Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Sep;87(17):6767–6771. doi: 10.1073/pnas.87.17.6767

Characterization of a beta subunit of the gastric H+/K(+)-transporting ATPase.

M A Reuben 1, L S Lasater 1, G Sachs 1
PMCID: PMC54618  PMID: 2168558

Abstract

The catalytic subunit of the H+/K(+)-transporting ATPase (EC 3.6.1.3) has 62% identity to the alpha, or catalytic subunit, of the Na+/K(+)-transporting ATPase (EC 3.6.1.37); however, a homologous beta subunit was unknown until recently. Removal of the carbohydrate from purified hog H+/K(+)ATPase vesicles reveals a 35-kDa peptide that, when fragmented with protease V8, gives sequences homologous to both beta 1 and beta 2 subunits of the Na+/K(+)-ATPase. cDNA clones for a beta subunit of the gastric H+/K(+)-ATPase were isolated from a rabbit stomach cDNA library by using degenerate 17-mer oligonucleotide probes made to the protease V8-treated peptides. An open reading frame (54-926) encodes a predicted 291-amino acid peptide with Mr = 33,320, which exhibits 31% and 44% homologies to the Na+/K+)-ATPase beta 1 and Na+/K(+)-ATPase beta 2 proteins, respectively. A Kyte-Doolittle hydropathy plot predicts a single N-terminal transmembrane domain with a small hydrophobic region near the C terminus. The presumed extracytosolic domain contains seven potential N-linked glycosylation sites and six out of nine cysteines. Northern (RNA) blot analysis of stomach RNA with the rabbit H+/K(+)-ATPase beta probe identifies a single mRNA of 1.3-1.5 kilobases, similar in concentration to the alpha subunit mRNA. The presence of a defined gastric H+/K(+)-ATPase beta subunit extends the homology between H+/K(+)-ATPase and the Na+/K(+)-ATPase subclass of phosphoenzyme transport ATPases and distinguishes them from the monomeric Ca2+ and proton pump subclasses.

Full text

PDF
6767

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
  2. Burman P., Mårdh S., Norberg L., Karlsson F. A. Parietal cell antibodies in pernicious anemia inhibit H+, K+-adenosine triphosphatase, the proton pump of the stomach. Gastroenterology. 1989 Jun;96(6):1434–1438. doi: 10.1016/0016-5085(89)90509-x. [DOI] [PubMed] [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gloor S., Antonicek H., Sweadner K. J., Pagliusi S., Frank R., Moos M., Schachner M. The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na,K-ATPase. J Cell Biol. 1990 Jan;110(1):165–174. doi: 10.1083/jcb.110.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldkorn I., Gleeson P. A., Toh B. H. Gastric parietal cell antigens of 60-90, 92, and 100-120 kDa associated with autoimmune gastritis and pernicious anemia. Role of N-glycans in the structure and antigenicity of the 60-90-kDa component. J Biol Chem. 1989 Nov 5;264(31):18768–18774. [PubMed] [Google Scholar]
  6. Hall K., Perez G., Anderson D., Gutierrez C., Munson K., Hersey S. J., Kaplan J. H., Sachs G. Location of the carbohydrates present in the HK-ATPase vesicles isolated from hog gastric mucosa. Biochemistry. 1990 Jan 23;29(3):701–706. doi: 10.1021/bi00455a016. [DOI] [PubMed] [Google Scholar]
  7. Karlsson F. A., Burman P., Löf L., Mårdh S. Major parietal cell antigen in autoimmune gastritis with pernicious anemia is the acid-producing H+,K+-adenosine triphosphatase of the stomach. J Clin Invest. 1988 Feb;81(2):475–479. doi: 10.1172/JCI113344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  9. Kyte J. Molecular considerations relevant to the mechanism of active transport. Nature. 1981 Jul 16;292(5820):201–204. doi: 10.1038/292201a0. [DOI] [PubMed] [Google Scholar]
  10. Maeda M., Ishizaki J., Futai M. cDNA cloning and sequence determination of pig gastric (H+ + K+)-ATPase. Biochem Biophys Res Commun. 1988 Nov 30;157(1):203–209. doi: 10.1016/s0006-291x(88)80033-0. [DOI] [PubMed] [Google Scholar]
  11. Martin-Vasallo P., Dackowski W., Emanuel J. R., Levenson R. Identification of a putative isoform of the Na,K-ATPase beta subunit. Primary structure and tissue-specific expression. J Biol Chem. 1989 Mar 15;264(8):4613–4618. [PubMed] [Google Scholar]
  12. Miller R. P., Farley R. A. Beta subunit of (Na+ + K+)-ATPase contains three disulfide bonds. Biochemistry. 1990 Feb 13;29(6):1524–1532. doi: 10.1021/bi00458a025. [DOI] [PubMed] [Google Scholar]
  13. Okamoto C. T., Karpilow J. M., Smolka A., Forte J. G. Isolation and characterization of gastric microsomal glycoproteins. Evidence for a glycosylated beta-subunit of the H+/K(+)-ATPase. Biochim Biophys Acta. 1990 Mar 1;1037(3):360–372. doi: 10.1016/0167-4838(90)90038-h. [DOI] [PubMed] [Google Scholar]
  14. Sachs G., Carlsson E., Lindberg P., Wallmark B. Gastric H,K-ATPase as therapeutic target. Annu Rev Pharmacol Toxicol. 1988;28:269–284. doi: 10.1146/annurev.pa.28.040188.001413. [DOI] [PubMed] [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shull G. E., Lane L. K., Lingrel J. B. Amino-acid sequence of the beta-subunit of the (Na+ + K+)ATPase deduced from a cDNA. Nature. 1986 May 22;321(6068):429–431. doi: 10.1038/321429a0. [DOI] [PubMed] [Google Scholar]
  17. Shull G. E., Lingrel J. B. Molecular cloning of the rat stomach (H+ + K+)-ATPase. J Biol Chem. 1986 Dec 25;261(36):16788–16791. [PubMed] [Google Scholar]
  18. Wood W. I., Gitschier J., Lasky L. A., Lawn R. M. Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1585–1588. doi: 10.1073/pnas.82.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zamofing D., Rossier B. C., Geering K. Role of the Na,K-ATPase beta-subunit in the cellular accumulation and maturation of the enzyme as assessed by glycosylation inhibitors. J Membr Biol. 1988 Aug;104(1):69–79. doi: 10.1007/BF01871903. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES