine degradation 27 45 8485 19747 0.015826415 1
hsa-miR-101-5p Epithelial cell signaling in Helicobacter pylori infection 38 71 8485 19747 0.047178139 1
hsa-miR-101-5p Metabolic pathways 499 1091 8485 19747 0.030975475 1
hsa-miR-101-5p VEGF signaling pathway 44 78 8485 19747 0.011418856 1
hsa-miR-101-5p Fc epsilon RI signaling pathway 43 82 8485 19747 0.052777799 1
hsa-miR-101-5p Amyotrophic lateral sclerosis ALS 30 55 8485 19747 0.055429268 1
hsa-miR-101-5p Primary bile acid biosynthesis 11 16 8485 19747 0.033948998 1
hsa-miR-101-5p Nicotinate and nicotinamide metabolism 16 24 8485 19747 0.01649091 1
hsa-miR-101-5p Non homologous end joining 10 13 8485 19747 0.014005601 1
hsa-miR-101-5p Inositol phosphate metabolism 32 54 8485 19747 0.01154892 1
hsa-miR-101-5p Peroxisome 44 79 8485 19747 0.015200198 1
hsa-miR-101-5p PPAR signaling pathway 39 70 8485 19747 0.021327693 1
hsa-miR-101-5p Cell adhesion molecules CAMs 67 133 8485 19747 0.050655518 1
hsa-miR-101-5p Nitrogen metabolism 16 23 8485 19747 0.009100855 1
hsa-miR-101-5p Aldosterone regulated sodium reabsorption 24 42 8485 19747 0.045107589 1
hsa-miR-101-5p O Glycan biosynthesis 20 30 8485 19747 0.007542929 1
hsa-miR-101-5p Melanogenesis 54 102 8485 19747 0.026728523 1
hsa-miR-101-5p Lysosome 62 121 8485 19747 0.040474391 1
hsa-miR-101-5p Tight junction 68 132 8485 19747 0.029075318 1
hsa-miR-101-5p Regulation of actin cytoskeleton 103 212 8485 19747 0.056232548 1
hsa-miR-101-5p TGF beta signaling pathway 46 86 8485 19747 0.031594456 1
hsa-miR-126-5p Pathways in cancer 176 330 8124 19747 4.43E-06 0.000855946
hsa-miR-126-5p Small cell lung cancer 55 84 8124 19747 5.61E-06 0.001083654
hsa-miR-126-5p Neurotrophin signaling pathway 76 129 8124 19747 3.35E-05 0.006370669
hsa-miR-126-5p Colorectal cancer 54 86 8124 19747 4.05E-05 0.007697755
hsa-miR-126-5p Chronic myeloid leukemia 48 75 8124 19747 5.29E-05 0.01004258
hsa-miR-126-5p Apoptosis 53 87 8124 19747 0.000151403 0.027706725
hsa-miR-126-5p Ubiquitin mediated proteolysis 76 134 8124 19747 0.000189394 0.034280231
hsa-miR-126-5p Insulin signaling pathway 78 139 8124 19747 0.000249692 0.044445215
hsa-miR-126-5p Pentose and glucuronate interconversions 21 28 8124 19747 0.000289367 0.051279554
hsa-miR-126-5p ErbB signaling pathway 53 89 8124 19747 0.00034132 0.060413711
hsa-miR-126-5p Non small cell lung cancer 35 54 8124 19747 0.000373669 0.065765685
hsa-miR-126-5p MAPK signaling pathway 139 272 8124 19747 0.000528068 0.092411913
hsa-miR-126-5p Glioma 40 65 8124 19747 0.000709157 0.123393247
hsa-miR-126-5p Ascorbate and aldarate metabolism 19 26 8124 19747 0.000976366 0.168911356
hsa-miR-126-5p p53 signaling pathway 41 68 8124 19747 0.001096874 0.189759278
hsa-miR-126-5p Endocytosis 98 187 8124 19747 0.001158089 0.200349415
hsa-miR-126-5p Type II diabetes mellitus 31 49 8124 19747 0.001447572 0.247534873
hsa-miR-126-5p Prostate cancer 51 89 8124 19747 0.001488647 0.254558697
hsa-miR-126-5p Pancreatic cancer 44 75 8124 19747 0.001614467 0.274459422
hsa-miR-126-5p Renal cell carcinoma 42 71 8124 19747 0.001632088 0.277455025
hsa-miR-126-5p T cell receptor signaling pathway 61 110 8124 19747 0.001662737 0.282665317
hsa-miR-126-5p Axon guidance 70 129 8124 19747 0.001728524 0.293849129
hsa-miR-126-5p Wnt signaling pathway 79 152 8124 19747 0.004369155 0.642265816
hsa-miR-126-5p Melanoma 40 71 8124 19747 0.00685062 0.897431176
hsa-miR-126-5p Focal adhesion 101 203 8124 19747 0.007764884 0.978375349
hsa-miR-126-5p VEGF signaling pathway 41 78 8124 19747 0.027028017 1
hsa-miR-126-5p ECM receptor interaction 43 84 8124 19747 0.039640345 1
hsa-miR-126-5p GnRH signaling pathway 52 105 8124 19747 0.05015675 1
hsa-miR-126-5p Progesterone mediated oocyte maturation 44 88 8124 19747 0.057399498 1
hsa-miR-126-5p ABC transporters 26 44 8124 19747 0.012230769 1
hsa-miR-126-5p Endometrial cancer 28 52 8124 19747 0.043389343 1
hsa-miR-126-5p Non homologous end joining 9 13 8124 19747 0.038757914 1
hsa-miR-126-5p Adipocytokine signaling pathway 39 70 8124 19747 0.009610695 1
hsa-miR-126-5p B cell receptor signaling pathway 39 75 8124 19747 0.037002266 1
hsa-miR-126-5p Primary immunodeficiency 20 35 8124 19747 0.040787619 1
hsa-miR-126-5p Cell adhesion molecules CAMs 68 133 8124 19747 0.012382036 1
hsa-miR-126-5p Cell cycle 64 124 8124 19747 0.011604645 1
hsa-miR-126-5p Acute myeloid leukemia 31 58 8124 19747 0.038959432 1
hsa-miR-126-5p Drug metabolism other enzymes 29 51 8124 19747 0.016791375 1
hsa-miR-126-5p PPAR signaling pathway 36 70 8124 19747 0.052375031 1
hsa-miR-126-5p Starch and sucrose metabolism 29 52 8124 19747 0.023271708 1
hsa-miR-126-5p mTOR signaling pathway 29 53 8124 19747 0.03154144 1
hsa-miR-126-5p Aldosterone regulated sodium reabsorption 25 42 8124 19747 0.012305735 1
hsa-miR-126-5p Tight junction 64 132 8124 19747 0.052078934 1
hsa-miR-126-5p Porphyrin and chlorophyll metabolism 25 41 8124 19747 0.008117058 1
hsa-miR-126-5p Regulation of actin cytoskeleton 99 212 8124 19747 0.057272856 1
hsa-miR-126-5p Protein export 14 23 8124 19747 0.044570896 1
hsa-miR-22-5p Pathways in cancer 257 330 11812 19747 1.83E-12 3.56E-10
hsa-miR-22-5p Axon guidance 110 129 11812 19747 2.59E-10 5.00E-08
hsa-miR-22-5p Endocytosis 149 187 11812 19747 4.95E-09 9.40E-07
hsa-miR-22-5p Wnt signaling pathway 124 152 11812 19747 6.55E-09 1.24E-06
hsa-miR-22-5p MAPK signaling pathway 207 272 11812 19747 8.91E-09 1.69E-06
hsa-miR-22-5p Colorectal cancer 75 86 11812 19747 2.35E-08 4.45E-06
hsa-miR-22-5p Cell adhesion molecules CAMs 108 133 11812 19747 9.92E-08 1.85E-05
hsa-miR-22-5p ErbB signaling pathway 76 89 11812 19747 1.37E-07 2.56E-05
hsa-miR-22-5p Neurotrophin signaling pathway 103 129 11812 19747 9.50E-07 0.000173927
hsa-miR-22-5p Focal adhesion 154 203 11812 19747 9.68E-07 0.000177219
hsa-miR-22-5p Chronic myeloid leukemia 64 75 11812 19747 1.43E-06 0.000260548
hsa-miR-22-5p Small cell lung cancer 70 84 11812 19747 2.90E-06 0.000522275
hsa-miR-22-5p Glioma 56 65 11812 19747 3.48E-06 0.000622806
hsa-miR-22-5p Type II diabetes mellitus 44 49 11812 19747 3.52E-06 0.000629532
hsa-miR-22-5p B cell receptor signaling pathway 63 75 11812 19747 5.33E-06 0.000948843
hsa-miR-22-5p Prostate cancer 73 89 11812 19747 5.80E-06 0.00102714
hsa-miR-22-5p T cell receptor signaling pathway 87 110 11812 19747 1.34E-05 0.002351804
hsa-miR-22-5p Leukocyte transendothelial migration 91 116 11812 19747 1.57E-05 0.002744659
hsa-miR-22-5p Regulation of actin cytoskeleton 156 212 11812 19747 1.73E-05 0.003024113
hsa-miR-22-5p Apoptosis 70 87 11812 19747 3.23E-05 0.005550083
hsa-miR-22-5p Adherens junction 62 76 11812 19747 4.08E-05 0.006975744
hsa-miR-22-5p Pancreatic cancer 61 75 11812 19747 5.61E-05 0.009538741
hsa-miR-22-5p Fc gamma R mediated phagocytosis 76 97 11812 19747 8.38E-05 0.014085998
hsa-miR-22-5p Endometrial cancer 44 52 11812 19747 0.000101849 0.017008724
hsa-miR-22-5p Ubiquitin mediated proteolysis 101 134 11812 19747 0.000107433 0.017941347
hsa-miR-22-5p Insulin signaling pathway 104 139 11812 19747 0.00014148 0.023485705
hsa-miR-22-5p Non small cell lung cancer 45 54 11812 19747 0.000179093 0.029550271
hsa-miR-22-5p Melanogenesis 78 102 11812 19747 0.000288309 0.047282657
hsa-miR-22-5p VEGF signaling pathway 61 78 11812 19747 0.000454736 0.073212496
hsa-miR-22-5p Acute myeloid leukemia 47 58 11812 19747 0.000474205 0.076346974
hsa-miR-22-5p p53 signaling pathway 54 68 11812 19747 0.000481292 0.077197402
hsa-miR-22-5p Dorso ventral axis formation 22 24 11812 19747 0.000620089 0.098594229
hsa-miR-22-5p Melanoma 55 71 11812 19747 0.001297563 0.197229622
hsa-miR-22-5p Calcium signaling pathway 125 178 11812 19747 0.002461358 0.356896943
hsa-miR-22-5p Long term potentiation 54 71 11812 19747 0.002984255 0.426748527
hsa-miR-22-5p Renal cell carcinoma 54 71 11812 19747 0.002984255 0.426748527
hsa-miR-22-5p Aldosterone regulated sodium reabsorption 34 42 11812 19747 0.003015903 0.431274084
hsa-miR-22-5p Basal cell carcinoma 43 55 11812 19747 0.003152907 0.447712777
hsa-miR-22-5p Amyotrophic lateral sclerosis ALS 43 55 11812 19747 0.003152907 0.447712777
hsa-miR-22-5p Lysine degradation 36 45 11812 19747 0.003356409 0.476610046
hsa-miR-22-5p Adipocytokine signaling pathway 53 70 11812 19747 0.003848062 0.542576696
hsa-miR-22-5p mTOR signaling pathway 41 53 11812 19747 0.005514037 0.733366983
hsa-miR-22-5p Epithelial cell signaling in Helicobacter pylori infection 53 71 11812 19747 0.006391491 0.824502359
hsa-miR-22-5p Hypertrophic cardiomyopathy HCM 63 86 11812 19747 0.006423679 0.828654588
hsa-miR-22-5p Arrhythmogenic right ventricular cardiomyopathy ARVC 55 74 11812 19747 0.006436624 0.830010217
hsa-miR-22-5p Chondroitin sulfate biosynthesis 19 22 11812 19747 0.007196724 0.899590471
hsa-miR-22-5p Phosphatidylinositol signaling system 56 76 11812 19747 0.0081223 0.966553692
hsa-miR-22-5p Prion diseases 28 35 11812 19747 0.009551427 1
hsa-miR-22-5p Heparan sulfate biosynthesis 21 26 11812 19747 0.020411929 1
hsa-miR-22-5p Fc epsilon RI signaling pathway 58 82 11812 19747 0.026603879 1
hsa-miR-22-5p GnRH signaling pathway 73 105 11812 19747 0.025144507 1
hsa-miR-22-5p Chemokine signaling pathway 128 189 11812 19747 0.014802878 1
hsa-miR-22-5p N Glycan biosynthesis 35 46 11812 19747 0.01561363 1
hsa-miR-22-5p TGF beta signaling pathway 62 86 11812 19747 0.0120408 1
hsa-miR-22-5p Hedgehog signaling pathway 40 56 11812 19747 0.048585074 1
hsa-miR-22-5p ABC transporters 33 44 11812 19747 0.026093417 1
hsa-miR-22-5p Type I diabetes mellitus 32 44 11812 19747 0.05300307 1
hsa-miR-22-5p Bladder cancer 33 43 11812 19747 0.015183097 1
hsa-miR-22-5p Jak STAT signaling pathway 108 156 11812 19747 0.009237744 1
hsa-miR-22-5p Valine leucine and isoleucine degradation 33 45 11812 19747 0.04218212 1
hsa-miR-22-5p Long term depression 51 73 11812 19747 0.049326477 1
hsa-miR-22-5p SNARE interactions in vesicular transport 30 39 11812 19747 0.019292832 1
hsa-miR-22-5p Caffeine metabolism 7 7 11812 19747 0.027380781 1
hsa-miR-22-5p Dilated cardiomyopathy 67 94 11812 19747 0.013884057 1
hsa-miR-22-5p Progesterone mediated oocyte maturation 61 88 11812 19747 0.04174596 1
hsa-miR-30b-5p Pathways in cancer 156 330 6411 19747 1.23E-08 2.38E-06
hsa-miR-30b-5p Adherens junction 46 76 6411 19747 4.52E-07 8.67E-05
hsa-miR-30b-5p Colorectal cancer 49 86 6411 19747 2.38E-06 0.000450104
hsa-miR-30b-5p ErbB signaling pathway 50 89 6411 19747 3.30E-06 0.000623737
hsa-miR-30b-5p Glioma 39 65 6411 19747 4.53E-06 0.000851658
hsa-miR-30b-5p Ubiquitin mediated proteolysis 68 134 6411 19747 8.38E-06 0.001567818
hsa-miR-30b-5p Non small cell lung cancer 33 54 6411 19747 1.41E-05 0.002637103
hsa-miR-30b-5p Wnt signaling pathway 73 152 6411 19747 4.52E-05 0.008184389
hsa-miR-30b-5p Pancreatic cancer 41 75 6411 19747 5.81E-05 0.010463047
hsa-miR-30b-5p Chronic myeloid leukemia 41 75 6411 19747 5.81E-05 0.010463047
hsa-miR-30b-5p Axon guidance 63 129 6411 19747 7.86E-05 0.013994427
hsa-miR-30b-5p Phosphatidylinositol signaling system 41 76 6411 19747 8.68E-05 0.015459153
hsa-miR-30b-5p Apoptosis 45 87 6411 19747 0.000151014 0.026578382
hsa-miR-30b-5p MAPK signaling pathway 117 272 6411 19747 0.000158251 0.02785209
hsa-miR-30b-5p Long term potentiation 38 71 6411 19747 0.000193569 0.034068087
hsa-miR-30b-5p Melanoma 38 71 6411 19747 0.000193569 0.034068087
hsa-miR-30b-5p Endocytosis 84 187 6411 19747 0.000238243 0.041930686
hsa-miR-30b-5p Prostate cancer 45 89 6411 19747 0.000295855 0.052070558
hsa-miR-30b-5p Neurotrophin signaling pathway 60 129 6411 19747 0.000594457 0.099868714
hsa-miR-30b-5p Long term depression 37 73 6411 19747 0.00092949 0.150577329
hsa-miR-30b-5p Amyotrophic lateral sclerosis ALS 29 55 6411 19747 0.001463924 0.229836089
hsa-miR-30b-5p Regulation of actin cytoskeleton 89 212 6411 19747 0.00218848 0.334837477
hsa-miR-30b-5p Renal cell carcinoma 35 71 6411 19747 0.00233667 0.357510548
hsa-miR-30b-5p Melanogenesis 47 102 6411 19747 0.002785731 0.42343105
hsa-miR-30b-5p Endometrial cancer 27 52 6411 19747 0.002814214 0.424946331
hsa-miR-30b-5p Focal adhesion 85 203 6411 19747 0.002953579 0.44599037
hsa-miR-30b-5p Gap junction 42 90 6411 19747 0.003411486 0.511722866
hsa-miR-30b-5p Progesterone mediated oocyte maturation 41 88 6411 19747 0.003926434 0.585346476
hsa-miR-30b-5p Acute myeloid leukemia 29 58 6411 19747 0.004116963 0.613427489
hsa-miR-30b-5p Protein export 14 23 6411 19747 0.004720087 0.703292942
hsa-miR-30b-5p O Glycan biosynthesis 17 30 6411 19747 0.005327257 0.788434095
hsa-miR-30b-5p Arrhythmogenic right ventricular cardiomyopathy ARVC 35 74 6411 19747 0.005487362 0.806642248
hsa-miR-30b-5p Inositol phosphate metabolism 27 54 6411 19747 0.005531749 0.813167132
hsa-miR-30b-5p Aldosterone regulated sodium reabsorption 22 42 6411 19747 0.005864446 0.862073569
hsa-miR-30b-5p mTOR signaling pathway 26 53 6411 19747 0.008761618 1
hsa-miR-30b-5p Ascorbate and aldarate metabolism 14 26 6411 19747 0.019511549 1
hsa-miR-30b-5p Type II diabetes mellitus 24 49 6411 19747 0.011815574 1
hsa-miR-30b-5p p53 signaling pathway 30 68 6411 19747 0.029133167 1
hsa-miR-30b-5p Small cell lung cancer 38 84 6411 19747 0.009658053 1
hsa-miR-30b-5p T cell receptor signaling pathway 47 110 6411 19747 0.015157895 1
hsa-miR-30b-5p Leukocyte transendothelial migration 49 116 6411 19747 0.016941064 1
hsa-miR-30b-5p Cell adhesion molecules CAMs 53 133 6411 19747 0.043304347 1
hsa-miR-30b-5p Vascular smooth muscle contraction 50 116 6411 19747 0.010372332 1
hsa-miR-30b-5p Thyroid cancer 16 29 6411 19747 0.009556352 1
hsa-miR-30b-5p Insulin signaling pathway 59 139 6411 19747 0.008447402 1
hsa-miR-30b-5p ABC transporters 20 44 6411 19747 0.048992968 1
hsa-miR-30b-5p TGF beta signaling pathway 39 86 6411 19747 0.008411963 1
hsa-miR-30b-5p Tight junction 55 132 6411 19747 0.016223801 1
hsa-miR-30b-5p Hypertrophic cardiomyopathy HCM 36 86 6411 19747 0.042112097 1
hsa-miR-30b-5p Bladder cancer 20 43 6411 19747 0.03804409 1
hsa-miR-30b-5p Fc gamma R mediated phagocytosis 42 97 6411 19747 0.016262241 1
hsa-miR-30b-5p Dilated cardiomyopathy 39 94 6411 19747 0.040911576 1
hsa-miR-30b-5p Calcium signaling pathway 73 178 6411 19747 0.00990428 1
hsa-miR-30b-5p Fc epsilon RI signaling pathway 37 82 6411 19747 0.011088588 1
hsa-miR-660-5p Chronic myeloid leukemia 47 75 5834 19747 2.75E-09 5.30E-07
hsa-miR-660-5p Pathways in cancer 145 330 5834 19747 1.63E-08 3.12E-06
hsa-miR-660-5p Glioma 41 65 5834 19747 2.14E-08 4.08E-06
hsa-miR-660-5p Insulin signaling pathway 71 139 5834 19747 7.71E-08 1.46E-05
hsa-miR-660-5p Apoptosis 49 87 5834 19747 1.69E-07 3.19E-05
hsa-miR-660-5p MAPK signaling pathway 119 272 5834 19747 4.01E-07 7.50E-05
hsa-miR-660-5p ErbB signaling pathway 49 89 5834 19747 4.34E-07 8.11E-05
hsa-miR-660-5p Non small cell lung cancer 33 54 5834 19747 1.44E-06 0.000268502
hsa-miR-660-5p Pancreatic cancer 41 75 5834 19747 4.73E-06 0.000864782
hsa-miR-660-5p Renal cell carcinoma 39 71 5834 19747 6.86E-06 0.001248947
hsa-miR-660-5p Wnt signaling pathway 70 152 5834 19747 1.17E-05 0.002111246
hsa-miR-660-5p Adipocytokine signaling pathway 38 70 5834 19747 1.30E-05 0.002331179
hsa-miR-660-5p Small cell lung cancer 43 84 5834 19747 2.51E-05 0.004445646
hsa-miR-660-5p Neurotrophin signaling pathway 60 129 5834 19747 3.33E-05 0.005852361
hsa-miR-660-5p Aldosterone regulated sodium reabsorption 25 42 5834 19747 5.11E-05 0.008849739
hsa-miR-660-5p Prostate cancer 44 89 5834 19747 6.07E-05 0.010434751
hsa-miR-660-5p Calcium signaling pathway 77 178 5834 19747 6.61E-05 0.011367391
hsa-miR-660-5p Axon guidance 59 129 5834 19747 7.01E-05 0.012062999
hsa-miR-660-5p Vascular smooth muscle contraction 54 116 5834 19747 7.81E-05 0.01334723
hsa-miR-660-5p VEGF signaling pathway 39 78 5834 19747 0.000114223 0.019189454
hsa-miR-660-5p Dilated cardiomyopathy 45 94 5834 19747 0.000133217 0.022247276
hsa-miR-660-5p Hypertrophic cardiomyopathy HCM 41 86 5834 19747 0.000290082 0.046703244
hsa-miR-660-5p Ether lipid metabolism 21 36 5834 19747 0.000300946 0.048452314
hsa-miR-660-5p Adherens junction 37 76 5834 19747 0.000335452 0.053672279
hsa-miR-660-5p Long term potentiation 35 71 5834 19747 0.000356024 0.056963838
hsa-miR-660-5p Melanoma 35 71 5834 19747 0.000356024 0.056963838
hsa-miR-660-5p Type II diabetes mellitus 26 49 5834 19747 0.000474592 0.075460141
hsa-miR-660-5p T cell receptor signaling pathway 49 110 5834 19747 0.000588087 0.092917806
hsa-miR-660-5p Colorectal cancer 40 86 5834 19747 0.000640805 0.10124723
hsa-miR-660-5p Heparan sulfate biosynthesis 16 26 5834 19747 0.000700414 0.110665477
hsa-miR-660-5p Phosphatidylinositol signaling system 36 76 5834 19747 0.00077014 0.12091191
hsa-miR-660-5p Fc epsilon RI signaling pathway 38 82 5834 19747 0.000942721 0.148007141
hsa-miR-660-5p Chondroitin sulfate biosynthesis 14 22 5834 19747 0.000946761 0.148641411
hsa-miR-660-5p B cell receptor signaling pathway 35 75 5834 19747 0.001262727 0.195722739
hsa-miR-660-5p GnRH signaling pathway 46 105 5834 19747 0.001305999 0.202429883
hsa-miR-660-5p Glycerophospholipid metabolism 33 70 5834 19747 0.001386882 0.214966783
hsa-miR-660-5p Endometrial cancer 26 52 5834 19747 0.001513571 0.23460344
hsa-miR-660-5p alpha Linolenic acid metabolism 12 19 5834 19747 0.002432594 0.36245658
hsa-miR-660-5p Acute myeloid leukemia 27 58 5834 19747 0.004528781 0.638558156
hsa-miR-660-5p Ubiquitin mediated proteolysis 54 134 5834 19747 0.004925757 0.689605994
hsa-miR-660-5p Tight junction 53 132 5834 19747 0.005783875 0.798174774
hsa-miR-660-5p Regulation of actin cytoskeleton 80 212 5834 19747 0.006113676 0.84368735
hsa-miR-660-5p mTOR signaling pathway 24 53 5834 19747 0.010883105 1
hsa-miR-660-5p Oocyte meiosis 43 112 5834 19747 0.027327133 1
hsa-miR-660-5p Cell adhesion molecules CAMs 52 133 5834 19747 0.011277543 1
hsa-miR-660-5p Glycerolipid metabolism 19 46 5834 19747 0.059110806 1
hsa-miR-660-5p Keratan sulfate biosynthesis 8 15 5834 19747 0.045846187 1
hsa-miR-660-5p Gap junction 35 90 5834 19747 0.035823644 1
hsa-miR-660-5p Chemokine signaling pathway 67 189 5834 19747 0.045513457 1
hsa-miR-660-5p Melanogenesis 40 102 5834 19747 0.022771607 1
hsa-miR-660-5p TGF beta signaling pathway 34 86 5834 19747 0.029933866 1
hsa-miR-660-5p Endocytosis 68 187 5834 19747 0.025812976 1
hsa-miR-660-5p Toll like receptor signaling pathway 39 105 5834 19747 0.05651642 1
hsa-miR-660-5p Thyroid cancer 13 29 5834 19747 0.058252127 1
hsa-miR-660-5p Fc gamma R mediated phagocytosis 39 97 5834 19747 0.015811658 1
hsa-miR-660-5p SNARE interactions in vesicular transport 18 39 5834 19747 0.020642828 1
hsa-miR-660-5p Long term depression 31 73 5834 19747 0.012611827 1
hsa-miR-660-5p Progesterone mediated oocyte maturation 35 88 5834 19747 0.025436504 1
hsa-miR-660-5p Inositol phosphate metabolism 22 54 5834 19747 0.051713668 1
hsa-miR-660-5p p53 signaling pathway 28 68 5834 19747 0.026708436 1
hsa-miR-660-5p Arrhythmogenic right ventricular cardiomyopathy ARVC 30 74 5834 19747 0.028017892 1
hsa-miR-660-5p Focal adhesion 76 203 5834 19747 0.009166013 1
hsa-miR-660-5p Jak STAT signaling pathway 58 156 5834 19747 0.023864483 1
hsa-miR-660-5p Valine leucine and isoleucine degradation 19 45 5834 19747 0.047463292 1

Acknowledgments

We thank the blood donors, The Core lab staffs of the First Affiliated Hospital of Fujian Medical University Hospital, and our colleagues especially the NMO research team for their helpful participation and comments.

Footnotes

Conflict of interest

The authors declare that they have no conflict of interest.

Source of support: This work was funded by the Key Research Project of Science and Technology Office of Fujian Province (Grant No. 2014Y022)

References

  • 1.Keller A, Leidinger P, Bauer A, et al. Toward the blood-borne miRNome of human diseases. Nat Methods. 2011;8(10):841–43. doi: 10.1038/nmeth.1682. [DOI] [PubMed] [Google Scholar]
  • 2.Finnerty JR, Wang WX, Hébert SS, et al. The miR-15/107 group of microRNA genes: Evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol. 2010;402(3):491–509. doi: 10.1016/j.jmb.2010.07.051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Maciejak A, Kiliszek M, Opolski G, et al. MiR-22-5p revealed as a potential biomarker involved in the acute phase of myocardial infarction via profiling of circulating microRNAs. Mol Med Rep. 2016;14(3):2867–75. doi: 10.3892/mmr.2016.5566. [DOI] [PubMed] [Google Scholar]
  • 4.Duan ZQ, Shi JD, Wu MN, et al. Influence of miR-30b regulating humoral immune response by genetic difference. Immunol Res. 2016;64(1):181–90. doi: 10.1007/s12026-015-8736-z. [DOI] [PubMed] [Google Scholar]
  • 5.Fernández-Hernando C, Suárez Y, Rayner KJ, et al. MicroRNAs in lipid metabolism. Curr Opin Lipidol. 2011;22(2):86–92. doi: 10.1097/MOL.0b013e3283428d9d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Liu P, Ye F, Xie X, et al. mir-101-3p is a key regulator of tumor metabolism in triple negative breast cancer targeting AMPK. Oncotarget. 2016;7(23):35188–98. doi: 10.18632/oncotarget.9072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Qin D, Wang X, Li Y, et al. MicroRNA-223-5p and -3p cooperatively suppress necroptosis in ischemic/reperfused hearts. J Biol Chem. 2016;291(38):20247–59. doi: 10.1074/jbc.M116.732735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Schober A, Nazari-Jahantigh M, Wei Y, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20(4):368–76. doi: 10.1038/nm.3487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Krishnan P, Ghosh S, Wang B, et al. Next generation sequencing profiling identifies miR-574-3p and miR-660-5p as potential novel prognostic markers for breast cancer. BMC Genomics. 2015;16:735–51. doi: 10.1186/s12864-015-1899-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Mairinger FD, Ting S, Werner R, et al. Different micro-RNA expression profiles distinguish subtypes of neuroendocrine tumors of the lung: Results of a profiling study. Mod Pathol. 2014;27(12):1632–40. doi: 10.1038/modpathol.2014.74. [DOI] [PubMed] [Google Scholar]
  • 11.Siegel SR, Mackenzie J, Chaplin G, et al. Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep. 2012;39(5):6219–25. doi: 10.1007/s11033-011-1441-7. [DOI] [PubMed] [Google Scholar]
  • 12.Martinelli-Boneschi F, Fenoglio C, Brambilla P, et al. MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neurosci Lett. 2012;508(1):4–8. doi: 10.1016/j.neulet.2011.11.006. [DOI] [PubMed] [Google Scholar]
  • 13.Søndergaard HB, Hesse D, Krakauer M, et al. Differential microRNA expression in blood in multiple sclerosis. Mult Scler. 2013;19(14):1849–57. doi: 10.1177/1352458513490542. [DOI] [PubMed] [Google Scholar]
  • 14.Keller A, Leidinger P, Steinmeyer F, et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler. 2014;20(3):295–303. doi: 10.1177/1352458513496343. [DOI] [PubMed] [Google Scholar]
  • 15.Gandhi R, Healy B, Gholipour T, et al. Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol. 2013;73(6):729–40. doi: 10.1002/ana.23880. [DOI] [PubMed] [Google Scholar]
  • 16.Huang D, Wu W, et al. Guidelines for the diagnosis and treatment of optic neuropathy spectrum disorders in China. Chin J Neuroimmunol and Neurol. 2016;23(3):155–66. [Google Scholar]
  • 17.Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177–89. doi: 10.1212/WNL.0000000000001729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302. doi: 10.1002/ana.22366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Filippi M, Rocca MA, Ciccarelli O, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016;15(3):292–303. doi: 10.1016/S1474-4422(15)00393-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Keller A, Leidinger P, Steinmeyer F, et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler. 2014;20(3):295–303. doi: 10.1177/1352458513496343. [DOI] [PubMed] [Google Scholar]
  • 21.Keller A, Leidinger P, Meese E, et al. Next-generation sequencing identifies altered whole blood microRNAs in neuromyelitis optica spectrum disorder which may permit discrimination from multiple sclerosis. J Neuroinflammation. 2015;12:196–207. doi: 10.1186/s12974-015-0418-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Keeler AB, Suo D, Park J, et al. Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets. Mol Cell Neurosci. 2017;82:66–75. doi: 10.1016/j.mcn.2017.04.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Kim JY, Roh JK, Lee SK, et al. Neurotrophin receptor immunoreactivity in severe cerebral cortical dysplasia. Epilepsia. 2002;43(Suppl 5):220–26. doi: 10.1046/j.1528-1157.43.s.5.33.x. [DOI] [PubMed] [Google Scholar]
  • 24.Han F, Huo Y, Huang CJ, et al. MicroRNA-30b promotes axon outgrowth of retinal ganglion cells by inhibiting Semaphorin3A expression. Brain Res. 2015;1611:65–73. doi: 10.1016/j.brainres.2015.03.014. [DOI] [PubMed] [Google Scholar]
  • 25.Kim JE, Kim SM, Ahn SW, et al. Brain abnormalities in neuromyelitis optica. J Neurol Sci. 2011;302(1–2):43–48. doi: 10.1016/j.jns.2010.12.001. [DOI] [PubMed] [Google Scholar]
  • 26.Matthews L, Marasco R, Jenkinson M, et al. Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology. 2013;80(14):1330–37. doi: 10.1212/WNL.0b013e3182887957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Blanc F, Noblet V, Jung B, et al. White matter atrophy and cognitive dysfunctions in neuromyelitis optica. PLoS One. 2012;7(4):e33878. doi: 10.1371/journal.pone.0033878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Pache F, Zimmermann H, Finke C, et al. Brain parenchymal damage in neuromyelitis optica spectrum disorder – A multimodal MRI study. Eur Radiol. 2016;26(12):4413–22. doi: 10.1007/s00330-016-4282-x. [DOI] [PubMed] [Google Scholar]
  • 29.Chen DW, Xu J, Liu W, et al. Magnetic resonance imaging characteristics and clinical manifestations of brain abnormalities in neuromyelitis optica. Zhonghua Shenjing Yixue Zazhi. 2009;8(8):825–31. [Google Scholar]
  • 30.Wang F, Liu YO, Duan YY, et al. Brain MRI manifestations of neuromyelitis optica. Zhongguo Yixue Yingxiang Jishu. 2015;3:336–39. [Google Scholar]
  • 31.Stromnes IM, Cerretti LM, Liggitt D, et al. Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med. 2008;14(3):337–42. doi: 10.1038/nm1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Hosokawa T, Nakajima H, Doi Y, et al. Increased serum matrix metalloproteinase-9 in neuromyelitis optica: Implication of disruption of blood-brain barrier. J Neuroimmunol. 2011;236(1–2):81–86. doi: 10.1016/j.jneuroim.2011.04.009. [DOI] [PubMed] [Google Scholar]
  • 33.Tasaki A, Shimizu F, Sano Y, et al. Autocrine MMP-2/9 secretion increases the BBB permeability in neuromyelitis optica. J Neurol Neurosurg Psychiatry. 2014;85(4):419–30. doi: 10.1136/jnnp-2013-305907. [DOI] [PubMed] [Google Scholar]
  • 34.Uzawa A, Mori M, Masuda S, et al. Markedly elevated soluble intercellular adhesion molecule 1, soluble vascular cell adhesion molecule 1 levels, and blood-brain barrier breakdown in neuromyelitis optica. Arch Neurol. 2011;68(7):913–17. doi: 10.1001/archneurol.2011.148. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Figure 1

Amplification plot of the miRNAs. A is the amplification curves of miR-15b-3p, miR-22b-5p, miR-30b-5p and cel39, B is the amplification curves of miR-101-5p, miR-126-5p, miR-223-5p and cel39, C is the amplification curves of miR-335-3p, miR-576-5p, miR-660-5p and cel39.

Supplementary Figure 2

Melting curves of the miRNAs. A is the melt curves of miR-15b-3p, miR-22b-5p, miR-30b-5p and cel39, B is the melt curves of miR-101-5p, miR-126-5p, miR-223-5p and cel39, C is the melt curves of miR-335-3p, miR-576-5p, miR-660-5p and cel39.

Suplementary Table 1.

Enrichment of NMOSD-associated miRNAs in the molecular pathways.

MiRNA PathName PathFg PathBg GenomeFG GenomeBG P value BH
hsa-miR-101-5p Insulin signaling pathway 87 139 8485 19747 2.34E-06 0.00045371
hsa-miR-101-5p Endocytosis 109 187 8485 19747 1.65E-05 0.003114265
hsa-miR-101-5p Long term potentiation 48 71 8485 19747 2.36E-05 0.004468536
hsa-miR-101-5p Colorectal cancer 56 86 8485 19747 2.78E-05 0.005217761
hsa-miR-101-5p Neurotrophin signaling pathway 78 129 8485 19747 4.52E-05 0.008402147
hsa-miR-101-5p Glioma 44 65 8485 19747 4.89E-05 0.009095575
hsa-miR-101-5p Adherens junction 50 76 8485 19747 4.92E-05 0.009146105
hsa-miR-101-5p Pathways in cancer 176 330 8485 19747 8.55E-05 0.015646108
hsa-miR-101-5p Endometrial cancer 36 52 8485 19747 0.000115328 0.020759015
hsa-miR-101-5p Wnt signaling pathway 88 152 8485 19747 0.000143178 0.025628775
hsa-miR-101-5p Axon guidance 76 129 8485 19747 0.000185502 0.032833892
hsa-miR-101-5p T cell receptor signaling pathway 66 110 8485 19747 0.000231552 0.040753187
hsa-miR-101-5p ErbB signaling pathway 55 89 8485 19747 0.000260331 0.045557925
hsa-miR-101-5p Chronic myeloid leukemia 47 75 8485 19747 0.000452969 0.077910691
hsa-miR-101-5p Phosphatidylinositol signaling system 47 76 8485 19747 0.000695386 0.117520317
hsa-miR-101-5p Calcium signaling pathway 98 178 8485 19747 0.000741421 0.125300102
hsa-miR-101-5p Chemokine signaling pathway 103 189 8485 19747 0.000887525 0.148216608
hsa-miR-101-5p Ubiquitin mediated proteolysis 76 134 8485 19747 0.000905223 0.151172313
hsa-miR-101-5p Melanoma 44 71 8485 19747 0.000956101 0.158712713
hsa-miR-101-5p Renal cell carcinoma 44 71 8485 19747 0.000956101 0.158712713
hsa-miR-101-5p Non small cell lung cancer 35 54 8485 19747 0.000981599 0.16294541
hsa-miR-101-5p B cell receptor signaling pathway 46 75 8485 19747 0.001018064 0.167980536
hsa-miR-101-5p Type II diabetes mellitus 32 49 8485 19747 0.001327476 0.215051074
hsa-miR-101-5p mTOR signaling pathway 34 53 8485 19747 0.001507004 0.241366957
hsa-miR-101-5p Gap junction 53 90 8485 19747 0.001672357 0.265904786
hsa-miR-101-5p Prostate cancer 52 89 8485 19747 0.002335429 0.361991448
hsa-miR-101-5p Fc gamma R mediated phagocytosis 56 97 8485 19747 0.00236227 0.366151908
hsa-miR-101-5p Adipocytokine signaling pathway 42 70 8485 19747 0.00300524 0.453791189
hsa-miR-101-5p MAPK signaling pathway 139 272 8485 19747 0.003964632 0.582800901
hsa-miR-101-5p Pancreatic cancer 44 75 8485 19747 0.004398819 0.637828798
hsa-miR-101-5p Focal adhesion 106 203 8485 19747 0.004776226 0.687776614
hsa-miR-101-5p Purine metabolism 84 158 8485 19747 0.006105552 0.844734415
hsa-miR-101-5p GnRH signaling pathway 58 105 8485 19747 0.00745423 0.994695317
hsa-miR-101-5p Long term depression 40 73 8485 19747 0.027582947 1
hsa-miR-101-5p Jak STAT signaling pathway 82 156 8485 19747 0.009686644 1
hsa-miR-101-5p Small cell lung cancer 46 84 8485 19747 0.019339805 1
hsa-miR-101-5p SNARE interactions in vesicular transport 23 39 8485 19747 0.032118483 1
hsa-miR-101-5p Acute myeloid leukemia 34 58 8485 19747 0.011708417 1
hsa-miR-101-5p Vascular smooth muscle contraction 59 116 8485 19747 0.052274252 1
hsa-miR-101-5p Thyroid cancer 19 29 8485 19747 0.011984069 1
hsa-miR-101-5p Lysine degradation 27 45 8485 19747 0.015826415 1
hsa-miR-101-5p Epithelial cell signaling in Helicobacter pylori infection 38 71 8485 19747 0.047178139 1
hsa-miR-101-5p Metabolic pathways 499 1091 8485 19747 0.030975475 1
hsa-miR-101-5p VEGF signaling pathway 44 78 8485 19747 0.011418856 1
hsa-miR-101-5p Fc epsilon RI signaling pathway 43 82 8485 19747 0.052777799 1
hsa-miR-101-5p Amyotrophic lateral sclerosis ALS 30 55 8485 19747 0.055429268 1
hsa-miR-101-5p Primary bile acid biosynthesis 11 16 8485 19747 0.033948998 1
hsa-miR-101-5p Nicotinate and nicotinamide metabolism 16 24 8485 19747 0.01649091 1
hsa-miR-101-5p Non homologous end joining 10 13 8485 19747 0.014005601 1
hsa-miR-101-5p Inositol phosphate metabolism 32 54 8485 19747 0.01154892 1
hsa-miR-101-5p Peroxisome 44 79 8485 19747 0.015200198 1
hsa-miR-101-5p PPAR signaling pathway 39 70 8485 19747 0.021327693 1
hsa-miR-101-5p Cell adhesion molecules CAMs 67 133 8485 19747 0.050655518 1
hsa-miR-101-5p Nitrogen metabolism 16 23 8485 19747 0.009100855 1
hsa-miR-101-5p Aldosterone regulated sodium reabsorption 24 42 8485 19747 0.045107589 1
hsa-miR-101-5p O Glycan biosynthesis 20 30 8485 19747 0.007542929 1
hsa-miR-101-5p Melanogenesis 54 102 8485 19747 0.026728523 1
hsa-miR-101-5p Lysosome 62 121 8485 19747 0.040474391 1
hsa-miR-101-5p Tight junction 68 132 8485 19747 0.029075318 1
hsa-miR-101-5p Regulation of actin cytoskeleton 103 212 8485 19747 0.056232548 1
hsa-miR-101-5p TGF beta signaling pathway 46 86 8485 19747 0.031594456 1
hsa-miR-126-5p Pathways in cancer 176 330 8124 19747 4.43E-06 0.000855946
hsa-miR-126-5p Small cell lung cancer 55 84 8124 19747 5.61E-06 0.001083654
hsa-miR-126-5p Neurotrophin signaling pathway 76 129 8124 19747 3.35E-05 0.006370669
hsa-miR-126-5p Colorectal cancer 54 86 8124 19747 4.05E-05 0.007697755
hsa-miR-126-5p Chronic myeloid leukemia 48 75 8124 19747 5.29E-05 0.01004258
hsa-miR-126-5p Apoptosis 53 87 8124 19747 0.000151403 0.027706725
