Abstract
The effects of systemic PD134308 [0.1-3 mg/kg; an antagonist of the cholecystokinin (CCK) type B receptor], morphine, and intrathecal (i.t.) galanin (GAL) on the excitability of the spinal nociceptive flexor reflex and in the hot plate test were examined in rats. PD134308 caused a weak naloxone-reversible depression of the flexor reflex and a moderate antinociceptive effect in the hot plate test. However, PD134308 significantly potentiated the antinociceptive effect of morphine as well as its depressive effect on the flexor reflex. PD134308 and i.t. GAL synergistically depressed the flexor reflex, an effect that was reversed by naloxone. Finally, the magnitude and duration of the depression of the flexor reflex by morphine were synergistically increased by coadministering PD134308 and GAL i.t. The results demonstrated that a CCK antagonist directed to the central CCK type B receptor potentiates the analgesic effects of opioids and nonopioid drugs at the spinal level, thus supporting the notion that CCK in the central nervous system may be an endogenous, physiological opioid antagonist.
Full text
PDF![7105](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b34/54692/cc6871dec9e1/pnas01043-0186.png)
![7106](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b34/54692/141aa8d55646/pnas01043-0187.png)
![7107](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b34/54692/79f84bf2906a/pnas01043-0188.png)
![7108](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b34/54692/6dee18f544ad/pnas01043-0189.png)
![7109](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b34/54692/21ba24ae9df7/pnas01043-0190.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baber N. S., Dourish C. T., Hill D. R. The role of CCK caerulein, and CCK antagonists in nociception. Pain. 1989 Dec;39(3):307–328. doi: 10.1016/0304-3959(89)90045-6. [DOI] [PubMed] [Google Scholar]
- Dockray G. J. Cholecystokinins in rat cerebral cortex: identification, purification and characterization by immunochemical methods. Brain Res. 1980 Apr 21;188(1):155–165. doi: 10.1016/0006-8993(80)90564-8. [DOI] [PubMed] [Google Scholar]
- Dourish C. T., Hawley D., Iversen S. D. Enhancement of morphine analgesia and prevention of morphine tolerance in the rat by the cholecystokinin antagonist L-364,718. Eur J Pharmacol. 1988 Mar 15;147(3):469–472. doi: 10.1016/0014-2999(88)90183-5. [DOI] [PubMed] [Google Scholar]
- Dourish C. T., O'Neill M. F., Coughlan J., Kitchener S. J., Hawley D., Iversen S. D. The selective CCK-B receptor antagonist L-365,260 enhances morphine analgesia and prevents morphine tolerance in the rat. Eur J Pharmacol. 1990 Jan 25;176(1):35–44. doi: 10.1016/0014-2999(90)90129-t. [DOI] [PubMed] [Google Scholar]
- Faris P. L., Komisaruk B. R., Watkins L. R., Mayer D. J. Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science. 1983 Jan 21;219(4582):310–312. doi: 10.1126/science.6294831. [DOI] [PubMed] [Google Scholar]
- Fuji K., Senba E., Fujii S., Nomura I., Wu J. Y., Ueda Y., Tohyama M. Distribution, ontogeny and projections of cholecystokinin-8, vasoactive intestinal polypeptide and gamma-aminobutyrate-containing neuron systems in the rat spinal cord: an immunohistochemical analysis. Neuroscience. 1985 Mar;14(3):881–894. doi: 10.1016/0306-4522(85)90151-4. [DOI] [PubMed] [Google Scholar]
- Han J. S., Ding X. Z., Fan S. G. Is cholecystokinin octapeptide (CCK-8) a candidate for endogenous anti-opioid substrates? Neuropeptides. 1985 Feb;5(4-6):399–402. doi: 10.1016/0143-4179(85)90038-1. [DOI] [PubMed] [Google Scholar]
- Hill R. G., Hughes J., Pittaway K. M. Antinociceptive action of cholecystokinin octapeptide (CCK 8) and related peptides in rats and mice: effects of naloxone and peptidase inhibitors. Neuropharmacology. 1987 Apr;26(4):289–300. doi: 10.1016/0028-3908(87)90180-8. [DOI] [PubMed] [Google Scholar]
- Hughes J., Boden P., Costall B., Domeney A., Kelly E., Horwell D. C., Hunter J. C., Pinnock R. D., Woodruff G. N. Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6728–6732. doi: 10.1073/pnas.87.17.6728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hökfelt T., Herrera-Marschitz M., Seroogy K., Ju G., Staines W. A., Holets V., Schalling M., Ungerstedt U., Post C., Rehfeld J. F. Immunohistochemical studies on cholecystokinin (CCK)-immunoreactive neurons in the rat using sequence specific antisera and with special reference to the caudate nucleus and primary sensory neurons. J Chem Neuroanat. 1988 Jan-Feb;1(1):11–51. [PubMed] [Google Scholar]
- Hökfelt T., Skirboll L., Everitt B., Meister B., Brownstein M., Jacobs T., Faden A., Kuga S., Goldstein M., Markstein R. Distribution of cholecystokinin-like immunoreactivity in the nervous system. Co-existence with classical neurotransmitters and other neuropeptides. Ann N Y Acad Sci. 1985;448:255–274. doi: 10.1111/j.1749-6632.1985.tb29922.x. [DOI] [PubMed] [Google Scholar]
- Innis R. B., Snyder S. H. Distinct cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6917–6921. doi: 10.1073/pnas.77.11.6917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh S., Katsuura G., Maeda Y. Caerulein and cholecystokinin suppress beta-endorphin-induced analgesia in the rat. Eur J Pharmacol. 1982 Jun 4;80(4):421–425. doi: 10.1016/0014-2999(82)90089-9. [DOI] [PubMed] [Google Scholar]
- Jeftinija S., Miletić V., Randić M. Cholecystokinin octapeptide excites dorsal horn neurons both in vivo and in vitro. Brain Res. 1981 May 25;213(1):231–236. doi: 10.1016/0006-8993(81)91268-3. [DOI] [PubMed] [Google Scholar]
- Katsuura G., Itoh S. Potentiation of beta-endorphin effects by proglumide in rats. Eur J Pharmacol. 1985 Jan 8;107(3):363–366. doi: 10.1016/0014-2999(85)90263-8. [DOI] [PubMed] [Google Scholar]
- Moran T. H., Robinson P. H., Goldrich M. S., McHugh P. R. Two brain cholecystokinin receptors: implications for behavioral actions. Brain Res. 1986 Jan 1;362(1):175–179. doi: 10.1016/0006-8993(86)91413-7. [DOI] [PubMed] [Google Scholar]
- Mutt V., Jorpes J. E. Structure of porcine cholecystokinin-pancreozymin. 1. Cleavage with thrombin and with trypsin. Eur J Biochem. 1968 Oct 17;6(1):156–162. doi: 10.1111/j.1432-1033.1968.tb00433.x. [DOI] [PubMed] [Google Scholar]
- Rehfeld J. F. Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem. 1978 Jun 10;253(11):4022–4030. [PubMed] [Google Scholar]
- Rogawski M. A., Beinfeld M. C., Hays S. E., Hökfelt T., Skirboll L. R. Cholecystokinin and cultured spinal neurons. Immunohistochemistry, receptor binding, and neurophysiology. Ann N Y Acad Sci. 1985;448:403–412. doi: 10.1111/j.1749-6632.1985.tb29934.x. [DOI] [PubMed] [Google Scholar]
- Skirboll L., Hökfelt T., Dockray G., Rehfeld J., Brownstein M., Cuello A. C. Evidence for periaqueductal cholecystokinin-substance P neurons projecting to the spinal cord. J Neurosci. 1983 Jun;3(6):1151–1157. doi: 10.1523/JNEUROSCI.03-06-01151.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tatemoto K., Rökaeus A., Jörnvall H., McDonald T. J., Mutt V. Galanin - a novel biologically active peptide from porcine intestine. FEBS Lett. 1983 Nov 28;164(1):124–128. doi: 10.1016/0014-5793(83)80033-7. [DOI] [PubMed] [Google Scholar]
- Vanderhaeghen J. J., Signeau J. C., Gepts W. New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature. 1975 Oct 16;257(5527):604–605. doi: 10.1038/257604a0. [DOI] [PubMed] [Google Scholar]
- Wall P. D., Woolf C. J. Muscle but not cutaneous C-afferent input produces prolonged increases in the excitability of the flexion reflex in the rat. J Physiol. 1984 Nov;356:443–458. doi: 10.1113/jphysiol.1984.sp015475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watkins L. R., Kinscheck I. B., Mayer D. J. Potentiation of morphine analgesia by the cholecystokinin antagonist proglumide. Brain Res. 1985 Feb 18;327(1-2):169–180. doi: 10.1016/0006-8993(85)91511-2. [DOI] [PubMed] [Google Scholar]
- Watkins L. R., Kinscheck I. B., Mayer D. J. Potentiation of opiate analgesia and apparent reversal of morphine tolerance by proglumide. Science. 1984 Apr 27;224(4647):395–396. doi: 10.1126/science.6546809. [DOI] [PubMed] [Google Scholar]
- Wiesenfeld-Hallin Z., Duranti R. Intrathecal cholecystokinin interacts with morphine but not substance P in modulating the nociceptive flexion reflex in the rat. Peptides. 1987 Jan-Feb;8(1):153–158. doi: 10.1016/0196-9781(87)90179-3. [DOI] [PubMed] [Google Scholar]
- Wiesenfeld-Hallin Z., Villar M. J., Hökfelt T. The effects of intrathecal galanin and C-fiber stimulation on the flexor reflex in the rat. Brain Res. 1989 May 8;486(2):205–213. doi: 10.1016/0006-8993(89)90506-4. [DOI] [PubMed] [Google Scholar]
- Wiesenfeld-Hallin Z., Xu X. J., Villar M. J., Hökfelt T. Intrathecal galanin potentiates the spinal analgesic effect of morphine: electrophysiological and behavioural studies. Neurosci Lett. 1990 Feb 5;109(1-2):217–221. doi: 10.1016/0304-3940(90)90566-r. [DOI] [PubMed] [Google Scholar]
- Zetler G. Analgesia and ptosis caused by caerulein and cholecystokinin octapeptide (CCK-8). Neuropharmacology. 1980 May;19(5):415–422. doi: 10.1016/0028-3908(80)90047-7. [DOI] [PubMed] [Google Scholar]