Abstract
Diagnosing the cause of acute febrile illness in resource-limited settings is important—to give the correct antimicrobials to patients who need them, to prevent unnecessary antimicrobial use, to detect emerging infectious diseases early, and to guide vaccine deployment. A variety of approaches are yielding more rapid and accurate tests that can detect more pathogens in a wider variety of settings. After decades of slow progress in diagnostics for acute febrile illness in resource-limited settings, a wave of converging advancements will enable clinicians in resource-limited settings to reduce uncertainty for the diagnosis of acute febrile illness.
Finding the Correct Diagnosis for Acute Febrile Illness Matters
Fever is the most common symptom reported by persons seeking medical care in resource-limited settings.1,2 There is no widely accepted, universal definition for acute febrile illness.3 Abrupt-onset illnesses, lasting less than 2 weeks, with symptoms that include fever encompass a wide range of diseases including respiratory tract infections, diarrheal disease, malaria, and other vector-borne diseases which combined cause one-third of all morbidity and one-fourth of all mortality in low-income countries.4,5 Rigorous acute febrile surveillance studies in resource-limited settings identify the etiology of acute febrile illness in 37–97% of cases, but rely on testing performed in capitals or foreign countries far removed from the majority of patients.6–13 Without access to diagnostic tools, providers in resource-limited settings turn to syndrome-based treatment protocols. World Health Organization (WHO) syndrome-based guidelines often advise antimicrobials that prove ineffective for patients with acute febrile illness, even when effective ones are widely available in resource-limited settings if the correct diagnosis can be determined.14 Reliance on such guidelines also results in over-prescription of antimicrobials to patients who do not need them.15
Despite concerns of worsening antimicrobial resistance, more patients perish worldwide from lack of access to antimicrobials than die of antimicrobial resistance.16 As rickettsial illnesses do not respond to typical empiric antibiotic regimens, patients with rickettsial infections suffer higher mortality and complications when they are not treated with widely available tetracyclines.17,18 Zoonotic bacterial infections that do not respond to standard antibiotics are common. Rickettsia or Coxiella burnetii were found in 13% of acute febrile illness cases in Tanzania. Rickettsial infections outnumbered conventional bacterial infections in central nervous system infections in Laos.19,20 In Uganda, one quarter of human immunodeficiency virus (HIV)-infected patients with severe sepsis had mycobacteremia, a grave condition treatable with available targeted therapy, but frequently fatal with delayed diagnosis.21
Health-care providers in resource-limited settings prescribe antibiotics for 32–74% of patients presenting with fever amounting to antibiotic prescription for 22–73% of all health-care encounters.22–26 Patients in resource-limited settings often receive unnecessary combinations of antimicrobials, which are continued for longer than necessary.27 Lack of access to diagnostics drives inappropriate antimicrobial use.28,29 Rollout of rapid diagnostic tests with accompanied training can reduce antimalarial use in patients who test negative, and, by proving an alternative diagnosis, has reduced antibacterial use in patients who test positive.24,25,30–32 However, testing for malaria alone is insufficient. In some cases of malaria rapid diagnostic test deployment, overall antibacterial use rises as fewer patients are assigned a diagnosis of malaria.30 Despite changing WHO guidelines to give antimalarials only to patients with confirmed malaria, 35–58% of smear or rapid diagnostic test negative patients receive antimalarials in certain settings in an environment of diagnostic uncertainty.33–36 In resource-limited settings, up to 90% of patient encounters are with informal health-care providers37; patients and their families can purchase antibiotics without consulting a medical professional.38 Out-of-pocket purchase of antibiotics is associated with more antimicrobial resistance.39 Antimicrobial overuse is a driving factor behind the global surge in antimicrobial resistance.40,41 Rising antimicrobial resistance in resource-limited settings affects antimicrobial effectiveness everywhere. Antimicrobial resistance genes that have emerged in India, the world's largest consumer of antimicrobials, are now the most common cause of resistance in Enterobacteriaceae infections in the United States.42,43
Emerging and reemerging infections are a constant threat to human health.44 Public health measures may combat outbreaks of emerging infectious diseases, but only if they are detected. As a nonspecific acute febrile illness, Zika virus may have been circulating in Brazil for more than 1 year before its detection.45 In rural Guinea, faced with poor diagnostic and laboratory infrastructure, 79 people died over 3 months before samples were sent to reference laboratories in France and Germany, which identified Ebola as the cause of a mysterious acute febrile illness characterized by diarrhea.46,47 Once an outbreak such as Ebola is recognized, models show that earlier case detection using rapid diagnostics would reduce disease transmission and outbreak severity.48,49 The capability to diagnose a broader array of infectious diseases in resource-limited settings where outbreaks emerge may allow for earlier recognition of public health threats and mobilization of a public health response before outbreaks become emergencies.
As vaccines for dengue, Ebola, and other infectious diseases become available, effective diagnostic tools will be essential to demonstrate vaccine efficacy and to provide surveillance for outbreaks to most efficiently guide vaccine deployment. Clever use of cluster-randomized ring vaccination, inspired by the success of a similar strategy used for smallpox eradication, generated preliminary data showing Ebola vaccine efficacy, a study design that critically required accurate case ascertainment.50 In regions where malaria incidence is declining, more sensitive diagnostics are required to identify cases of submicroscopic malaria, a key barrier to elimination.51
Traditional Microbiology Techniques Reinvent Themselves
Culture and serologic detection modalities have undergone relatively little advancement over the decades since their discoveries. Bacterial culture, identification, and drug susceptibility testing require little capital, but complex procedures and incubators requiring reliable electricity limit the use of culture outside large referral hospitals in resource-limited settings. A low-tech approach using a phase-change material has been developed, which provides warmth for culture without a machine or electricity.52 Multiple approaches to miniaturize, automate, and integrate bacterial culture and antimicrobial susceptibility testing may promise rapid results in a format that does not require a traditional bacteriology laboratory (Table 1). The Sensititre MYCOTB MIC Plate (Thermo Fisher Scientific, Waltham, MA) is preconfigured with lyophilized antibiotics; it can perform drug susceptibility testing for Mycobacterium tuberculosis, diagnosing drug-resistant tuberculosis faster than conventional methods.63 QuantaMatrix (Seoul, Korea) has commercialized an automated single-cell analysis platform to yield antimicrobial susceptibility test results within 4 hours.62 In early development, the 1 cm × 1 cm ePetri on-chip microscopy platform incorporates culture media directly over an image sensor to accurately count microcolony growth under 6 hours.59 Other bacterial culture techniques in early stages of development use hundreds of nanoliter-scale droplets that may dramatically reduce the size of a microbiology laboratory.60,61
Table 1.
Traditional technique | New approach | Benefit over traditional technique | Performance against ref test* | Evaluated in RLS | Ref | |||||
---|---|---|---|---|---|---|---|---|---|---|
Less hands-on time | Smaller/portable | Faster result | Other | Reference test | Sensitivity (%) | Specificity (%) | ||||
Parasite blood smear | Mobile phone microscopy | ✓ | ✓ | Filaria blood smear | 100 | 94 | Yes | 53,54 | ||
Transdermal hemozoin detection | ✓ | Needle-free | Malaria smear | 100† | 100† | No | 55,56 | |||
ELISA and agglutination tests | Lateral flow assays | ✓ | ✓ | ✓ | Instrument-free, multiplex possible | Trypanosomiasis card agglutination test | 89 | 95 | Yes | 57 |
Viral phage display library | Highly multiplex | HIV ELISA | 95 | 100 | No | 58 | ||||
Bacterial culture and identification | Culture with on-chip microscopy | ✓ | ✓ | ✓ | Not reported in clinical samples | No | 59 | |||
Nanoscale droplet culture | ✓ | Not reported in clinical samples | No | 60,61 | ||||||
Antimicrobial susceptibility testing | Single cell analysis | ✓ | ✓ | Standard bacterial culture | 92% agreement | No | 62 | |||
Microtiter plates | ✓ | ✓ | ✓ | TB drug susceptibility on Middlebrook agar | ≥ 92% agreement | Yes | 63 |
ELISA = enzyme-linked immunosorbent assay; Ref = reference; RLS = resource-limited setting; TB = tuberculosis.
For tests that can identify more than one pathogen, one reference pathogen was selected.
Test described in only one patient with malaria and four without.
Instead of relying on variable visual inspection or a cumbersome microplate reader for enzyme-linked immunosorbent assay, technology has been developed to use smartphones to accurately read the results of serologic tests.64,65 As with nucleic acid amplification test (NAAT), the ability to diagnose multiple infections allows for more cost-effective and streamlined diagnosis of acute febrile illness. Multiplex point-of-care immunoassays for HIV and syphilis as well as mosquito-borne diseases have been tested, and are commercially available for HIV and syphilis.66–69 Using bacteriophage display libraries, epitopes for thousands of viral strains have been generated to detect exposure to almost every virus.58 Diagnosis of neglected tropical diseases such as human African trypanosomiasis and visceral leishmaniasis has traditionally required complex or unreliable serologic methods, but lateral flow tests to replace them have now been developed and commercialized.57,70–72 Imaging technologies can replace microscopes with smartphone-based designs for the identification of malaria and filarial parasites.53,54
Nucleic Acid Amplification Tests are Becoming Easier to Use
NAAT using real-time polymerase chain reaction (RT-PCR) are becoming the standard for diagnosing many infectious diseases in resource-rich settings.73 Previously limited to reference laboratories by advanced training needs of laboratory staff, high capital costs, and high power usage, recent advances promise to push NAAT to the bedside in resource-limited settings. Isothermal nucleic acid amplification techniques such as recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and nucleic acid sequence-based amplification (NASBA) use alternative cocktails of enzymes to accomplish the same goal of replicating pathogen DNA or RNA for the purpose of detection without the need to quickly vary the temperature as required for PCR.74–76 RPA can even be performed using body heat as the isothermal heat source.77 Obviating the need for expensive thermocyclers, isothermal NAAT remove the high capital cost barrier to uptake of NAAT in resource-limited settings. Systems using LAMP, RPA, and NASBA have shown promising test characteristics in laboratory settings detecting a full range of infectious causes of acute febrile illness including Ebola, Zika, influenza, and scrub typhus (Table 2).93,105,106,115 Reagents and an instrument to perform RPA are commercially available from twistDx (Cambridge, United Kingdom), which have worked effectively for the field diagnosis of dengue.107 The most mature applications of LAMP use an instrument with an isothermal heat source and real-time fluorometric or turbidimetric detection, available from multiple manufacturers.94,116 Field testing with RealAmp, a RT-LAMP protocol developed by the Centers for Disease Control and Prevention, has proved effective for detecting malaria.94
Table 2.
Device | Producer | Amplification technique | Run time (minutes) | Isothermal | Portable* | Integ prep | Multiplex | Utility in clinical specimens | Reference example test | Sens (%) | Spec (%) | Lowest device cost ($) | Lowest per sample cost ($) | Ref | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Malaria | Arboviruses | Zoonotic bact | Meningitis | Resp viruses | Tubercuosis | Gl pathogens | Ebola | ||||||||||||||
Alere i | Alere | Nicking endonuclease amp | 15 | ✓ | ✓ | ✓ | FilmArray influenza | 79 | 100 | 8,628 | 94 | 78,79 | |||||||||
FilmArray | BioFire | Nested multiplex RT-PCR | 65 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | Ebola PCR | 83 | 97 | 40,000 | 109 | 80–84 | ||||||
Genedrive | Epistem | Multiplex RT-PCR | 45–75 | ✓ | ✓ | TB culture | 45 | 98 | NCA | NCA | 85,86 | ||||||||||
GeneXpert | Cepheid | Heminested RT-PCR | 90–120 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | Ebola PCR | 100 | 96 | 17,500 | 10 | 71,87–92 | |||||
Multiple† | Multiple† | RT loop mediated isothermal amp | 15–75 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | Malaria PCR | 95 | 98 | 2,561 | 5 | 71,93–100 | ||
MinION | Oxford Nanopore | Nanopore sequencing | 60‡ | ✓ | ✓ | ✓ | ✓ | Data not available | – | – | 1,000 | 600 | 101–104 | ||||||||
T-8 | TwistDx | Recombinase polymerase amp | 15–30 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | Ebola PCR | 97 | 97 | 5,495 | 7 | 105–110 | ||||
TaqMan Array Card | Applied Biosystems | Multiple parallel singleplex RT-PCR | 40–90 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | PCR for AFI pathogens | 88 | 99 | –§ | 34 | 88,89,111–113 | |||||
two3 | Biomeme | Multiplex RT-PCR | 60 | ✓ | ✓ | Data not available | NA | NA | 4,000¶ | 30¶ | 114 |
AFI = acute febrile illness; GI = gastrointestinal; Integ prep = integrated sample preparation; Amp = amplification; NA = not applicable; NCA = not commercially available; Ref = references; RT-PCR = real-time polymerase chain reaction; Sens = sensitivity; Spec = specificity; TB = tuberculosis; Tech = Technologies.
A platform was considered portable if it has the ability to run on an integrated battery.
There are multiple RT loop mediated isothermal amplification protocols that make use of instruments providing isothermal heating systems with RT fluorometric or turbidimetric detection.
Sequencing time to target identification only. The entire process including sample and library preparation may take 24 hours.
TaqMan array cards can be run on a variety of real-time thermocyclers.
J. Zhang, personal communication.
Most isothermal NAAT still require laborious sample preparation by skilled technicians and at times nuanced interpretation of results. Walk-away PCR platforms can perform PCR with only minimal user input and training. Performed directly by nurses or clinicians, simply by changing a self-contained cartridge in which extraction, amplification, and detection occurs, the robotic GeneXpert platform (Cepheid, Sunnyvale, CA) can detect a variety of pathogens such as tuberculosis and Ebola.87,117,118 GeneXpert has been deployed successfully to the point-of-care at Ebola treatment centers during the recent outbreak in west Africa.88,89 The GeneXpert has been shown to have a low tolerance for heat and humidity119; improvements to increase robustness and decrease maintenance requirements will allow more widespread adoption. A competing platform to GeneXpert, BioFire FilmArray (bioMérieux, Marcy l'Etoile, France), uses cartridges to simultaneously test for multiple pathogens within a syndrome, ranging from diarrhea to meningoencephalitis.80,81 Using an isothermal technique named nicking endonuclease amplification reaction, Alere (Waltham, MA) has developed a NAAT for influenza that gives a result in 15 minutes.78 Walk-away PCR platforms do offer simplicity, but using proprietary cartridges, only manufacturers can expand testing for additional diseases and control pricing, limiting dissemination of such systems to diagnose neglected tropical diseases in resource-limited settings. Volume discounts provide GeneXpert cartridges to resource-limited health-care systems for $10, but the instrument itself costs $17,500.71 Costs for the BioFire FilmArray instrument and per-test consumables exceed $40,000 and $100, respectively.82,83 The Alere isothermal instrument costs $8,628 and each kit $94.79 Given high capital and consumable prices, inability to tailor to local needs, and high electricity demands, current walkaway PCR systems are still far out of reach for the routine diagnosis of acute febrile illness in resource-limited settings.
Several devices in development, however, can perform PCR in a miniaturized, low-cost device that can be battery powered. Cepheid is developing a portable version of its GeneXpert system, Omni.120 BioFire has adapted its cartridge technology to develop a portable PCR unit for biodefense purposes.121,122 Genedrive (Epistem, Manchester, United Kingdom) is a portable machine whose cartridges use a paper-based extraction system that has so far been evaluated for tuberculosis diagnosis with inconsistent results.85,86 Biomeme (Philadelphia, PA) is developing a handheld PCR device that runs off of an iPhone, using its camera for fluorometric detection and screen for interface.114
In an era of global malaria decline, recognition of the increasingly vast possible etiologies for acute febrile illness in patients presenting for care in resource-limiting settings means that sequential testing for individual infectious diseases may be too slow to guide patient care and are not cost effective. Though potentially cumbersome in their current formats, increasingly multiplex PCR assays allow for the screening of a wide range of pathogens with one assay. Multiplex PCR for arboviruses include multiple offerings for a multiplex dengue, chikungunya, and Zika assay, although there is some controversy regarding the sensitivity of the Trioplex assay developed by the Centers for Disease Control and Prevention.123–125 Taqman array cards, sold by Applied Biosystems (Foster City, CA), can be customized for any target, and can perform 26 singleplex PCR assays for infectious diseases in parallel.111 Advances in molecular biology are allowing for increasingly multiplex detection strategies.126 Although no single existing modality can perform sample extraction, amplification, and detection of numerous pathogens in a simple, affordable, customizable package without a heavy power requirement, advances in each individual component are paving the way for a future in which such a device will be surely available.
Metagenomic Sequencing Can Identify Any Pathogen
Despite increasingly multiplex molecular diagnostic strategies, such an approach would have been unlikely to identify Ebola in West Africa, Zika in Brazil, or Middle East respiratory syndrome coronavirus in Saudi Arabia as clinicians had no reason to suspect a disease that never in history had occurred in their respective settings of emergence or reemergence. Approaches to diagnose any infectious disease without a priori suspicion would enable surveillance programs and clinicians to recognize emerging and reemerging infectious diseases. Metagenomic sequencing using next-generation technologies can perform unbiased sequencing on high-throughput systems at remarkably shrinking costs.127 Use of metagenomic sequencing as a diagnostic tool has successfully identified expected and wholly unexpected existing pathogens.128–131 Novel viruses have also been identified using metagenomic sequencing.132,133 Although high-throughput, second-generation sequencing techniques require large machines with expensive capital and consumable costs, third-generation sequencing using nanopores by a device named MinION (Oxford Nanopore Technologies, Oxford, United Kingdom) can perform metagenomic sequencing in a package no larger than a thumb drive that can be powered by a laptop computer.134 MinION has already identified bacteria and viruses.134–136
New Molecular Techniques are Not Perfect
Even with improvements in sensitivity, many infectious diseases do not release pathogen genetic material in the bloodstream in sufficient quantities to be diagnosed by NAAT using blood or serum samples. Blood culture theoretically can detect as little as one bacterium in a large volume culture bottle. Each bacteria, however, only has one genomic copy, making it difficult for PCR to equal the sensitivity of culture. One approach to overcome a paucity of genomic bacterial DNA has been to detect transcribed RNA, which for some transcribed targets may be present many fold more than genomic DNA.137 Other approaches increase the volume of blood collected or make use of the white blood cell fraction of blood specimens, which for intracellular bacteria may be more sensitive.138 As metagenomic methods require the nonspecific amplification of all genomic material by PCR during the library preparation phase, organisms not detected by RT-PCR using specific primers against the target of interest are unlikely to be detected by next-generation sequencing.139
In resource-limited settings, one-half of patients may wait until 4 days of illness and one quarter of patients 1 week to present to health care for evaluation of acute febrile illness.19,33,140 A broad array of diseases that cause acute febrile illness such as Zika, hantavirus, and Rickettsia have only a brief window of detection in which circulating genetic material is detectable in blood samples, though symptoms may continue past this window.141–143 New approaches to use NAAT to detect a host RNA expression signature in lieu of pathogen nucleic acids may circumvent these limitations.144
Put It On Paper, or On a Chip, and Throw Away the Needle
Advancements to produce smaller, simpler, and cheaper diagnostic instruments for acute febrile illness still leave users in resource-limited settings reliant on equipment that may break, disappear, or remain locked in a closet. Introduced more than a decade ago, the WHO ASSURED criteria challenges developers to produce ideal point-of-care diagnostic tests for resource-limited settings that are Affordable, Sensitive, Specific, User friendly, Rapid and robust, Equipment-free, and Delivered.145–147 As has been shown with HIV, cryptococcal meningitis, and malaria, disposable paper-based lateral flow diagnostics have no infrastructure requirements, require minimal training, and do not break.148–150 Iterative improvements can be disseminated quickly and do not require capital equipment upgrades. Addition of microfluidic channels to paper-based assays allows for the production of more complicated, multiplex systems.151,152 Separate channels enable multiplexing of serologic tests for multiple pathogens.69 Techniques have been developed to extract, amplify, and detect nucleic acids on paper.153–155
Performing PCR on a chip allows for rapid sample heating and cooling enabling performance of 30 PCR cycles in 2 minutes.156 Further miniaturization of PCR allows for fast thermocycling at lower power, paving the way for small, disposable, low-power PCR platforms. One such example in development can perform 30 cycles in under 5 minutes with a power requirement that could be met by several AA batteries.157 Noninvasive approaches are being tested to detect nucleic acids and antigens that cause acute febrile illness in saliva and urine.158–160 An intriguing technique may detect hemozoin, a product of malaria parasite hemoglobin digestion, using a transdermal probe that would not require any sample (Table 1).55,56
In an age of constantly emerging pathogens with threat of global spread, declining efficacy of overused antibiotics, and large-scale efforts to control specific infectious diseases, we can no longer accept diagnostic uncertainty for acute febrile illness in resource-limited settings. Knowing the etiology of acute febrile illness at both the individual and population level will allow for targeted treatment, judicious use of antibiotics and, ultimately, rational vaccine deployment. Accelerating technologic innovation has led to rapid breakthroughs in NAAT, improvements in traditional serologic and culture techniques, imaging devices, and next-generation sequencing as tools for infectious disease diagnosis. Diagnostic testing for acute febrile illness in resource-limited settings has the chance to leapfrog over complicated, expensive tests to simple, low-cost detection assays. Many of these novel designs are driven by resource limitations, which demand the elimination of costly equipment to move diagnostics to the bedside. This frugal innovation has the capacity to improve patient-centered care and outcomes in all settings.
ACKNOWLEDGMENTS
MR is supported by the National Institute Of Allergy and Infectious Diseases of the National Institutes of Health training grant T32AI007291 and the UJMT Fogarty Global Health Fellows Program R25TW009340. Support was also provided by the Johns Hopkins School of Medicine Applied Physics Lab Innovation Award. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Footnotes
Authors' addresses: Matthew L. Robinson, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD, E-mail: mrobin85@jhmi.edu. Yukari C. Manabe, Department of Medicine, Johns Hopkins University, Baltimore, MD, E-mail: ymanabe@jhmi.edu.
References
- 1.Van Hemelrijck MJ, Lindblade KA, Kubaje A, Hamel MJ, HOdhiambo F, Phillips-Howard PA, Laserson KF, Slutsker L, Feikin DR. Trends observed during a decade of paediatric sick visits to peripheral health facilities in rural western Kenya, 1997–2006. Trop Med Int Health. 2009;14:62–69. doi: 10.1111/j.1365-3156.2008.02184.x. [DOI] [PubMed] [Google Scholar]
- 2.Salvi S, Apte K, Madas S, Barne M, Chhowala S, Sethi T, Aggarwal K, Agrawal A, Gogtay J. Symptoms and medical conditions in 204 912 patients visiting primary health-care practitioners in India: a 1-day point prevalence study (the POSEIDON study) Lancet Glob Health. 2015;3:e776–e784. doi: 10.1016/S2214-109X(15)00152-7. [DOI] [PubMed] [Google Scholar]
- 3.Crump JA, Kirk MD. Estimating the burden of febrile illnesses. PLoS Negl Trop Dis. 2015;9:e0004040. doi: 10.1371/journal.pntd.0004040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.GBD 2013 DALYs and HALE Collaborators. Murray CJ, Barber RM, Foreman KJ, Abbasoglu Ozgoren A, Abd-Allah F, Abera SF, Aboyans V, Abraham JP, Abubakar I, Abu-Raddad LJ, Abu-Rmeileh NM, Achoki T, Ackerman IN, Ademi Z, Adou AK, Adsuar JC, Afshin A, Agardh EE, Alam SS, Alasfoor D, Albittar MI, Alegretti MA, Alemu ZA, Alfonso-Cristancho R, Alhabib S, Ali R, Alla F, Allebeck P, Almazroa MA, Alsharif U, Alvarez E, Alvis-Guzman N, Amare AT, Ameh EA, Amini H, Ammar W, Anderson HR, Anderson BO, Antonio CA, Anwari P, Arnlov J, Arsic Arsenijevic VS, Artaman A, Asghar RJ, Assadi R, Atkins LS, Avila MA, Awuah B, Bachman VF, Badawi A, Bahit MC, Balakrishnan K, Banerjee A, Barker-Collo SL, Barquera S, Barregard L, Barrero LH, Basu A, Basu S, Basulaiman MO, Beardsley J, Bedi N, Beghi E, Bekele T, Bell ML, Benjet C, Bennett DA, Bensenor IM, Benzian H, Bernabe E, Bertozzi-Villa A, Beyene TJ, Bhala N, Bhalla A, Bhutta ZA, Bienhoff K, Bikbov B, Biryukov S, Blore JD, Blosser CD, Blyth FM, Bohensky MA, Bolliger IW, Bora Basara B, Bornstein NM, Bose D, Boufous S, Bourne RR, Boyers LN, Brainin M, Brayne CE, Brazinova A, Breitborde NJ, Brenner H, Briggs AD, Brooks PM, Brown JC, Brugha TS, Buchbinder R, Buckle GC, Budke CM, Bulchis A, Bulloch AG, Campos-Nonato IR, Carabin H, Carapetis JR, Cárdenas R, Carpenter DO, Caso V, Castañeda-Orjuela CA, Castro RE, Catalá-López F, Cavalleri F, Çavlin A, Chadha VK, Chang JC, Charlson FJ, Chen H, Chen W, Chiang PP, Chimed-Ochir O, Chowdhury R, Christensen H, Christophi CA, Cirillo M, Coates MM, Coffeng LE, Coggeshall MS, Colistro V, Colquhoun SM, Cooke GS, Cooper C, Cooper LT, Coppola LM, Cortinovis M, Criqui MH, Crump JA, Cuevas-Nasu L, Danawi H, Dandona L, Dandona R, Dansereau E, Dargan PI, Davey G, Davis A, Davitoiu DV, Dayama A, De Leo D, Degenhardt L, Del Pozo-Cruz B, Dellavalle RP, Deribe K, Derrett S, Des Jarlais DC, Dessalegn M, Dharmaratne SD, Dherani MK, Diaz-Torné C, Dicker D, Ding EL, Dokova K, Dorsey ER, Driscoll TR, Duan L, Duber HC, Ebel BE, Edmond KM, Elshrek YM, Endres M, Ermakov SP, Erskine HE, Eshrati B, Esteghamati A, Estep K, Faraon EJ, Farzadfar F, Fay DF, Feigin VL, Felson DT, Fereshtehnejad SM, Fernandes JG, Ferrari AJ, Fitzmaurice C, Flaxman AD, Fleming TD, Foigt N, Forouzanfar MH, Fowkes FG, Paleo UF, Franklin RC, Fürst T, Gabbe B, Gaffikin L, Gankpé FG, Geleijnse JM, Gessner BD, Gething P, Gibney KB, Giroud M, Giussani G, Gomez Dantes H, Gona P, González-Medina D, Gosselin RA, Gotay CC, Goto A, Gouda HN, Graetz N, Gugnani HC, Gupta R, Gupta R, Gutiérrez RA, Haagsma J, Hafezi-Nejad N, Hagan H, Halasa YA, Hamadeh RR, Hamavid H, Hammami M, Hancock J, Hankey GJ, Hansen GM, Hao Y, Harb HL, Haro JM, Havmoeller R, Hay SI, Hay RJ, Heredia-Pi IB, Heuton KR, Heydarpour P, Higashi H, Hijar M, Hoek HW, Hoffman HJ, Hosgood HD, Hossain M, Hotez PJ, Hoy DG, Hsairi M, Hu G, Huang C, Huang JJ, Husseini A, Huynh C, Iannarone ML, Iburg KM, Innos K, Inoue M, Islami F, Jacobsen KH, Jarvis DL, Jassal SK, Jee SH, Jeemon P, Jensen PN, Jha V, Jiang G, Jiang Y, Jonas JB, Juel K, Kan H, Karch A, Karema CK, Karimkhani C, Karthikeyan G, Kassebaum NJ, Kaul A, Kawakami N, Kazanjan K, Kemp AH, Kengne AP, Keren A, Khader YS, Khalifa SE, Khan EA, Khan G, Khang YH, Kieling C, Kim D, Kim S, Kim Y, Kinfu Y, Kinge JM, Kivipelto M, Knibbs LD, Knudsen AK, Kokubo Y, Kosen S, Krishnaswami S, Kuate Defo B, Kucuk Bicer B, Kuipers EJ, Kulkarni C, Kulkarni VS, Kumar GA, Kyu HH, Lai T, Lalloo R, Lallukka T, Lam H, Lan Q, Lansingh VC, Larsson A, Lawrynowicz AE, Leasher JL, Leigh J, Leung R, Levitz CE, Li B, Li Y, Li Y, Lim SS, Lind M, Lipshultz SE, Liu S, Liu Y, Lloyd BK, Lofgren KT, Logroscino G, Looker KJ, Lortet-Tieulent J, Lotufo PA, Lozano R, Lucas RM, Lunevicius R, Lyons RA, Ma S, Macintyre MF, Mackay MT, Majdan M, Malekzadeh R, Marcenes W, Margolis DJ, Margono C, Marzan MB, Masci JR, Mashal MT, Matzopoulos R, Mayosi BM, Mazorodze TT, Mcgill NW, Mcgrath JJ, Mckee M, Mclain A, Meaney PA, Medina C, Mehndiratta MM, Mekonnen W, Melaku YA, Meltzer M, Memish ZA, Mensah GA, Meretoja A, Mhimbira FA, Micha R, Miller TR, Mills EJ, Mitchell PB, Mock CN, Mohamed Ibrahim N, Mohammad KA, Mokdad AH, Mola GL, Monasta L, Montañez Hernandez JC, Montico M, Montine TJ, Mooney MD, Moore AR, Moradi-Lakeh M, Moran AE, Mori R, Moschandreas J, Moturi WN, Moyer ML, Mozaffarian D, Msemburi WT, Mueller UO, Mukaigawara M, Mullany EC, Murdoch ME, Murray J, Murthy KS, Naghavi M, Naheed A, Naidoo KS, Naldi L, Nand D, Nangia V, Narayan KM, Nejjari C, Neupane SP, Newton CR, Ng M, Ngalesoni FN, Nguyen G, Nisar MI, Nolte S, Norheim OF, Norman RE, Norrving B, Nyakarahuka L, Oh IH, Ohkubo T, Ohno SL, Olusanya BO, Opio JN, Ortblad K, Ortiz A, Pain AW, Pandian JD, Panelo CI, Papachristou C, Park EK, Park JH, Patten SB, Patton GC, Paul VK, Pavlin BI, Pearce N, Pereira DM, Perez-Padilla R, Perez-Ruiz F, Perico N, Pervaiz A, Pesudovs K, Peterson CB, Petzold M, Phillips MR, Phillips BK, Phillips DE, Piel FB, Plass D, Poenaru D, Polinder S, Pope D, Popova S, Poulton RG, Pourmalek F, Prabhakaran D, Prasad NM, Pullan RL, Qato DM, Quistberg DA, Rafay A, Rahimi K, Rahman SU, Raju M, Rana SM, Razavi H, Reddy KS, Refaat A, Remuzzi G, Resnikoff S, Ribeiro AL, Richardson L, Richardus JH, Roberts DA, Rojas-Rueda D, Ronfani L, Roth GA, Rothenbacher D, Rothstein DH, Rowley JT, Roy N, Ruhago GM, Saeedi MY, Saha S, Sahraian MA, Sampson UK, Sanabria JR, Sandar L, Santos IS, Satpathy M, Sawhney M, Scarborough P, Schneider IJ, Schöttker B, Schumacher AE, Schwebel DC, Scott JG, Seedat S, Sepanlou SG, Serina PT, Servan-Mori EE, Shackelford KA, Shaheen A, Shahraz S, Shamah Levy T, Shangguan S, She J, Sheikhbahaei S, Shi P, Shibuya K, Shinohara Y, Shiri R, Shishani K, Shiue I, Shrime MG, Sigfusdottir ID, Silberberg DH, Simard EP, Sindi S, Singh A, Singh JA, Singh L, Skirbekk V, Slepak EL, Sliwa K, Soneji S, Søreide K, Soshnikov S, Sposato LA, Sreeramareddy CT, Stanaway JD, Stathopoulou V, Stein DJ, Stein MB, Steiner C, Steiner TJ, Stevens A, Stewart A, Stovner LJ, Stroumpoulis K, Sunguya BF, Swaminathan S, Swaroop M, Sykes BL, Tabb KM, Takahashi K, Tandon N, Tanne D, Tanner M, Tavakkoli M, Taylor HR, Te Ao BJ, Tediosi F, Temesgen AM, Templin T, Ten Have M, Tenkorang EY, Terkawi AS, Thomson B, Thorne-Lyman AL, Thrift AG, Thurston GD, Tillmann T, Tonelli M, Topouzis F, Toyoshima H, Traebert J, Tran BX, Trillini M, Truelsen T, Tsilimbaris M, Tuzcu EM, Uchendu US, Ukwaja KN, Undurraga EA, Uzun SB, Van Brakel WH, Van De Vijver S, van Gool CH, Van Os J, Vasankari TJ, Venketasubramanian N, Violante FS, Vlassov VV, Vollset SE, Wagner GR, Wagner J, Waller SG, Wan X, Wang H, Wang J, Wang L, Warouw TS, Weichenthal S, Weiderpass E, Weintraub RG, Wenzhi W, Werdecker A, Westerman R, Whiteford HA, Wilkinson JD, Williams TN, Wolfe CD, Wolock TM, Woolf AD, Wulf S, Wurtz B, Xu G, Yan LL, Yano Y, Ye P, Yentür GK, Yip P, Yonemoto N, Yoon SJ, Younis MZ, Yu C, Zaki ME, Zhao Y, Zheng Y, Zonies D, Zou X, Salomon JA, Lopez AD, Vos T. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386:2145–2191. doi: 10.1016/S0140-6736(15)61340-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Institute for Health Metrics and Evaluation (IHME) GBD Compare. 2015. http://vizhub.healthdata.org/gbd-compare Available at. Accessed August 1, 2016.
- 6.Punjabi NH, Taylor WR, Murphy GS, Purwaningsih S, Picarima H, Sisson J, Olson JG, Baso S, Wangsasaputra F, Lesmana M, Oyofo BA, Simanjuntak CH, Subekti D, Corwin AL, Richie TL. Etiology of acute, non-malaria, febrile illnesses in Jayapura, northeastern Papua, Indonesia. Am J Trop Med Hyg. 2012;86:46–51. doi: 10.4269/ajtmh.2012.10-0497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Crump JA, Morrissey AB, Nicholson WL, Massung RF, Stoddard RA, Galloway RL, Ooi EE, Maro VP, Saganda W, Kinabo GD, Muiruri C, Bartlett JA. Etiology of severe non-malaria febrile illness in northern Tanzania: a prospective cohort study. PLoS Negl Trop Dis. 2013;7:e2324. doi: 10.1371/journal.pntd.0002324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.D'Acremont V, Kilowoko M, Kyungu E, Philipina S, Sangu W, Kahama-Maro J, Lengeler C, Cherpillod P, Kaiser L, Genton B. Beyond malaria–causes of fever in outpatient Tanzanian children. N Engl J Med. 2014;370:809–817. doi: 10.1056/NEJMoa1214482. [DOI] [PubMed] [Google Scholar]
- 9.Mayxay M, Castonguay-Vanier J, Chansamouth V, Dubot-Peres A, Paris DH, Phetsouvanh R, Tangkhabuanbutra J, Douangdala P, Inthalath S, Souvannasing P, Slesak G, Tongyoo N, Chanthongthip A, Panyanouvong P, Sibounheuang B, Phommasone K, Dohnt M, Phonekeo D, Hongvanthong B, Xayadeth S, Ketmayoon P, Blacksell SD, Moore CE, Craig SB, Burns MA, von Sonnenburg F, Corwin A, de Lamballerie X, Gonzalez IJ, Christophel EM, Cawthorne A, Bell D, Newton PN. Causes of non-malarial fever in Laos: a prospective study. Lancet Glob Health. 2013;1:e46–e54. doi: 10.1016/S2214-109X(13)70008-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Chheng K, Carter MJ, Emary K, Chanpheaktra N, Moore CE, Stoesser N, Putchhat H, Sona S, Reaksmey S, Kitsutani P, Sar B, van Doorn HR, Uyen NH, Van Tan L, Paris D, Blacksell SD, Amornchai P, Wuthiekanun V, Parry CM, Day NPJ, Kumar V. A prospective study of the causes of febrile illness requiring hospitalization in children in Cambodia. PLoS One. 2013;8:e60634. doi: 10.1371/journal.pone.0060634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Mueller TC, Siv S, Khim N, Kim S, Fleischmann E, Ariey F, Buchy P, Guillard B, González IJ, Christophel E-M, Abdur R, von Sonnenburg F, Bell D, Menard D. Acute undifferentiated febrile illness in rural Cambodia: a 3-year prospective observational study. PLoS One. 2014;9:e95868. doi: 10.1371/journal.pone.0095868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Manock SR, Jacobsen KH, de Bravo NB, Russell KL, Negrete M, Olson JG, Sanchez JL, Blair PJ, Smalligan RD, Quist BK, Espin JF, Espinoza WR, MacCormick F, Fleming LC, Kochel T. Etiology of acute undifferentiated febrile illness in the Amazon basin of Ecuador. Am J Trop Med Hyg. 2009;81:146–151. [PubMed] [Google Scholar]
- 13.Kasper MR, Blair PJ, Touch S, Sokhal B, Yasuda CY, Williams M, Richards AL, Burgess TH, Wierzba TF, Putnam SD. Infectious etiologies of acute febrile illness among patients seeking health care in south-central Cambodia. Am J Trop Med Hyg. 2012;86:246–253. doi: 10.4269/ajtmh.2012.11-0409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Rubach MP, Maro VP, Bartlett JA, Crump JA. Etiologies of illness among patients meeting integrated management of adolescent and adult illness district clinician manual criteria for severe infections in northern Tanzania: implications for empiric antimicrobial therapy. Am J Trop Med Hyg. 2015;92:454–462. doi: 10.4269/ajtmh.14-0496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Bassat Q, Machevo S, O'Callaghan-Gordo C, Sigauque B, Morais L, Diez-Padrisa N, Ribo JL, Mandomando I, Nhampossa T, Ayala E, Sanz S, Weber M, Roca A, Alonso PL. Distinguishing malaria from severe pneumonia among hospitalized children who fulfilled integrated management of childhood illness criteria for both diseases: a hospital-based study in Mozambique. Am J Trop Med Hyg. 2011;85:626–634. doi: 10.4269/ajtmh.2011.11-0223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Laxminarayan R, Matsoso P, Pant S, Brower C, Rottingen JA, Klugman K, Davies S. Access to effective antimicrobials: a worldwide challenge. Lancet. 2016;387:168–175. doi: 10.1016/S0140-6736(15)00474-2. [DOI] [PubMed] [Google Scholar]
- 17.Holman RC, Paddock CD, Curns AT, Krebs JW, McQuiston JH, Childs JE. Analysis of risk factors for fatal Rocky Mountain Spotted Fever: evidence for superiority of tetracyclines for therapy. J Infect Dis. 2001;184:1437–1444. doi: 10.1086/324372. [DOI] [PubMed] [Google Scholar]
- 18.Yasunaga H, Horiguchi H, Kuwabara K, Hashimoto H, Matsuda S. Delay in tetracycline treatment increases the risk of complications in Tsutsugamushi disease: data from the Japanese Diagnosis Procedure Combination database. Intern Med. 2011;50:37–42. doi: 10.2169/internalmedicine.50.4220. [DOI] [PubMed] [Google Scholar]
- 19.Prabhu M, Nicholson WL, Roche AJ, Kersh GJ, Fitzpatrick KA, Oliver LD, Massung RF, Morrissey AB, Bartlett JA, Onyango JJ, Maro VP, Kinabo GD, Saganda W, Crump JA. Q fever, spotted fever group, and typhus group rickettsioses among hospitalized febrile patients in northern Tanzania. Clin Infect Dis. 2011;53:e8–e15. doi: 10.1093/cid/cir411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Dittrich S, Rattanavong S, Lee SJ, Panyanivong P, Craig SB, Tulsiani SM, Blacksell SD, Dance DAB, Dubot-Pérès A, Sengduangphachanh A, Phoumin P, Paris DH, Newton PN. Orientia, Rickettsia, and leptospira pathogens as causes of CNS infections in Laos: a prospective study. Lancet Glob Health. 2015;3:e104–e112. doi: 10.1016/S2214-109X(14)70289-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Jacob ST, Pavlinac PB, Nakiyingi L, Banura P, Baeten JM, Morgan K, Magaret A, Manabe Y, Reynolds SJ, Liles WC, Wald A, Joloba ML, Mayanja-Kizza H, Scheld WM. Mycobacterium tuberculosis bacteremia in a cohort of HIV-infected patients hospitalized with severe sepsis in Uganda–high frequency, low clinical sand derivation of a clinical prediction score. PLoS One. 2013;8:e70305. doi: 10.1371/journal.pone.0070305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Chandy SJ, Thomas K, Mathai E, Antonisamy B, Holloway KA, Stalsby Lundborg C. Patterns of antibiotic use in the community and challenges of antibiotic surveillance in a lower-middle-income country setting: a repeated cross-sectional study in Vellore, south India. J Antimicrob Chemother. 2013;68:229–236. doi: 10.1093/jac/dks355. [DOI] [PubMed] [Google Scholar]
- 23.Elfving K, Shakely D, Andersson M, Baltzell K, Ali AS, Bachelard M, Falk KI, Ljung A, Msellem MI, Omar RS, Parola P, Xu W, Petzold M, Trollfors B, Björkman A, Lindh M, Mårtensson A. Acute uncomplicated febrile illness in children aged 2-59 months in Zanzibar—aetiologies, antibiotic treatment and outcome. PLoS One. 2016;11:e0146054. doi: 10.1371/journal.pone.0146054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Juma E, Zurovac D. Changes in health workers' malaria diagnosis and treatment practices in Kenya. Malar J. 2011;10:1. doi: 10.1186/1475-2875-10-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Batwala V, Magnussen P, Nuwaha F. Antibiotic use among patients with febrile illness in a low malaria endemicity setting in Uganda. Malar J. 2011;10:377. doi: 10.1186/1475-2875-10-377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Holloway KA, Rosella L, Henry D. The impact of WHO essential medicines policies on inappropriate use of antibiotics. PLoS One. 2016;11:e0152020. doi: 10.1371/journal.pone.0152020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Brink AJ, Messina AP, Feldman C, Richards GA, Becker PJ, Goff DA, Bauer KA, Nathwani D, van den Bergh D. Netcare Antimicrobial Stewardship Study Alliance Antimicrobial stewardship across 47 South African hospitals: an implementation study. Lancet Infect Dis. 2016;16:1017–1025. doi: 10.1016/S1473-3099(16)30012-3. [DOI] [PubMed] [Google Scholar]
- 28.Čižman M. The use and resistance to antibiotics in the community. Int J Antimicrob Agents. 2003;21:297–307. doi: 10.1016/s0924-8579(02)00394-1. [DOI] [PubMed] [Google Scholar]
- 29.Chatterjee D, Sen S, Begum SA, Adhikari A, Hazra A, Das AK. A questionnaire-based survey to ascertain the views of clinicians regarding rational use of antibiotics in teaching hospitals of Kolkata. Indian J Pharmacol. 2015;47:105–108. doi: 10.4103/0253-7613.150373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.D'Acremont V, Kahama-Maro J, Swai N, Mtasiwa D, Genton B, Lengeler C. Reduction of anti-malarial consumption after rapid diagnostic tests implementation in Dar es Salaam: a before-after and cluster randomized controlled study. Malar J. 2011;10:107. doi: 10.1186/1475-2875-10-107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Ndhlovu M, Nkhama E, Miller JM, Hamer DH. Antibiotic prescribing practices for patients with fever in the transition from presumptive treatment of malaria to ‘confirm and treat’ in Zambia: a cross-sectional study. Trop Med Int Health. 2015;20:1696–1706. doi: 10.1111/tmi.12591. [DOI] [PubMed] [Google Scholar]
- 32.Ssekabira U, Bukirwa H, Hopkins H, Namagembe A, Weaver MR, Sebuyira LM, Quick L, Staedke S, Yeka A, Kiggundu M, Schneider G, McAdam K, Wabwire-Mangen F, Dorsey G. Improved malaria case management after integrated team-based training of health care workers in Uganda. Am J Trop Med Hyg. 2008;79:826–833. [PubMed] [Google Scholar]
- 33.Moon AM, Biggs HM, Rubach MP, Crump JA, Maro VP, Saganda W, Reddy EA. Evaluation of in-hospital management for febrile illness in northern Tanzania before and after 2010 World Health Organization Guidelines for the treatment of malaria. PLoS One. 2014;9:e89814. doi: 10.1371/journal.pone.0089814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Joshi R, Colford JM, Jr, Reingold AL, Kalantri S. Nonmalarial acute undifferentiated fever in a rural hospital in central India: diagnostic uncertainty and overtreatment with antimalarial agents. Am J Trop Med Hyg. 2008;78:393–399. [PubMed] [Google Scholar]
- 35.Reyburn H, Mbakilwa H, Mwangi R, Mwerinde O, Olomi R, Drakeley C, Whitty CJM. Rapid diagnostic tests compared with malaria microscopy for guiding outpatient treatment of febrile illness in Tanzania: randomised trial. BMJ. 2007;334:403. doi: 10.1136/bmj.39073.496829.AE. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Hamer DH, Ndhlovu M, Zurovac D, Fox M, Yeboah-Antwi K, Chanda P, Sipilinyambe N, Simon JL, Snow RW. Improved diagnostic testing and malaria treatment practices in Zambia. JAMA. 2007;297:2227–2231. doi: 10.1001/jama.297.20.2227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Sudhinaraset M, Ingram M, Lofthouse HK, Montagu D. What is the role of informal healthcare providers in developing countries? A systematic review. PLoS One. 2013;8:e54978. doi: 10.1371/journal.pone.0054978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Ocan M, Manabe YC, Baluku H, Atukwase E, Ogwal-Okeng J, Obua C. Prevalence and predictors of prior antibacterial use among patients presenting to hospitals in northern Uganda. BMC Pharmacol Toxicol. 2015;16:26. doi: 10.1186/s40360-015-0027-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Alsan M, Schoemaker L, Eggleston K, Kammili N, Kolli P, Bhattacharya J. Out-of-pocket health expenditures and antimicrobial resistance in low-income and middle-income countries: an economic analysis. Lancet Infect Dis. 2015;15:1203–1210. doi: 10.1016/S1473-3099(15)00149-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Goossens H, Ferech M, Stichele RV, Elseviers M, ESAC Project Group Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet. 2005;365:579–587. doi: 10.1016/S0140-6736(05)17907-0. [DOI] [PubMed] [Google Scholar]
- 41.Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJ. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387:176–187. doi: 10.1016/S0140-6736(15)00473-0. [DOI] [PubMed] [Google Scholar]
- 42.Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014;14:742–750. doi: 10.1016/S1473-3099(14)70780-7. [DOI] [PubMed] [Google Scholar]
- 43.Castanheira M, Farrell SE, Krause KM, Jones RN, Sader HS. Contemporary diversity of beta-lactamases among Enterobacteriaceae in the nine U.S. census regions and ceftazidime-avibactam activity tested against isolates producing the most prevalent beta-lactamase groups. Antimicrob Agents Chemother. 2014;58:833–838. doi: 10.1128/AAC.01896-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Morens DM, Fauci AS. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog. 2013;9:e1003467. doi: 10.1371/journal.ppat.1003467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Faria NR, Azevedo RdSdS, Kraemer MUG, Souza R, Cunha MS, Hill SC, Thézé J, Bonsall MB, Bowden TA, Rissanen I, Rocco IM, Nogueira JS, Maeda AY, Vasami FG, Macedo FL, Suzuki A, Rodrigues SG, Cruz ACR, Nunes BT, Medeiros DB, Rodrigues DSG, Nunes Queiroz AL, da Silva SP, Henriques DF, Travassos da Rosa ES, de Oliveira CS, Martins LC, Vasconcelos HB, Casseb LMN, Simith Dde B, Messina JP, Abade L, Lourenço J, Alcantara LCJ, Lima MMd, Giovanetti M, Hay SI, de Oliveira RS, Lemos Pda S, Oliveira LF, de Lima CPS, da Silva SP, Vasconcelos JM, Franco L, Cardoso JF, Vianez-Júnior JL, Mir D, Bello G, Delatorre E, Khan K, Creatore M, Coelho GE, de Oliveira WK, Tesh R, Pybus OG, Nunes MRT, Vasconcelos PFC. Zika virus in the Americas: early epidemiological and genetic findings. Science. 2016;352:345–349. doi: 10.1126/science.aaf5036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, Soropogui B, Sow MS, Keita S, De Clerck H, Tiffany A, Dominguez G, Loua M, Traore A, Kolie M, Malano ER, Heleze E, Bocquin A, Mely S, Raoul H, Caro V, Cadar D, Gabriel M, Pahlmann M, Tappe D, Schmidt-Chanasit J, Impouma B, Diallo AK, Formenty P, Van Herp M, Gunther S. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med. 2014;371:1418–1425. doi: 10.1056/NEJMoa1404505. [DOI] [PubMed] [Google Scholar]
- 47.Dixon MG, Schafer IJ. Centers for Disease Control Prevention Ebola viral disease outbreak–west Africa, 2014. MMWR Morb Mortal Wkly Rep. 2014;63:548–551. [PMC free article] [PubMed] [Google Scholar]
- 48.Dhillon RS, Srikrishna D, Garry RF, Chowell G. Ebola control: rapid diagnostic testing. Lancet Infect Dis. 2015;15:147–148. doi: 10.1016/S1473-3099(14)71035-7. [DOI] [PubMed] [Google Scholar]
- 49.Lewnard JA, Ndeffo Mbah ML, Alfaro-Murillo JA, Altice FL, Bawo L, Nyenswah TG, Galvani AP. Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis. Lancet Infect Dis. 2014;14:1189–1195. doi: 10.1016/S1473-3099(14)70995-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A, Carroll MW, Doumbia M, Draguez B, Duraffour S, Enwere G, Grais R, Gunther S, Hossmann S, Konde MK, Kone S, Kuisma E, Levine MM, Mandal S, Norheim G, Riveros X, Soumah A, Trelle S, Vicari AS, Watson CH, Keita S, Kieny MP, Rottingen JA. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet. 2015;386:857–866. doi: 10.1016/S0140-6736(15)61117-5. [DOI] [PubMed] [Google Scholar]
- 51.Slater HC, Ross A, Ouedraogo AL, White LJ, Nguon C, Walker PGT, Ngor P, Aguas R, Silal SP, Dondorp AM, La Barre P, Burton R, Sauerwein RW, Drakeley C, Smith TA, Bousema T, Ghani AC. Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies. Nature. 2015;528:S94–S101. doi: 10.1038/nature16040. [DOI] [PubMed] [Google Scholar]
- 52.Andrews JR, Prajapati KG, Eypper E, Shrestha P, Shakya M, Pathak KR, Joshi N, Tiwari P, Risal M, Koirala S, Karkey A, Dongol S, Wen S, Smith AB, Maru D, Basnyat B, Baker S, Farrar J, Ryan ET, Hohmann E, Arjyal A. Evaluation of an electricity-free, culture-based approach for detecting typhoidal Salmonella bacteremia during enteric fever in a high burden, resource-limited setting. PLoS Negl Trop Dis. 2013;7:e2292. doi: 10.1371/journal.pntd.0002292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.D'Ambrosio MV, Bakalar M, Bennuru S, Reber C, Skandarajah A, Nilsson L, Switz N, Kamgno J, Pion S, Boussinesq M, Nutman TB, Fletcher DA. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci Transl Med. 2015;7:286re4. doi: 10.1126/scitranslmed.aaa3480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Pirnstill CW, Coté GL. Malaria diagnosis using a mobile phone polarized microscope. Sci Rep. 2015;5:13368. doi: 10.1038/srep13368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Lukianova-Hleb EY, Campbell KM, Constantinou PE, Braam J, Olson JS, Ware RE, Sullivan DJ, Jr, Lapotko DO. Hemozoin-generated vapor nanobubbles for transdermal reagent- and needle-free detection of malaria. Proc Natl Acad Sci USA. 2014;111:900–905. doi: 10.1073/pnas.1316253111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Ekaterina L-H, Sarah B, Reka S, Alexander K, Thomas K, Andrew H, Michail B, Nirbhay K, Umberto DA, Dmitri L. Transdermal diagnosis of malaria using vapor nanobubbles. Emerg Infect Dis. 2015;21:1122. doi: 10.3201/eid2107.150089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Bisser S, Lumbala C, Nguertoum E, Kande V, Flevaud L, Vatunga G, Boelaert M, Büscher P, Josenando T, Bessell PR, Biéler S. Sensitivity and specificity of a prototype rapid diagnostic test for the detection of Trypanosoma brucei gambiense infection: a multi-centric prospective study. PLoS Negl Trop Dis. 2016;10:e0004608. doi: 10.1371/journal.pntd.0004608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Xu GJ, Kula T, Xu Q, Li MZ, Vernon SD, Ndung'u T, Ruxrungtham K, Sanchez J, Brander C, Chung RT, O'Connor KC, Walker B, Larman HB, Elledge SJ. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science. 2015;348((6239)):aaa0698. doi: 10.1126/science.aaa0698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Jung JH, Lee JE. Real-time bacterial microcolony counting using on-chip microscopy. Sci Rep. 2016;6:21473. doi: 10.1038/srep21473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Leung K, Zahn H, Leaver T, Konwar KM, Hanson NW, Pagé AP, Lo C-C, Chain PS, Hallam SJ, Hansen CL. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci USA. 2012;109:7665–7670. doi: 10.1073/pnas.1106752109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Shemesh J, Ben Arye T, Avesar J, Kang JH, Fine A, Super M, Meller A, Ingber DE, Levenberg S. Stationary nanoliter droplet array with a substrate of choice for single adherent/nonadherent cell incubation and analysis. Proc Natl Acad Sci USA. 2014;111:11293–11298. doi: 10.1073/pnas.1404472111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Choi J, Yoo J, Lee M, Kim EG, Lee JS, Lee S, Joo S, Song SH, Kim EC, Lee JC, Kim HC, Jung YG, Kwon S. A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci Transl Med. 2014;6:267ra174. doi: 10.1126/scitranslmed.3009650. [DOI] [PubMed] [Google Scholar]
- 63.Lee J, Armstrong DT, Ssengooba W, Park J-a Yu Y, Mumbowa F, Namaganda C, Mboowa G, Nakayita G, Armakovitch S, Chien G, Cho S-N, Via LE, Barry CE, Ellner JJ, Alland D, Dorman SE, Joloba ML. Sensititre MYCOTB MIC plate for testing Mycobacterium tuberculosis susceptibility to first- and second-line drugs. Antimicrob Agents Chemother. 2014;58:11–18. doi: 10.1128/AAC.01209-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Laksanasopin T, Guo TW, Nayak S, Sridhara AA, Xie S, Olowookere OO, Cadinu P, Meng F, Chee NH, Kim J, Chin CD, Munyazesa E, Mugwaneza P, Rai AJ, Mugisha V, Castro AR, Steinmiller D, Linder V, Justman JE, Nsanzimana S, Sia SK. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med. 2015;7:273re1. doi: 10.1126/scitranslmed.aaa0056. [DOI] [PubMed] [Google Scholar]
- 65.Park TS, Li W, McCracken KE, Yoon J-Y. Smartphone quantifies Salmonella from paper microfluidics. Lab Chip. 2013;13:4832–4840. doi: 10.1039/c3lc50976a. [DOI] [PubMed] [Google Scholar]
- 66.Bristow CC, Leon SR, Ramos LB, Vargas SK, Flores JA, Konda KA, Caceres CF, Klausner JD. Laboratory evaluation of a dual rapid immunodiagnostic test for HIV and syphilis infection. J Clin Microbiol. 2015;53:311–313. doi: 10.1128/JCM.02763-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Herbst de Cortina S, Bristow CC, Vargas SK, Perez DG, Konda KA, Caceres CF, Klausner JD. Laboratory evaluation of a point-of-care downward-flow assay for simultaneous detection of antibodies to Treponema pallidum and human immunodeficiency virus. J Clin Microbiol. 2016;54:1922–1924. doi: 10.1128/JCM.00637-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Leon SR, Ramos LB, Vargas SK, Kojima N, Perez DG, Caceres CF, Klausner JD. Laboratory evaluation of a dual-path platform assay for rapid point-of-care HIV and syphilis testing. J Clin Microbiol. 2016;54:492–494. doi: 10.1128/JCM.03152-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Deraney RN, Mace CR, Rolland JP, Schonhorn JE. Multiplexed, patterned-paper immunoassay for detection of malaria and dengue fever. Anal Chem. 2016;88:6161–6165. doi: 10.1021/acs.analchem.6b00854. [DOI] [PubMed] [Google Scholar]
- 70.Gao C-h, Yang Y-t, Shi F, Wang J-y, Steverding D, Wang X. Development of an immunochromatographic test for diagnosis of visceral leishmaniasis based on detection of a circulating antigen. PLoS Negl Trop Dis. 2015;9:e0003902. doi: 10.1371/journal.pntd.0003902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.FIND Negotiated Product Pricing. 2016. http://www.finddx.org/find-negotiated-product-pricing/ Available at. Accessed December 16, 2016.
- 72.World Health Organization Visceral Leishmaniasis Rapid Diagnostic Test Performance. 2011. http://www.who.int/tdr/publications/documents/vl-rdt-evaluation.pdf Available at. Accessed December 19, 2016.
- 73.Baron EJ, Miller JM, Weinstein MP, Richter SS, Gilligan PH, Thomson RB, Jr, Bourbeau P, Carroll KC, Kehl SC, Dunne WM, Robinson-Dunn B, Schwartzman JD, Chapin KC, Snyder JW, Forbes BA, Patel R, Rosenblatt JE, Pritt BS. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM) Clin Infect Dis. 2013;57:e22–e121. doi: 10.1093/cid/cit278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol. 2006;4:e204. doi: 10.1371/journal.pbio.0040204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:e63. doi: 10.1093/nar/28.12.e63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci USA. 1990;87:1874–1878. doi: 10.1073/pnas.87.5.1874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Crannell ZA, Rohrman B, Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One. 2014;9:e112146. doi: 10.1371/journal.pone.0112146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Nie S, Roth RB, Stiles J, Mikhlina A, Lu X, Tang YW, Babady NE. Evaluation of Alere i Influenza A and B for rapid detection of influenza viruses A and B. J Clin Microbiol. 2014;52:3339–3344. doi: 10.1128/JCM.01132-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Fisher Scientific Alere i Influenza A and B. https://www.fishersci.com/shop/products/alere-i-influenza-a-b-3/p-4898455 Available at. Accessed July 19, 2016.
- 80.Buss SN, Leber A, Chapin K, Fey PD, Bankowski MJ, Jones MK, Rogatcheva M, Kanack KJ, Bourzac KM. Multicenter evaluation of the BioFire FilmArray gastrointestinal panel for etiologic diagnosis of infectious gastroenteritis. J Clin Microbiol. 2015;53:915–925. doi: 10.1128/JCM.02674-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Leber AL, Everhart K, Balada-Llasat JM, Cullison J, Daly J, Holt S, Lephart P, Salimnia H, Schreckenberger PC, DesJarlais S, Reed SL, Chapin KC, LeBlanc L, Johnson JK, Soliven NL, Carroll K, Miller JA, Dien Bard J, Mestas J, Bankowski M, Enomoto T, Hemmert AC, Bourzac K. Multicenter evaluation of the BioFire FilmArray meningitis encephalitis panel for the detection of bacteria, ciruses and yeast in cerebrospinal fluid specimens. J Clin Microbiol. 2016;54:2251–2261. doi: 10.1128/JCM.00730-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Nelson RE, Stockmann C, Hersh AL, Pavia AT, Korgenksi K, Daly JA, Couturier MR, Ampofo K, Thorell EA, Doby EH, Robison JA, Blaschke AJ. Economic analysis of rapid and sensitive polymerase chain reaction testing in the emergency department for influenza infections in children. Pediatr Infect Dis J. 2015;34:577–582. doi: 10.1097/INF.0000000000000703. [DOI] [PubMed] [Google Scholar]
- 83.Xu M, Qin X, Astion ML, Rutledge JC, Simpson J, Jerome KR, Englund JA, Zerr DM, Migita RT, Rich S, Childs JC, Cent A, Del Beccaro MA. Implementation of filmarray respiratory viral panel in a core laboratory improves testing turnaround time and patient care. Am J Clin Pathol. 2013;139:118–123. doi: 10.1309/AJCPH7X3NLYZPHBW. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Weller SA, Bailey D, Matthews S, Lumley S, Sweed A, Ready D, Eltringham G, Richards J, Vipond R, Lukaszewski R, Payne PM, Aarons E, Simpson AJ, Hutley EJ, Brooks T. Evaluation of the Biofire FilmArray BioThreat-E Test (v2.5) for rapid identification of Ebola virus disease in heat-treated blood samples obtained in Sierra Leone and the United Kingdom. J Clin Microbiol. 2016;54:114–119. doi: 10.1128/JCM.02287-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Castan P, de Pablo A, Fernandez-Romero N, Rubio JM, Cobb BD, Mingorance J, Toro C. Point-of-care system for detection of Mycobacterium tuberculosis and rifampin resistance in sputum samples. J Clin Microbiol. 2014;52:502–507. doi: 10.1128/JCM.02209-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Shenai S, Armstrong DT, Valli E, Dolinger DL, Nakiyingi L, Dietze R, Dalcolmo MP, Nicol MP, Zemanay W, Manabe Y, Hadad DJ, Marques-Rodrigues P, Palaci M, Peres RL, Gaeddert M, Armakovitch S, Nonyane BA, Denkinger CM, Banada P, Joloba ML, Ellner J, Boehme C, Alland D, Dorman SE. Analytical and clinical evaluation of the Epistem Genedrive assay for detection of Mycobacterium tuberculosis. J Clin Microbiol. 2016;54:1051–1057. doi: 10.1128/JCM.02847-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O'Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363:1005–1015. doi: 10.1056/NEJMoa0907847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Semper AE, Broadhurst MJ, Richards J, Foster GM, Simpson AJH, Logue CH, Kelly JD, Miller A, Brooks TJG, Murray M, Pollock NR. Performance of the GeneXpert Ebola assay for diagnosis of Ebola virus disease in Sierra Leone: a field evaluation study. PLoS Med. 2016;13:e1001980. doi: 10.1371/journal.pmed.1001980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Van den Bergh R, Chaillet P, Sow MS, Amand M, van Vyve C, Jonckheere S, Crestani R, Sprecher A, Van Herp M, Chua A, Piriou E, Koivogui L, Antierens A. Feasibility of Xpert Ebola assay in Medecins Sans Frontieres ebola program, Guinea. Emerg Infect Dis. 2016;22:210–216. doi: 10.3201/eid2202.151238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Pantoja A, Kik SV, Denkinger CM. Costs of novel tuberculosis diagnostics–will countries be able to afford it? J Infect Dis. 2015;211((Suppl 2)):S67–S77. doi: 10.1093/infdis/jiu820. [DOI] [PubMed] [Google Scholar]
- 91.Wahrenbrock MG, Matushek S, Boonlayangoor S, Tesic V, Beavis KG, Charnot-Katsikas A. Comparison of Cepheid Xpert Flu/RSV XC and BioFire FilmArray for detection of influenza A, influenza B, and respiratory syncytial virus. J Clin Microbiol. 2016;54:1902–1903. doi: 10.1128/JCM.00084-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Gonzalez MD, Langley LC, Buchan BW, Faron ML, Maier M, Templeton K, Walker K, Popowitch EB, Miller MB, Rao A, Liebert UG, Ledeboer NA, Vinje J, Burnham CA. Multicenter evaluation of the Xpert norovirus assay for detection of norovirus genogroups I and II in fecal specimens. J Clin Microbiol. 2016;54:142–147. doi: 10.1128/JCM.02361-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Kurosaki Y, Magassouba NF, Oloniniyi OK, Cherif MS, Sakabe S, Takada A, Hirayama K, Yasuda J. Development and evaluation of reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay coupled with a portable device for rapid diagnosis of Ebola virus disease in Guinea. PLoS Negl Trop Dis. 2016;10:e0004472. doi: 10.1371/journal.pntd.0004472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Patel JC, Lucchi NW, Srivastava P, Lin JT, Sug-Aram R, Aruncharus S, Bharti PK, Shukla MM, Congpuong K, Satimai W, Singh N, Udhayakumar V, Meshnick SR. Field evaluation of a real-time fluorescence loop-mediated isothermal amplification assay, RealAmp, for the diagnosis of malaria in Thailand and India. J Infect Dis. 2014;210:1180–1187. doi: 10.1093/infdis/jiu252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Lu X, Li X, Mo Z, Jin F, Wang B, Zhao H, Shan X, Shi L. Rapid identification of chikungunya and dengue virus by a real-time reverse transcription-loop-mediated isothermal amplification method. Am J Trop Med Hyg. 2012;87:947–953. doi: 10.4269/ajtmh.2012.11-0721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Dittrich S, Castonguay-Vanier J, Moore CE, Thongyoo N, Newton PN, Paris DH. Loop-mediated isothermal amplification for Rickettsia typhi (the causal agent of murine typhus): problems with diagnosis at the limit of detection. J Clin Microbiol. 2014;52:832–838. doi: 10.1128/JCM.02786-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Kubo T, Agoh M, Mai LQ, Fukushima K, Nishimura H, Yamaguchi A, Hirano M, Yoshikawa A, Hasebe F, Kohno S, Morita K. Development of a reverse transcription-loop-mediated isothermal amplification assay for detection of pandemic (H1N1) 2009 virus as a novel molecular method for diagnosis of pandemic influenza in resource-limited settings. J Clin Microbiol. 2010;48:728–735. doi: 10.1128/JCM.01481-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Fukuda S, Takao S, Kuwayama M, Shimazu Y, Miyazaki K. Rapid detection of norovirus from fecal specimens by real-time reverse transcription-loop-mediated isothermal amplification assay. J Clin Microbiol. 2006;44:1376–1381. doi: 10.1128/JCM.44.4.1376-1381.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Lee D, Kim EJ, Kilgore PE, Kim SA, Takahashi H, Ohnishi M, Anh DD, Dong BQ, Kim JS, Tomono J, Miyamoto S, Notomi T, Kim DW, Seki M. Clinical evaluation of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Neisseria meningitidis in cerebrospinal fluid. PLoS One. 2015;10:e0122922. doi: 10.1371/journal.pone.0122922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Nagai K, Horita N, Yamamoto M, Tsukahara T, Nagakura H, Tashiro K, Shibata Y, Watanabe H, Nakashima K, Ushio R, Ikeda M, Narita A, Kanai A, Sato T, Kaneko T. Diagnostic test accuracy of loop-mediated isothermal amplification assay for Mycobacterium tuberculosis: systematic review and meta-analysis. Sci Rep. 2016;6:39090. doi: 10.1038/srep39090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, Bouquet J, Stryke D, Somasekar S, Linnen J, Dodd R, Mulembakani P, Schneider B, Muyembe J-J, Stramer S, Chiu CY. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med. 2015;7:99. doi: 10.1186/s13073-015-0220-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Thomas H, Allison G, Kyle R, Robert JF, Andreas H, Seth DJ, Cynthia M, Darryl F, Andrea M, Squires RB, Kurt RW, Emmie de W, Joseph BP, David S, Neeltje van D, Trenton B, Friederike F, Kristin M, Fatorma KB, Barry F, Tara S, Mark R, Stuart TN, Kathryn CZ, Moses M, Vincent JM, Heinz F. Nanopore Sequencing as a rapidly deployable Ebola outbreak tool. Emerg Infect Dis. 2016;22:331. doi: 10.3201/eid2202.151796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouédraogo N, Afrough B, Bah A, Baum JHJ, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sánchez Á, Carter LL, Doerrbecker J, Enkirch T, Dorival IG, Hetzelt N, Hinzmann J, Holm T, Kafetzopoulou LE, Koropogui M, Kosgey A, Kuisma E, Logue CH, Mazzarelli A, Meisel S, Mertens M, Michel J, Ngabo D, Nitzsche K, Pallasch E, Patrono LV, Portmann J, Repits JG, Rickett NY, Sachse A, Singethan K, Vitoriano I, Yemanaberhan RL, Zekeng EG, Racine T, Bello A, Sall AA, Faye O, Faye O, Magassouba NF, Williams CV, Amburgey V, Winona L, Davis E, Gerlach J, Washington F, Monteil V, Jourdain M, Bererd M, Camara A, Somlare H, Camara A, Gerard M, Bado G, Baillet B, Delaune D, Nebie KY, Diarra A, Savane Y, Pallawo RB, Gutierrez GJ, Milhano N, Roger I, Williams CJ, Yattara F, Lewandowski K, Taylor J, Rachwal P, Turner DJ, Pollakis G, Hiscox JA, Matthews DA, Shea MKO, Johnston AM, Wilson D, Hutley E, Smit E, Di Caro A, Wölfel R, Stoecker K, Fleischmann E, Gabriel M, Weller SA, Koivogui L, Diallo B, Keïta S, Rambaut A, Formenty P, Günther S, Carroll MW. Real-time, portable genome sequencing for Ebola surveillance. Nature. 2016;530:228–232. doi: 10.1038/nature16996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Oxford Nanopore Technologies . Everything Nanopore: MinION, PromethION, Kits and Consumables. 2016. https://store.nanoporetech.com/ Available at. Accessed December 16, 2016. [Google Scholar]
- 105.Yehia N, Arafa AS, Abd El Wahed A, El-Sanousi AA, Weidmann M, Shalaby MA. Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection. J Virol Methods. 2015;223:45–49. doi: 10.1016/j.jviromet.2015.07.011. [DOI] [PubMed] [Google Scholar]
- 106.Chao C-C, Belinskaya T, Zhang Z, Ching W-M. Development of recombinase polymerase amplification assays for detection of Orientia tsutsugamushi or Rickettsia typhi. PLoS Negl Trop Dis. 2015;9:e0003884. doi: 10.1371/journal.pntd.0003884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Abd El Wahed A, Patel P, Faye O, Thaloengsok S, Heidenreich D, Matangkasombut P, Manopwisedjaroen K, Sakuntabhai A, Sall AA, Hufert FT, Weidmann M. Recombinase polymerase amplification assay for rapid diagnostics of dengue infection. PLoS One. 2015;10:e0129682. doi: 10.1371/journal.pone.0129682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Yang M, Ke Y, Wang X, Ren H, Liu W, Lu H, Zhang W, Liu S, Chang G, Tian S, Wang L, Huang L, Liu C, Yang R, Chen Z. Development and evaluation of a rapid and sensitive EBOV-RPA test for rapid diagnosis of Ebola virus disease. Sci Rep. 2016;6:26943. doi: 10.1038/srep26943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Boyle DS, McNerney R, Teng Low H, Leader BT, Pérez-Osorio AC, Meyer JC, O'Sullivan DM, Brooks DG, Piepenburg O, Forrest MS. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification. PLoS One. 2014;9:e103091. doi: 10.1371/journal.pone.0103091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Crannell ZA, Cabada MM, Castellanos-Gonzalez A, Irani A, White AC, Richards-Kortum R. Recombinase polymerase amplification-based assay to diagnose Giardia in stool samples. Am J Trop Med Hyg. 2015;92:583–587. doi: 10.4269/ajtmh.14-0593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Liu J, Ochieng C, Wiersma S, Stroher U, Towner JS, Whitmer S, Nichol ST, Moore CC, Kersh GJ, Kato C, Sexton C, Petersen J, Massung R, Hercik C, Crump JA, Kibiki G, Maro A, Mujaga B, Gratz J, Jacob ST, Banura P, Scheld WM, Juma B, Onyango CO, Montgomery JM, Houpt E, Fields B. Development of a TaqMan Array Card for acute-febrile-illness outbreak investigation and surveillance of emerging pathogens, including Ebola virus. J Clin Microbiol. 2016;54:49–58. doi: 10.1128/JCM.02257-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Kodani M, Yang G, Conklin LM, Travis TC, Whitney CG, Anderson LJ, Schrag SJ, Taylor TH, Beall BW, Breiman RF, Feikin DR, Njenga MK, Mayer LW, Oberste MS, Tondella MLC, Winchell JM, Lindstrom SL, Erdman DD, Fields BS. Application of TaqMan low-density arrays for simultaneous detection of multiple respiratory pathogens. J Clin Microbiol. 2011;49:2175–2182. doi: 10.1128/JCM.02270-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Liu J, Gratz J, Amour C, Kibiki G, Becker S, Janaki L, Verweij JJ, Taniuchi M, Sobuz SU, Haque R, Haverstick DM, Houpt ER. A laboratory-developed TaqMan Array Card for simultaneous detection of 19 enteropathogens. J Clin Microbiol. 2013;51:472–480. doi: 10.1128/JCM.02658-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Marx V. PCR heads into the field. Nat Methods. 2015;12:393–397. doi: 10.1038/nmeth.3369. [DOI] [PubMed] [Google Scholar]
- 115.Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, Ferrante T, Ma D, Donghia N, Fan M, Daringer NM, Bosch I, Dudley DM, O'Connor DH, Gehrke L, Collins JJ. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell. 2016;165:1255–1266. doi: 10.1016/j.cell.2016.04.059. [DOI] [PubMed] [Google Scholar]
- 116.Hopkins H, González IJ, Polley SD, Angutoko P, Ategeka J, Asiimwe C, Agaba B, Kyabayinze DJ, Sutherland CJ, Perkins MD, Bell D. Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J Infect Dis. 2013;208:645–652. doi: 10.1093/infdis/jit184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Pinsky BA, Sahoo MK, Sandlund J, Kleman M, Kulkarni M, Grufman P, Nygren M, Kwiatkowski R, Baron EJ, Tenover F, Denison B, Higuchi R, Van Atta R, Beer NR, Carrillo AC, Naraghi-Arani P, Mire CE, Ranadheera C, Grolla A, Lagerqvist N, Persing DH. Analytical performance characteristics of the Cepheid GeneXpert Ebola assay for the detection of Ebola virus. PLoS One. 2015;10:e0142216. doi: 10.1371/journal.pone.0142216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Theron G, Zijenah L, Chanda D, Clowes P, Rachow A, Lesosky M, Bara W, Mungofa S, Pai M, Hoelscher M, Dowdy D, Pym A, Mwaba P, Mason P, Peter J, Dheda K. TB-NEAT team Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial. Lancet. 2014;383:424–435. doi: 10.1016/S0140-6736(13)62073-5. [DOI] [PubMed] [Google Scholar]
- 119.Evans CA. GeneXpert—a game-changer for tuberculosis control? PLoS Med. 2011;8:e1001064. doi: 10.1371/journal.pmed.1001064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Drain PK, Garrett NJ. The arrival of a true point-of-care molecular assay-ready for global implementation? Lancet Glob Health. 2015;3:e663–e664. doi: 10.1016/S2214-109X(15)00186-2. [DOI] [PubMed] [Google Scholar]
- 121.Mölsä M, Koskela KA, Rönkkö E, Ikonen N, Ziegler T, Nikkari S. Detection of influenza A viruses with a portable real-time PCR instrument. J Virol Methods. 2012;181:188–191. doi: 10.1016/j.jviromet.2012.02.001. [DOI] [PubMed] [Google Scholar]
- 122.Matero P, Hemmila H, Tomaso H, Piiparinen H, Rantakokko-Jalava K, Nuotio L, Nikkari S. Rapid field detection assays for Bacillus anthracis, Brucella spp., Francisella tularensis and Yersinia pestis. Clin Microbiol Infect. 2011;17:34–43. doi: 10.1111/j.1469-0691.2010.03178.x. [DOI] [PubMed] [Google Scholar]
- 123.Waggoner JJ, Gresh L, Mohamed-Hadley A, Ballesteros G, Davila MJ, Tellez Y, Sahoo MK, Balmaseda A, Harris E, Pinsky BA. Single-reaction multiplex reverse transcription PCR for detection of Zika, chikungunya, and dengue viruses. Emerg Infect Dis. 2016;22:1295–1297. doi: 10.3201/eid2207.160326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Centers for Disease Control and Prevention Trioplex Real-Time RT-PCR Assay: Instructions for Use. 2016. http://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM491592.pdf Available at. Accessed July 15, 2016.
- 125.Sharp SE, Hill CE, Valsamakis A. ASM, AMP and PASCV Express Concerns on New Molecular Test for Zika. 2016. http://www.asm.org/index.php/whatsnew-policy/137-policy/documents/statements-and-testimony/94652-zika-test-10-16 Available at. Accessed December 6, 2016.
- 126.Glushakova LG, Bradley A, Bradley KM, Alto BW, Hoshika S, Hutter D, Sharma N, Yang Z, Kim MJ, Benner SA. High-throughput multiplexed xMAP Luminex array panel for detection of twenty two medically important mosquito-borne arboviruses based on innovations in synthetic biology. J Virol Methods. 2015;214:60–74. doi: 10.1016/j.jviromet.2015.01.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Barzon L, Lavezzo E, Costanzi G, Franchin E, Toppo S, Palu G. Next-generation sequencing technologies in diagnostic virology. J Clin Virol. 2013;58:346–350. doi: 10.1016/j.jcv.2013.03.003. [DOI] [PubMed] [Google Scholar]
- 128.Graf EH, Simmon KE, Tardif KD, Hymas W, Flygare S, Eilbeck K, Yandell M, Schlaberg R. Unbiased detection of respiratory viruses by use of RNA sequencing-based metagenomics: a systematic comparison to a commercial PCR panel. J Clin Microbiol. 2016;54:1000–1007. doi: 10.1128/JCM.03060-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Sardi S, Somasekar S, Naccache SN, Bandeira AC, Tauro LB, Campos GS, Chiu CY. Co-infections from Zika and chikungunya virus in Bahia, Brazil identified by metagenomic next-generation sequencing. J Clin Microbiol. 2016;54:2348–2353. doi: 10.1128/JCM.00877-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Yozwiak NL, Skewes-Cox P, Stenglein MD, Balmaseda A, Harris E, DeRisi JL. Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS Negl Trop Dis. 2012;6:e1485. doi: 10.1371/journal.pntd.0001485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H, Yu G, Salamat SM, Somasekar S, Federman S, Miller S, Sokolic R, Garabedian E, Candotti F, Buckley RH, Reed KD, Meyer TL, Seroogy CM, Galloway R, Henderson SL, Gern JE, DeRisi JL, Chiu CY. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med. 2014;370:2408–2417. doi: 10.1056/NEJMoa1401268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, Batten BC, Albarino CG, Zaki SR, Rollin PE, Nicholson WL, Nichol ST. A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med. 2012;367:834–841. doi: 10.1056/NEJMoa1203378. [DOI] [PubMed] [Google Scholar]
- 133.Stremlau MH, Andersen KG, Folarin OA, Grove JN, Odia I, Ehiane PE, Omoniwa O, Omoregie O, Jiang PP, Yozwiak NL, Matranga CB, Yang X, Gire SK, Winnicki S, Tariyal R, Schaffner SF, Okokhere PO, Okogbenin S, Akpede GO, Asogun DA, Agbonlahor DE, Walker PJ, Tesh RB, Levin JZ, Garry RF, Sabeti PC, Happi CT. Discovery of novel rhabdoviruses in the blood of healthy individuals from west Africa. PLoS Negl Trop Dis. 2015;9:e0003631. doi: 10.1371/journal.pntd.0003631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Kilianski A, Haas JL, Corriveau EJ, Liem AT, Willis KL, Kadavy DR, Rosenzweig CN, Minot SS. Bacterial and viral identification and differentiation by amplicon sequencing on the MinION nanopore sequencer. Gigascience. 2015;4:12. doi: 10.1186/s13742-015-0051-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Kilianski A, Roth PA, Liem AT, Hill JM, Willis KL, Rossmaier RD, Marinich AV, Maughan MN, Karavis MA, Kuhn JH, Honko AN, Rosenzweig CN. Use of unamplified RNA/cDNA-hybrid nanopore sequencing for rapid detection and characterization of RNA viruses. Emerg Infect Dis. 2016;22:1448–1451. doi: 10.3201/eid2208.160270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Benitez-Paez A, Portune K, Sanz Y. Species level resolution of 16S rRNA gene amplicons sequenced through MinION™ portable nanopore sequencer. GigaScience. 2016;5:1–9. doi: 10.1186/s13742-016-0111-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Backstedt BT, Buyuktanir O, Lindow J, Wunder EA, Jr, Reis MG, Usmani-Brown S, Ledizet M, Ko A, Pal U. Efficient detection of pathogenic leptospires using 16S ribosomal RNA. PLoS One. 2015;10:e0128913. doi: 10.1371/journal.pone.0128913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Tennant SM, Toema D, Qamar F, Iqbal N, Boyd MA, Marshall JM, Blackwelder WC, Wu Y, Quadri F, Khan A, Aziz F, Ahmad K, Kalam A, Asif E, Qureshi S, Khan E, Zaidi AK, Levine MM. Detection of typhoidal and paratyphoidal Salmonella in blood by real-time polymerase chain reaction. Clin Infect Dis. 2015;61((Suppl 4)):S241–S250. doi: 10.1093/cid/civ726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P. Library construction for next-generation sequencing: overviews and challenges. Biotechniques. 2014;56:61–64. doi: 10.2144/000114133. 66, 68 passim. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Mayxay M, Sengvilaipaseuth O, Chanthongthip A, Dubot-Peres A, Rolain JM, Parola P, Craig SB, Tulsiani S, Burns MA, Khanthavong M, Keola S, Pongvongsa T, Raoult D, Dittrich S, Newton PN. Causes of fever in rural southern Laos. Am J Trop Med Hyg. 2015;93:517–520. doi: 10.4269/ajtmh.14-0772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Chandy S, Yoshimatsu K, Boorugu HK, Chrispal A, Thomas K, Peedicayil A, Abraham P, Arikawa J, Sridharan G. Acute febrile illness caused by hantavirus: serological and molecular evidence from India. Trans R Soc Trop Med Hyg. 2009;103:407–412. doi: 10.1016/j.trstmh.2009.01.016. [DOI] [PubMed] [Google Scholar]
- 142.Paris DH, Blacksell SD, Nawtaisong P, Jenjaroen K, Teeraratkul A, Chierakul W, Wuthiekanun V, Kantipong P, Day NP. Diagnostic accuracy of a loop-mediated isothermal PCR assay for detection of Orientia tsutsugamushi during acute scrub typhus infection. PLoS Negl Trop Dis. 2011;5:e1307. doi: 10.1371/journal.pntd.0001307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Bingham AM, Cone M, Mock V, Heberlein-Larson L, Stanek D, Blackmore C, Likos A. Comparison of test results for Zika virus RNA in urine, serum, and saliva specimens from persons with travel-associated Zika virus disease—Florida, 2016. MMWR Morb Mortal Wkly Rep. 2016;65:475–478. doi: 10.15585/mmwr.mm6518e2. [DOI] [PubMed] [Google Scholar]
- 144.Zaas AK, Burke T, Chen M, McClain M, Nicholson B, Veldman T, Tsalik EL, Fowler V, Rivers EP, Otero R, Kingsmore SF, Voora D, Lucas J, Hero AO, Carin L, Woods CW, Ginsburg GS. A host-based RT-PCR gene expression signature to identify acute respiratory viral infection. Sci Transl Med. 2013;5:203ra126. doi: 10.1126/scitranslmed.3006280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Kettler H, White K, Hawkes S. Mapping the landscape of diagnostics for sexually transmitted infections. Geneva, Switzerland: World Health Organization and TDR; 2004. [Google Scholar]
- 146.Mabey D, Peeling RW, Ustianowski A, Perkins MD. Tropical infectious diseases: diagnostics for the developing world. Nat Rev Microbiol. 2004;2:231–240. doi: 10.1038/nrmicro841. [DOI] [PubMed] [Google Scholar]
- 147.Peeling RW, Holmes KK, Mabey D, Ronald A. Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect. 2006;82:v1–v6. doi: 10.1136/sti.2006.024265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Ketema F, Zeh C, Edelman DC, Saville R, Constantine NT. Assessment of the performance of a rapid, lateral flow assay for the detection of antibodies to HIV. J Acquir Immune Defic Syndr. 2001;27:63–70. doi: 10.1097/00126334-200105010-00011. [DOI] [PubMed] [Google Scholar]
- 149.Jarvis JN, Percival A, Bauman S, Pelfrey J, Meintjes G, Williams GN, Longley N, Harrison TS, Kozel TR. Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis. 2011;53:1019–1023. doi: 10.1093/cid/cir613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Wilson ML. Malaria rapid diagnostic tests. Clin Infect Dis. 2012;54:1637–1641. doi: 10.1093/cid/cis228. [DOI] [PubMed] [Google Scholar]
- 151.Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13:2210–2251. doi: 10.1039/c3lc50169h. [DOI] [PubMed] [Google Scholar]
- 152.Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, Wong VL, Pohlmann RA, Ryan US, Whitesides GM. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med. 2012;4:152ra129. doi: 10.1126/scitranslmed.3003981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Gan W, Zhuang B, Zhang P, Han J, Li C-X, Liu P. A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types. Lab Chip. 2014;14:3719–3728. doi: 10.1039/c4lc00686k. [DOI] [PubMed] [Google Scholar]
- 154.Rodriguez NM, Linnes JC, Fan A, Ellenson CK, Pollock NR, Klapperich CM. Paper-based RNA extraction, in situ isothermal amplification, and lateral flow detection for low-cost, rapid diagnosis of Influenza A (H1N1) from clinical specimens. Anal Chem. 2015;87:7872–7879. doi: 10.1021/acs.analchem.5b01594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Connelly JT, Rolland JP, Whitesides GM. “Paper Machine” for molecular diagnostics. Anal Chem. 2015;87:7595–7601. doi: 10.1021/acs.analchem.5b00411. [DOI] [PubMed] [Google Scholar]
- 156.Houssin T, Cramer J, Grojsman R, Bellahsene L, Colas G, Moulet H, Minnella W, Pannetier C, Leberre M, Plecis A, Chen Y. Ultrafast, sensitive and large-volume on-chip real-time PCR for the molecular diagnosis of bacterial and viral infections. Lab Chip. 2016;16:1401–1411. doi: 10.1039/c5lc01459j. [DOI] [PubMed] [Google Scholar]
- 157.Son JH, Cho B, Hong S, Lee SH, Hoxha O, Haack AJ, Lee LP. Ultrafast photonic PCR. Light Sci Appl. 2015;4:e280. [Google Scholar]
- 158.Wilson NO, Adjei AA, Anderson W, Baidoo S, Stiles JK. Detection of Plasmodium falciparum histidine-rich protein II in saliva of malaria patients. Am J Trop Med Hyg. 2008;78:733–735. [PMC free article] [PubMed] [Google Scholar]
- 159.Korhonen EM, Huhtamo E, Virtala AM, Kantele A, Vapalahti O. Approach to non-invasive sampling in dengue diagnostics: exploring virus and NS1 antigen detection in saliva and urine of travelers with dengue. J Clin Virol. 2014;61:353–358. doi: 10.1016/j.jcv.2014.08.021. [DOI] [PubMed] [Google Scholar]
- 160.Nie S, Benito-Pena E, Zhang H, Wu Y, Walt DR. Multiplexed salivary protein profiling for patients with respiratory diseases using fiber-optic bundles and fluorescent antibody-based microarrays. Anal Chem. 2013;85:9272–9280. doi: 10.1021/ac4019523. [DOI] [PMC free article] [PubMed] [Google Scholar]