hsa-miR-126-5p Ubiquitin mediated proteolysis 76 134 8124 19747 0.000189394 0.034280231
hsa-miR-126-5p Insulin signaling pathway 78 139 8124 19747 0.000249692 0.044445215
hsa-miR-126-5p Pentose and glucuronate interconversions 21 28 8124 19747 0.000289367 0.051279554
hsa-miR-126-5p ErbB signaling pathway 53 89 8124 19747 0.00034132 0.060413711
hsa-miR-126-5p Non small cell lung cancer 35 54 8124 19747 0.000373669 0.065765685
hsa-miR-126-5p MAPK signaling pathway 139 272 8124 19747 0.000528068 0.092411913
hsa-miR-126-5p Glioma 40 65 8124 19747 0.000709157 0.123393247
hsa-miR-126-5p Ascorbate and aldarate metabolism 19 26 8124 19747 0.000976366 0.168911356
hsa-miR-126-5p p53 signaling pathway 41 68 8124 19747 0.001096874 0.189759278
hsa-miR-126-5p Endocytosis 98 187 8124 19747 0.001158089 0.200349415
hsa-miR-126-5p Type II diabetes mellitus 31 49 8124 19747 0.001447572 0.247534873
hsa-miR-126-5p Prostate cancer 51 89 8124 19747 0.001488647 0.254558697
hsa-miR-126-5p Pancreatic cancer 44 75 8124 19747 0.001614467 0.274459422
hsa-miR-126-5p Renal cell carcinoma 42 71 8124 19747 0.001632088 0.277455025
hsa-miR-126-5p T cell receptor signaling pathway 61 110 8124 19747 0.001662737 0.282665317
hsa-miR-126-5p Axon guidance 70 129 8124 19747 0.001728524 0.293849129
hsa-miR-126-5p Wnt signaling pathway 79 152 8124 19747 0.004369155 0.642265816
hsa-miR-126-5p Melanoma 40 71 8124 19747 0.00685062 0.897431176
hsa-miR-126-5p Focal adhesion 101 203 8124 19747 0.007764884 0.978375349
hsa-miR-126-5p VEGF signaling pathway 41 78 8124 19747 0.027028017 1
hsa-miR-126-5p ECM receptor interaction 43 84 8124 19747 0.039640345 1
hsa-miR-126-5p GnRH signaling pathway 52 105 8124 19747 0.05015675 1
hsa-miR-126-5p Progesterone mediated oocyte maturation 44 88 8124 19747 0.057399498 1
hsa-miR-126-5p ABC transporters 26 44 8124 19747 0.012230769 1
hsa-miR-126-5p Endometrial cancer 28 52 8124 19747 0.043389343 1
hsa-miR-126-5p Non homologous end joining 9 13 8124 19747 0.038757914 1
hsa-miR-126-5p Adipocytokine signaling pathway 39 70 8124 19747 0.009610695 1
hsa-miR-126-5p B cell receptor signaling pathway 39 75 8124 19747 0.037002266 1
hsa-miR-126-5p Primary immunodeficiency 20 35 8124 19747 0.040787619 1
hsa-miR-126-5p Cell adhesion molecules CAMs 68 133 8124 19747 0.012382036 1
hsa-miR-126-5p Cell cycle 64 124 8124 19747 0.011604645 1
hsa-miR-126-5p Acute myeloid leukemia 31 58 8124 19747 0.038959432 1
hsa-miR-126-5p Drug metabolism other enzymes 29 51 8124 19747 0.016791375 1
hsa-miR-126-5p PPAR signaling pathway 36 70 8124 19747 0.052375031 1
hsa-miR-126-5p Starch and sucrose metabolism 29 52 8124 19747 0.023271708 1
hsa-miR-126-5p mTOR signaling pathway 29 53 8124 19747 0.03154144 1
hsa-miR-126-5p Aldosterone regulated sodium reabsorption 25 42 8124 19747 0.012305735 1
hsa-miR-126-5p Tight junction 64 132 8124 19747 0.052078934 1
hsa-miR-126-5p Porphyrin and chlorophyll metabolism 25 41 8124 19747 0.008117058 1
hsa-miR-126-5p Regulation of actin cytoskeleton 99 212 8124 19747 0.057272856 1
hsa-miR-126-5p Protein export 14 23 8124 19747 0.044570896 1
hsa-miR-22-5p Pathways in cancer 257 330 11812 19747 1.83E-12 3.56E-10
hsa-miR-22-5p Axon guidance 110 129 11812 19747 2.59E-10 5.00E-08
hsa-miR-22-5p Endocytosis 149 187 11812 19747 4.95E-09 9.40E-07
hsa-miR-22-5p Wnt signaling pathway 124 152 11812 19747 6.55E-09 1.24E-06
hsa-miR-22-5p MAPK signaling pathway 207 272 11812 19747 8.91E-09 1.69E-06
hsa-miR-22-5p Colorectal cancer 75 86 11812 19747 2.35E-08 4.45E-06
hsa-miR-22-5p Cell adhesion molecules CAMs 108 133 11812 19747 9.92E-08 1.85E-05
hsa-miR-22-5p ErbB signaling pathway 76 89 11812 19747 1.37E-07 2.56E-05
hsa-miR-22-5p Neurotrophin signaling pathway 103 129 11812 19747 9.50E-07 0.000173927
hsa-miR-22-5p Focal adhesion 154 203 11812 19747 9.68E-07 0.000177219
hsa-miR-22-5p Chronic myeloid leukemia 64 75 11812 19747 1.43E-06 0.000260548
hsa-miR-22-5p Small cell lung cancer 70 84 11812 19747 2.90E-06 0.000522275
hsa-miR-22-5p Glioma 56 65 11812 19747 3.48E-06 0.000622806
hsa-miR-22-5p Type II diabetes mellitus 44 49 11812 19747 3.52E-06 0.000629532
hsa-miR-22-5p B cell receptor signaling pathway 63 75 11812 19747 5.33E-06 0.000948843
hsa-miR-22-5p Prostate cancer 73 89 11812 19747 5.80E-06 0.00102714
hsa-miR-22-5p T cell receptor signaling pathway 87 110 11812 19747 1.34E-05 0.002351804
hsa-miR-22-5p Leukocyte transendothelial migration 91 116 11812 19747 1.57E-05 0.002744659
hsa-miR-22-5p Regulation of actin cytoskeleton 156 212 11812 19747 1.73E-05 0.003024113
hsa-miR-22-5p Apoptosis 70 87 11812 19747 3.23E-05 0.005550083
hsa-miR-22-5p Adherens junction 62 76 11812 19747 4.08E-05 0.006975744
hsa-miR-22-5p Pancreatic cancer 61 75 11812 19747 5.61E-05 0.009538741
hsa-miR-22-5p Fc gamma R mediated phagocytosis 76 97 11812 19747 8.38E-05 0.014085998
hsa-miR-22-5p Endometrial cancer 44 52 11812 19747 0.000101849 0.017008724
hsa-miR-22-5p Ubiquitin mediated proteolysis 101 134 11812 19747 0.000107433 0.017941347
hsa-miR-22-5p Insulin signaling pathway 104 139 11812 19747 0.00014148 0.023485705
hsa-miR-22-5p Non small cell lung cancer 45 54 11812 19747 0.000179093 0.029550271
hsa-miR-22-5p Melanogenesis 78 102 11812 19747 0.000288309 0.047282657
hsa-miR-22-5p VEGF signaling pathway 61 78 11812 19747 0.000454736 0.073212496
hsa-miR-22-5p Acute myeloid leukemia 47 58 11812 19747 0.000474205 0.076346974
hsa-miR-22-5p p53 signaling pathway 54 68 11812 19747 0.000481292 0.077197402
hsa-miR-22-5p Dorso ventral axis formation 22 24 11812 19747 0.000620089 0.098594229
hsa-miR-22-5p Melanoma 55 71 11812 19747 0.001297563 0.197229622
hsa-miR-22-5p Calcium signaling pathway 125 178 11812 19747 0.002461358 0.356896943
hsa-miR-22-5p Long term potentiation 54 71 11812 19747 0.002984255 0.426748527
hsa-miR-22-5p Renal cell carcinoma 54 71 11812 19747 0.002984255 0.426748527
hsa-miR-22-5p Aldosterone regulated sodium reabsorption 34 42 11812 19747 0.003015903 0.431274084
hsa-miR-22-5p Basal cell carcinoma 43 55 11812 19747 0.003152907 0.447712777
hsa-miR-22-5p Amyotrophic lateral sclerosis ALS 43 55 11812 19747 0.003152907 0.447712777
hsa-miR-22-5p Lysine degradation 36 45 11812 19747 0.003356409 0.476610046
hsa-miR-22-5p Adipocytokine signaling pathway 53 70 11812 19747 0.003848062 0.542576696
hsa-miR-22-5p mTOR signaling pathway 41 53 11812 19747 0.005514037 0.733366983
hsa-miR-22-5p Epithelial cell signaling in Helicobacter pylori infection 53 71 11812 19747 0.006391491 0.824502359
hsa-miR-22-5p Hypertrophic cardiomyopathy HCM 63 86 11812 19747 0.006423679 0.828654588
hsa-miR-22-5p Arrhythmogenic right ventricular cardiomyopathy ARVC 55 74 11812 19747 0.006436624 0.830010217
hsa-miR-22-5p Chondroitin sulfate biosynthesis 19 22 11812 19747 0.007196724 0.899590471
hsa-miR-22-5p Phosphatidylinositol signaling system 56 76 11812 19747 0.0081223 0.966553692
hsa-miR-22-5p Prion diseases 28 35 11812 19747 0.009551427 1
hsa-miR-22-5p Heparan sulfate biosynthesis 21 26 11812 19747 0.020411929 1
hsa-miR-22-5p Fc epsilon RI signaling pathway 58 82 11812 19747 0.026603879 1
hsa-miR-22-5p GnRH signaling pathway 73 105 11812 19747 0.025144507 1
hsa-miR-22-5p Chemokine signaling pathway 128 189 11812 19747 0.014802878 1
hsa-miR-22-5p N Glycan biosynthesis 35 46 11812 19747 0.01561363 1
hsa-miR-22-5p TGF beta signaling pathway 62 86 11812 19747 0.0120408 1
hsa-miR-22-5p Hedgehog signaling pathway 40 56 11812 19747 0.048585074 1
hsa-miR-22-5p ABC transporters 33 44 11812 19747 0.026093417 1
hsa-miR-22-5p Type I diabetes mellitus 32 44 11812 19747 0.05300307 1
hsa-miR-22-5p Bladder cancer 33 43 11812 19747 0.015183097 1
hsa-miR-22-5p Jak STAT signaling pathway 108 156 11812 19747 0.009237744 1
hsa-miR-22-5p Valine leucine and isoleucine degradation 33 45 11812 19747 0.04218212 1
hsa-miR-22-5p Long term depression 51 73 11812 19747 0.049326477 1
hsa-miR-22-5p SNARE interactions in vesicular transport 30 39 11812 19747 0.019292832 1
hsa-miR-22-5p Caffeine metabolism 7 7 11812 19747 0.027380781 1
hsa-miR-22-5p Dilated cardiomyopathy 67 94 11812 19747 0.013884057 1
hsa-miR-22-5p Progesterone mediated oocyte maturation 61 88 11812 19747 0.04174596 1
hsa-miR-30b-5p Pathways in cancer 156 330 6411 19747 1.23E-08 2.38E-06
hsa-miR-30b-5p Adherens junction 46 76 6411 19747 4.52E-07 8.67E-05
hsa-miR-30b-5p Colorectal cancer 49 86 6411 19747 2.38E-06 0.000450104
hsa-miR-30b-5p ErbB signaling pathway 50 89 6411 19747 3.30E-06 0.000623737
hsa-miR-30b-5p Glioma 39 65 6411 19747 4.53E-06 0.000851658
hsa-miR-30b-5p Ubiquitin mediated proteolysis 68 134 6411 19747 8.38E-06 0.001567818
hsa-miR-30b-5p Non small cell lung cancer 33 54 6411 19747 1.41E-05 0.002637103
hsa-miR-30b-5p Wnt signaling pathway 73 152 6411 19747 4.52E-05 0.008184389
hsa-miR-30b-5p Pancreatic cancer 41 75 6411 19747 5.81E-05 0.010463047
hsa-miR-30b-5p Chronic myeloid leukemia 41 75 6411 19747 5.81E-05 0.010463047
hsa-miR-30b-5p Axon guidance 63 129 6411 19747 7.86E-05 0.013994427
hsa-miR-30b-5p Phosphatidylinositol signaling system 41 76 6411 19747 8.68E-05 0.015459153
hsa-miR-30b-5p Apoptosis 45 87 6411 19747 0.000151014 0.026578382
hsa-miR-30b-5p MAPK signaling pathway 117 272 6411 19747 0.000158251 0.02785209
hsa-miR-30b-5p Long term potentiation 38 71 6411 19747 0.000193569 0.034068087
hsa-miR-30b-5p Melanoma 38 71 6411 19747 0.000193569 0.034068087
hsa-miR-30b-5p Endocytosis 84 187 6411 19747 0.000238243 0.041930686
hsa-miR-30b-5p Prostate cancer 45 89 6411 19747 0.000295855 0.052070558
hsa-miR-30b-5p Neurotrophin signaling pathway 60 129 6411 19747 0.000594457 0.099868714
hsa-miR-30b-5p Long term depression 37 73 6411 19747 0.00092949 0.150577329
hsa-miR-30b-5p Amyotrophic lateral sclerosis ALS 29 55 6411 19747 0.001463924 0.229836089
hsa-miR-30b-5p Regulation of actin cytoskeleton 89 212 6411 19747 0.00218848 0.334837477
hsa-miR-30b-5p Renal cell carcinoma 35 71 6411 19747 0.00233667 0.357510548
hsa-miR-30b-5p Melanogenesis 47 102 6411 19747 0.002785731 0.42343105
hsa-miR-30b-5p Endometrial cancer 27 52 6411 19747 0.002814214 0.424946331
hsa-miR-30b-5p Focal adhesion 85 203 6411 19747 0.002953579 0.44599037
hsa-miR-30b-5p Gap junction 42 90 6411 19747 0.003411486 0.511722866
hsa-miR-30b-5p Progesterone mediated oocyte maturation 41 88 6411 19747 0.003926434 0.585346476
hsa-miR-30b-5p Acute myeloid leukemia 29 58 6411 19747 0.004116963 0.613427489
hsa-miR-30b-5p Protein export 14 23 6411 19747 0.004720087 0.703292942
hsa-miR-30b-5p O Glycan biosynthesis 17 30 6411 19747 0.005327257 0.788434095
hsa-miR-30b-5p Arrhythmogenic right ventricular cardiomyopathy ARVC 35 74 6411 19747 0.005487362 0.806642248
hsa-miR-30b-5p Inositol phosphate metabolism 27 54 6411 19747 0.005531749 0.813167132
hsa-miR-30b-5p Aldosterone regulated sodium reabsorption 22 42 6411 19747 0.005864446 0.862073569
hsa-miR-30b-5p mTOR signaling pathway 26 53 6411 19747 0.008761618 1
hsa-miR-30b-5p Ascorbate and aldarate metabolism 14 26 6411 19747 0.019511549 1
hsa-miR-30b-5p Type II diabetes mellitus 24 49 6411 19747 0.011815574 1
hsa-miR-30b-5p p53 signaling pathway 30 68 6411 19747 0.029133167 1
hsa-miR-30b-5p Small cell lung cancer 38 84 6411 19747 0.009658053 1
hsa-miR-30b-5p T cell receptor signaling pathway 47 110 6411 19747 0.015157895 1
hsa-miR-30b-5p Leukocyte transendothelial migration 49 116 6411 19747 0.016941064 1
hsa-miR-30b-5p Cell adhesion molecules CAMs 53 133 6411 19747 0.043304347 1
hsa-miR-30b-5p Vascular smooth muscle contraction 50 116 6411 19747 0.010372332 1
hsa-miR-30b-5p Thyroid cancer 16 29 6411 19747 0.009556352 1
hsa-miR-30b-5p Insulin signaling pathway 59 139 6411 19747 0.008447402 1
hsa-miR-30b-5p ABC transporters 20 44 6411 19747 0.048992968 1
hsa-miR-30b-5p TGF beta signaling pathway 39 86 6411 19747 0.008411963 1
hsa-miR-30b-5p Tight junction 55 132 6411 19747 0.016223801 1
hsa-miR-30b-5p Hypertrophic cardiomyopathy HCM 36 86 6411 19747 0.042112097 1
hsa-miR-30b-5p Bladder cancer 20 43 6411 19747 0.03804409 1
hsa-miR-30b-5p Fc gamma R mediated phagocytosis 42 97 6411 19747 0.016262241 1
hsa-miR-30b-5p Dilated cardiomyopathy 39 94 6411 19747 0.040911576 1
hsa-miR-30b-5p Calcium signaling pathway 73 178 6411 19747 0.00990428 1
hsa-miR-30b-5p Fc epsilon RI signaling pathway 37 82 6411 19747 0.011088588 1
hsa-miR-660-5p Chronic myeloid leukemia 47 75 5834 19747 2.75E-09 5.30E-07
hsa-miR-660-5p Pathways in cancer 145 330 5834 19747 1.63E-08 3.12E-06
hsa-miR-660-5p Glioma 41 65 5834 19747 2.14E-08 4.08E-06
hsa-miR-660-5p Insulin signaling pathway 71 139 5834 19747 7.71E-08 1.46E-05
hsa-miR-660-5p Apoptosis 49 87 5834 19747 1.69E-07 3.19E-05
hsa-miR-660-5p MAPK signaling pathway 119 272 5834 19747 4.01E-07 7.50E-05
hsa-miR-660-5p ErbB signaling pathway 49 89 5834 19747 4.34E-07 8.11E-05
hsa-miR-660-5p Non small cell lung cancer 33 54 5834 19747 1.44E-06 0.000268502
hsa-miR-660-5p Pancreatic cancer 41 75 5834 19747 4.73E-06 0.000864782
hsa-miR-660-5p Renal cell carcinoma 39 71 5834 19747 6.86E-06 0.001248947
hsa-miR-660-5p Wnt signaling pathway 70 152 5834 19747 1.17E-05 0.002111246
hsa-miR-660-5p Adipocytokine signaling pathway 38 70 5834 19747 1.30E-05 0.002331179
hsa-miR-660-5p Small cell lung cancer 43 84 5834 19747 2.51E-05 0.004445646
hsa-miR-660-5p Neurotrophin signaling pathway 60 129 5834 19747 3.33E-05 0.005852361
hsa-miR-660-5p Aldosterone regulated sodium reabsorption 25 42 5834 19747 5.11E-05 0.008849739
hsa-miR-660-5p Prostate cancer 44 89 5834 19747 6.07E-05 0.010434751
hsa-miR-660-5p Calcium signaling pathway 77 178 5834 19747 6.61E-05 0.011367391
hsa-miR-660-5p Axon guidance 59 129 5834 19747 7.01E-05 0.012062999
hsa-miR-660-5p Vascular smooth muscle contraction 54 116 5834 19747 7.81E-05 0.01334723
hsa-miR-660-5p VEGF signaling pathway 39 78 5834 19747 0.000114223 0.019189454
hsa-miR-660-5p Dilated cardiomyopathy 45 94 5834 19747 0.000133217 0.022247276
hsa-miR-660-5p Hypertrophic cardiomyopathy HCM 41 86 5834 19747 0.000290082 0.046703244
hsa-miR-660-5p Ether lipid metabolism 21 36 5834 19747 0.000300946 0.048452314
hsa-miR-660-5p Adherens junction 37 76 5834 19747 0.000335452 0.053672279
hsa-miR-660-5p Long term potentiation 35 71 5834 19747 0.000356024 0.056963838
hsa-miR-660-5p Melanoma 35 71 5834 19747 0.000356024 0.056963838
hsa-miR-660-5p Type II diabetes mellitus 26 49 5834 19747 0.000474592 0.075460141
hsa-miR-660-5p T cell receptor signaling pathway 49 110 5834 19747 0.000588087 0.092917806
hsa-miR-660-5p Colorectal cancer 40 86 5834 19747 0.000640805 0.10124723
hsa-miR-660-5p Heparan sulfate biosynthesis 16 26 5834 19747 0.000700414 0.110665477
hsa-miR-660-5p Phosphatidylinositol signaling system 36 76 5834 19747 0.00077014 0.12091191
hsa-miR-660-5p Fc epsilon RI signaling pathway 38 82 5834 19747 0.000942721 0.148007141
hsa-miR-660-5p Chondroitin sulfate biosynthesis 14 22 5834 19747 0.000946761 0.148641411
hsa-miR-660-5p B cell receptor signaling pathway 35 75 5834 19747 0.001262727 0.195722739
hsa-miR-660-5p GnRH signaling pathway 46 105 5834 19747 0.001305999 0.202429883
hsa-miR-660-5p Glycerophospholipid metabolism 33 70 5834 19747 0.001386882 0.214966783
hsa-miR-660-5p Endometrial cancer 26 52 5834 19747 0.001513571 0.23460344
hsa-miR-660-5p alpha Linolenic acid metabolism 12 19 5834 19747 0.002432594 0.36245658
hsa-miR-660-5p Acute myeloid leukemia 27 58 5834 19747 0.004528781 0.638558156
hsa-miR-660-5p Ubiquitin mediated proteolysis 54 134 5834 19747 0.004925757 0.689605994
hsa-miR-660-5p Tight junction 53 132 5834 19747 0.005783875 0.798174774
hsa-miR-660-5p Regulation of actin cytoskeleton 80 212 5834 19747 0.006113676 0.84368735
hsa-miR-660-5p mTOR signaling pathway 24 53 5834 19747 0.010883105 1
hsa-miR-660-5p Oocyte meiosis 43 112 5834 19747 0.027327133 1
hsa-miR-660-5p Cell adhesion molecules CAMs 52 133 5834 19747 0.011277543 1
hsa-miR-660-5p Glycerolipid metabolism 19 46 5834 19747 0.059110806 1
hsa-miR-660-5p Keratan sulfate biosynthesis 8 15 5834 19747 0.045846187 1
hsa-miR-660-5p Gap junction 35 90 5834 19747 0.035823644 1
hsa-miR-660-5p Chemokine signaling pathway 67 189 5834 19747 0.045513457 1
hsa-miR-660-5p Melanogenesis 40 102 5834 19747 0.022771607 1
hsa-miR-660-5p TGF beta signaling pathway 34 86 5834 19747 0.029933866 1
hsa-miR-660-5p Endocytosis 68 187 5834 19747 0.025812976 1
hsa-miR-660-5p Toll like receptor signaling pathway 39 105 5834 19747 0.05651642 1
hsa-miR-660-5p Thyroid cancer 13 29 5834 19747 0.058252127 1
hsa-miR-660-5p Fc gamma R mediated phagocytosis 39 97 5834 19747 0.015811658 1
hsa-miR-660-5p SNARE interactions in vesicular transport 18 39 5834 19747 0.020642828 1
hsa-miR-660-5p Long term depression 31 73 5834 19747 0.012611827 1
hsa-miR-660-5p Progesterone mediated oocyte maturation 35 88 5834 19747 0.025436504 1
hsa-miR-660-5p Inositol phosphate metabolism 22 54 5834 19747 0.051713668 1
hsa-miR-660-5p p53 signaling pathway 28 68 5834 19747 0.026708436 1
hsa-miR-660-5p Arrhythmogenic right ventricular cardiomyopathy ARVC 30 74 5834 19747 0.028017892 1
hsa-miR-660-5p Focal adhesion 76 203 5834 19747 0.009166013 1
hsa-miR-660-5p Jak STAT signaling pathway 58 156 5834 19747 0.023864483 1
hsa-miR-660-5p Valine leucine and isoleucine degradation 19 45 5834 19747 0.047463292 1

Articles from Medical Science Monitor : International Medical Journal of Experimental and Clinical Research are provided here courtesy of International Scientific Information, Inc.

RESOURCES