Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Sep;87(17):6644–6648. doi: 10.1073/pnas.87.17.6644

Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease.

R L DesJarlais 1, G L Seibel 1, I D Kuntz 1, P S Furth 1, J C Alvarez 1, P R Ortiz de Montellano 1, D L DeCamp 1, L M Babé 1, C S Craik 1
PMCID: PMC54593  PMID: 2204060

Abstract

By using a structure-based computer-assisted search, we have found a butyrophenone derivative that is a selective inhibitor of the human immunodeficiency virus 1 (HIV-1) protease. The computer program creates a negative image of the active site cavity using the crystal structure of the HIV-1 protease. This image was compared for steric complementarity with 10,000 molecules of the Cambridge Crystallographic Database. One of the most interesting candidates identified was bromperidol. Haloperidol, a closely related compound and known antipsychotic agent, was chosen for testing. Haloperidol inhibits the HIV-1 and HIV-2 proteases in a concentration-dependent fashion with a Ki of approximately 100 microM. It is highly selective, having little inhibitory effect on pepsin activity and no effect on renin at concentrations as high as 5 mM. The hydroxy derivative of haloperidol has a similar effect on HIV-1 protease but a lower potency against the HIV-2 enzyme. Both haloperidol and its hydroxy derivative showed activity against maturation of viral polypeptides in a cell assay system. Although this discovery holds promise for the generation of nonpeptide protease inhibitors, we caution that the serum concentrations of haloperidol in normal use as an antipsychotic agent are less than 10 ng/ml (0.03 microM). Thus, concentrations required to inhibit the HIV-1 protease are greater than 1000 times higher than the concentrations normally used. Haloperidol is highly toxic at elevated doses and can be life-threatening. Haloperidol is not useful as a treatment for AIDS but may be a useful lead compound for the development of an antiviral pharmaceutical.

Full text

PDF
6644

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Durston W. E., Yamasaki E., Lee F. D. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2281–2285. doi: 10.1073/pnas.70.8.2281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beddell C. R., Goodford P. J., Norrington F. E., Wilkinson S., Wootton R. Compounds designed to fit a site of known structure in human haemoglobin. Br J Pharmacol. 1976 Jun;57(2):201–209. doi: 10.1111/j.1476-5381.1976.tb07468.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black J. W., Duncan W. A., Durant C. J., Ganellin C. R., Parsons E. M. Definition and antagonism of histamine H 2 -receptors. Nature. 1972 Apr 21;236(5347):385–390. doi: 10.1038/236385a0. [DOI] [PubMed] [Google Scholar]
  4. Blaney J. M., Jorgensen E. C., Connolly M. L., Ferrin T. E., Langridge R., Oatley S. J., Burridge J. M., Blake C. C. Computer graphics in drug design: molecular modeling of thyroid hormone-prealbumin interactions. J Med Chem. 1982 Jul;25(7):785–790. doi: 10.1021/jm00349a004. [DOI] [PubMed] [Google Scholar]
  5. Blumenstein J. J., Copeland T. D., Oroszlan S., Michejda C. J. Synthetic non-peptide inhibitors of HIV protease. Biochem Biophys Res Commun. 1989 Sep 15;163(2):980–987. doi: 10.1016/0006-291x(89)92318-8. [DOI] [PubMed] [Google Scholar]
  6. Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
  7. Cressman W. A., Bianchine J. R., Slotnick V. B., Johnson P. C., Plostnieks J. Plasma level profile of haloperidol in man following intramuscular administration. Eur J Clin Pharmacol. 1974;7(2):99–103. doi: 10.1007/BF00561322. [DOI] [PubMed] [Google Scholar]
  8. Darke P. L., Leu C. T., Davis L. J., Heimbach J. C., Diehl R. E., Hill W. S., Dixon R. A., Sigal I. S. Human immunodeficiency virus protease. Bacterial expression and characterization of the purified aspartic protease. J Biol Chem. 1989 Feb 5;264(4):2307–2312. [PubMed] [Google Scholar]
  9. DesJarlais R. L., Sheridan R. P., Seibel G. L., Dixon J. S., Kuntz I. D., Venkataraghavan R. Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J Med Chem. 1988 Apr;31(4):722–729. doi: 10.1021/jm00399a006. [DOI] [PubMed] [Google Scholar]
  10. Dreyer G. B., Metcalf B. W., Tomaszek T. A., Jr, Carr T. J., Chandler A. C., 3rd, Hyland L., Fakhoury S. A., Magaard V. W., Moore M. L., Strickler J. E. Inhibition of human immunodeficiency virus 1 protease in vitro: rational design of substrate analogue inhibitors. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9752–9756. doi: 10.1073/pnas.86.24.9752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Farmerie W. G., Loeb D. D., Casavant N. C., Hutchison C. A., 3rd, Edgell M. H., Swanstrom R. Expression and processing of the AIDS virus reverse transcriptase in Escherichia coli. Science. 1987 Apr 17;236(4799):305–308. doi: 10.1126/science.2436298. [DOI] [PubMed] [Google Scholar]
  12. Guyader M., Emerman M., Sonigo P., Clavel F., Montagnier L., Alizon M. Genome organization and transactivation of the human immunodeficiency virus type 2. Nature. 1987 Apr 16;326(6114):662–669. doi: 10.1038/326662a0. [DOI] [PubMed] [Google Scholar]
  13. Hirono S., Kollman P. A. Calculation of the relative binding free energy of 2'GMP and 2'AMP to ribonuclease T1 using molecular dynamics/free energy perturbation approaches. J Mol Biol. 1990 Mar 5;212(1):197–209. doi: 10.1016/0022-2836(90)90315-D. [DOI] [PubMed] [Google Scholar]
  14. JANSSEN P. A., VAN DE WESTERINGH C., JAGENEAU A. H., DEMOEN P. J., HERMANS B. K., VAN DAELE G. H., SCHELLEKENS K. H., VAN DER EYCKEN C. A. Chemistry and pharmacology of CNS depressants related to 4-(4-hydroxy-phenylpiperidino)butyrophenone. I. Synthesis and screening data in mice. J Med Pharm Chem. 1959 Jun;1:281–297. doi: 10.1021/jm50004a007. [DOI] [PubMed] [Google Scholar]
  15. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuntz I. D., Blaney J. M., Oatley S. J., Langridge R., Ferrin T. E. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982 Oct 25;161(2):269–288. doi: 10.1016/0022-2836(82)90153-x. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lewi P. J., Heykants J. J., Allewijn F. T., Dony J. G., Janssen P. A. Distribution and metabolism of neuroleptic drugs. I. Pharmacokinetics of haloperidol. Arzneimittelforschung. 1970 Jul;20(7):943–948. [PubMed] [Google Scholar]
  19. Lillehoj E. P., Salazar F. H., Mervis R. J., Raum M. G., Chan H. W., Ahmad N., Venkatesan S. Purification and structural characterization of the putative gag-pol protease of human immunodeficiency virus. J Virol. 1988 Aug;62(8):3053–3058. doi: 10.1128/jvi.62.8.3053-3058.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McQuade T. J., Tomasselli A. G., Liu L., Karacostas V., Moss B., Sawyer T. K., Heinrikson R. L., Tarpley W. G. A synthetic HIV-1 protease inhibitor with antiviral activity arrests HIV-like particle maturation. Science. 1990 Jan 26;247(4941):454–456. doi: 10.1126/science.2405486. [DOI] [PubMed] [Google Scholar]
  21. Meek T. D., Lambert D. M., Dreyer G. B., Carr T. J., Tomaszek T. A., Jr, Moore M. L., Strickler J. E., Debouck C., Hyland L. J., Matthews T. J. Inhibition of HIV-1 protease in infected T-lymphocytes by synthetic peptide analogues. Nature. 1990 Jan 4;343(6253):90–92. doi: 10.1038/343090a0. [DOI] [PubMed] [Google Scholar]
  22. Miller M., Schneider J., Sathyanarayana B. K., Toth M. V., Marshall G. R., Clawson L., Selk L., Kent S. B., Wlodawer A. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science. 1989 Dec 1;246(4934):1149–1152. doi: 10.1126/science.2686029. [DOI] [PubMed] [Google Scholar]
  23. Moelling K., Schulze T., Knoop M. T., Kay J., Jupp R., Nicolaou G., Pearl L. H. In vitro inhibition of HIV-1 proteinase by cerulenin. FEBS Lett. 1990 Feb 26;261(2):373–377. doi: 10.1016/0014-5793(90)80595-a. [DOI] [PubMed] [Google Scholar]
  24. Moore M. L., Bryan W. M., Fakhoury S. A., Magaard V. W., Huffman W. F., Dayton B. D., Meek T. D., Hyland L., Dreyer G. B., Metcalf B. W. Peptide substrates and inhibitors of the HIV-1 protease. Biochem Biophys Res Commun. 1989 Mar 15;159(2):420–425. doi: 10.1016/0006-291x(89)90008-9. [DOI] [PubMed] [Google Scholar]
  25. Navia M. A., Fitzgerald P. M., McKeever B. M., Leu C. T., Heimbach J. C., Herber W. K., Sigal I. S., Darke P. L., Springer J. P. Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature. 1989 Feb 16;337(6208):615–620. doi: 10.1038/337615a0. [DOI] [PubMed] [Google Scholar]
  26. Pal R., Gallo R. C., Sarngadharan M. G. Processing of the structural proteins of human immunodeficiency virus type 1 in the presence of monensin and cerulenin. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9283–9286. doi: 10.1073/pnas.85.23.9283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pichuantes S., Babé L. M., Barr P. J., DeCamp D. L., Craik C. S. Recombinant HIV2 protease processes HIV1 Pr53gag and analogous junction peptides in vitro. J Biol Chem. 1990 Aug 15;265(23):13890–13898. [PubMed] [Google Scholar]
  28. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 1985 Jan 24;313(6000):277–284. doi: 10.1038/313277a0. [DOI] [PubMed] [Google Scholar]
  29. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  30. Tomasselli A. G., Olsen M. K., Hui J. O., Staples D. J., Sawyer T. K., Heinrikson R. L., Tomich C. S. Substrate analogue inhibition and active site titration of purified recombinant HIV-1 protease. Biochemistry. 1990 Jan 9;29(1):264–269. doi: 10.1021/bi00453a036. [DOI] [PubMed] [Google Scholar]
  31. Trono D., Feinberg M. B., Baltimore D. HIV-1 Gag mutants can dominantly interfere with the replication of the wild-type virus. Cell. 1989 Oct 6;59(1):113–120. doi: 10.1016/0092-8674(89)90874-x. [DOI] [PubMed] [Google Scholar]
  32. Wlodawer A., Miller M., Jaskólski M., Sathyanarayana B. K., Baldwin E., Weber I. T., Selk L. M., Clawson L., Schneider J., Kent S. B. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science. 1989 Aug 11;245(4918):616–621. doi: 10.1126/science.2548279. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES