Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1967 Jan;15(1):152–157. doi: 10.1128/am.15.1.152-157.1967

Metabolism of Glycine by Rumen Microorganisms

D E Wright 1,1, R E Hungate 1
PMCID: PMC546861  PMID: 6067730

Abstract

Rumen microorganisms rapidly metabolized glycine at rates varying from 0.014 to 0.241 μmole of glycine per ml per min. The main metabolic products were carbon dioxide, acetic acid, and ammonia; little glycine was incorporated into bacterial protein. Use of carboxyl or methylene-labeled glycine showed that the carbon dioxide came mainly from the carboxyl of glycine, whereas both carbons of acetic acid were derived partly from the methylene carbon of glycine and partly from carbon dioxide. The ratio of carbon-14 to nitrogen-15 in glycine isolated from the protein of rumen bacteria incubated in the presence of N15- and C14-labeled glycine indicated that most of the extracellular glycine incorporated into protein was incorporated without intervening deamination.

Full text

PDF
152

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANNISON E. F. Nitrogen metabolism in the sheep; protein digestion in the rumen. Biochem J. 1956 Dec;64(4):705–714. doi: 10.1042/bj0640705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BUEDING E., YALE H. W. Production of alpha-methylbutyric acid by bacteria-free Ascaris lumbricoides. J Biol Chem. 1951 Nov;193(1):411–423. [PubMed] [Google Scholar]
  3. CHALMERS M. I., SYNGE R. L. The digestion of protein and nitrogenous compounds in ruminants. Adv Protein Chem. 1954;9:93–120. doi: 10.1016/s0065-3233(08)60205-3. [DOI] [PubMed] [Google Scholar]
  4. DEHORITY B. A., JOHNSON R. R., BENTLEY O. G., MOXON A. L. Studies on the metabolism of valine, proline, leucine and isoleucine by rumen microorganisms in vitro. Arch Biochem Biophys. 1958 Nov;78(1):15–27. doi: 10.1016/0003-9861(58)90310-2. [DOI] [PubMed] [Google Scholar]
  5. EL-SHAZLY K. Degradation of protein in the rumen of the sheep. II. The action of rumen micro-organisms on amino acids. Biochem J. 1952 Aug;51(5):647–653. doi: 10.1042/bj0510647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LEWIS D. Amino-acid metabolism in the rumen of the sheep. Br J Nutr. 1955;9(3):215–230. doi: 10.1079/bjn19550035. [DOI] [PubMed] [Google Scholar]
  7. MARTIN J. K., BATT R. D. Oxidation of propionic acid by Nocardia corallina. J Bacteriol. 1957 Sep;74(3):359–364. doi: 10.1128/jb.74.3.359-364.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MATHESON N. A. An improved method of separating amino acids as N-2,4-dinitrophenyl derivatives. Biochem J. 1963 Jul;88:146–151. doi: 10.1042/bj0880146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PHILLIPSON A. T., DOBSON M. J., BLACKBURN T. H., BROWN M. The assimilation of ammonia nitrogen by bacteria of the rumen of sheep. Br J Nutr. 1962;16:151–166. doi: 10.1079/bjn19620016. [DOI] [PubMed] [Google Scholar]
  10. Portugal A. V., Sutherland T. M. Metabolism of glutamic and aspartic acids in whole rumen contents. Nature. 1966 Jan 29;209(5022):510–511. doi: 10.1038/209510a0. [DOI] [PubMed] [Google Scholar]
  11. WRIGHT D. E. The metabolism of carbon dioxide by Streptococcus bovis. J Gen Microbiol. 1960 Jun;22:713–725. doi: 10.1099/00221287-22-3-713. [DOI] [PubMed] [Google Scholar]
  12. Wright D. E., Hungate R. E. Amino acid concentrations in rumen fluid. Appl Microbiol. 1967 Jan;15(1):148–151. doi: 10.1128/am.15.1.148-151.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES