Skip to main content
Frontiers in Microbiology logoLink to Frontiers in Microbiology
. 2017 Jun 15;8:1106. doi: 10.3389/fmicb.2017.01106

Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds

Dipesh Dhakal 1, Anaya Raj Pokhrel 1, Biplav Shrestha 1, Jae Kyung Sohng 1,2,*
PMCID: PMC5471306  PMID: 28663748

Abstract

Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications.

Keywords: marine rare actinobacteria, bacterial characterization, bioactive compounds, metagenomics, host engineering

Introduction

Actinobacteria are Gram-positive bacteria with high GC contents in DNA. They have characteristics presence of intracellular proteasomes, and spores if present are exospores (Cavalier-Smith, 2002). The order Actinomycetales under phylum Actinobacteria includes major producer strains of diverse bioactive compounds. Actinomycetales includes 11 suborders viz. Actinomycineae, Actinopolysporineae, Catenulisporineae, Corynebacterineae, Glycomycineae, Jiangellineae, Micromonosporineae, Propionibacterineae, Pseudonocardineae, Streptomycineae, and Streptosporangineae (http://www.bacterio.net/-classifphyla.html). The genus Streptomyces under sub-order Streptomycineae have been characterized as most important producer of bioactive microbial metabolites (Berdy, 2005). Recently, previously underexplored genera are reported as important resources of diverse bioactive metabolites (Tiwari and Gupta, 2013). These so called rare-actinobacteria are commonly categorized as strains other than Streptomyces (Berdy, 2005) or actinobacteria strains with less frequency of isolation under normal parameters (Lazzarini et al., 2001; Baltz, 2006).

The un-explored and under-explored habitats including marine ecosystems are believed to be rich sources of such rare actinobacteria, with tremendous potential to produce interestingly new compounds (Hong et al., 2009). These marine actinobacteria with potential of producing bioactive compounds have attracted major attention to search for unique compounds with pharmaceutical and biotechnological applications (Bull and Stach, 2007; Subramani and Aalbersberg, 2013; Azman et al., 2015). Recently, there are reports on the discovery of rare actinobacteria from wide range of terrestrial and aquatic locations, including deep seas (Goodfellow et al., 2012). Reports on the analysis of geographical origins of the marine rare actinobacteria, with special focus on the isolation of specific compounds, and precise bioactivities are predominant indications of increasing global interest on the natural compounds from marine rare actinobacteria (Blunt et al., 2007).

Isolation and characterization of marine rare actinobacteria

Generally, for uncovering the marine rare actinobacteria, isolation efforts have been focused on rare locations as deep-sea sediments to obtain new marine diversities (Fenical and Jensen, 2006). The specialized sampling techniques using sophisticated equipment (Fenical and Jensen, 2006), remotely operated vehicles (Pathom-Aree et al., 2006) and even human (Bredholdt et al., 2007), have provided easy access to unprecedented microbial diversity. However, marine rare actinobacteria are usually difficult to culture compared to their terrestrial counterparts mostly due to their special growth requirements (Zotchev, 2012) or unknown culture conditions. It has been observed that hardly <2% of bacterial cells can form colonies by conventional plate cultivation. A large number of them belong to “viable but not culturable” (VBNC) strains (Bernard et al., 2000). Recently, strategies such as mimicking the natural environment in terms of pH, oxygen gradient, nutrient compositions, etc is employed. With these improvements, some previously VBNC species can now be grown with more efficiency (Kaeberlein et al., 2002; Zengler et al., 2002; Vartoukian et al., 2010; Stewart, 2012).

Moreover, the laborious microscopic techniques are being replaced with techniques utilizing recent advances in genomics, proteomics, and bioinformatics for identification and characterization of microbial diversity in robust manner (Rastogi and Sani, 2011). The genomic analysis by genetic fingerprinting (Nübel et al., 1999), DNA-DNA hybridization techniques (Pinhassi et al., 1997), and the construction of metagenomic library and sequencing (Kisand et al., 2012) have been employed for identifying and characterizing the diversity within marine samples. The development of next generation sequencing (NGS) (Webster et al., 2010) and nanopore sequencing (Deamer et al., 2016) has made the process robust and less time consuming. The analysis of RNA expression and regulation using metatranscriptomics (Ogura et al., 2011) or determination of protein profile by metaproteomics (Slattery et al., 2012) can be directly linked to available genome in the database. The coupled metagenomics and metatranscriptomic analysis was successfully used for determining the microbial communities in deep sea water of the North Pacific Ocean (Wu J. et al., 2013). Thus, the combination of both culture dependent (grow and isolate) and culture independent (analysis of nucleic acids and proteins) approaches have revolutionized the characterization and isolation of diverse marine organisms including rare actinobacteria (Hirayama et al., 2007; Zeng et al., 2012).

Discovery of bioactive compounds from marine rare actinobacteria

Actinobacteria including Streptomyces contribute for approximately half of the characterized bioactive compounds up to date (Berdy, 2005). However, the chances of discovery of novel bioactive molecules from Streptomyces has significantly declined (Fenical et al., 1999), presumably due to easy chances of genetic exchange between species during evolution (Freel et al., 2011). Therefore, special attention is given to isolation, screening, and culturing of rare actinobacteria from rare environmental locations as marine sources. The list below summarizes some of the representative compounds isolated from diverse marine rare actinobacteria during last 10 years (Table 1A).

Table 1.

Overview of achievements in study of bioactive molecules derived from marine rare actinobacteria.

A. Examples of bioactive compounds isolated from various marine rare actinobacteria
Compound name Isolation source Bacterial source Biological activities References
INDEPENDENT ISOLATES
Pseudonocardians Deep-sea sediment of South China Sea Pseudonocardia sp. SCSIO 01299 Antibacterial and cytotoxic Li et al., 2011
Caerulomycins Marine sediments from the seashore of Weihai, China Actinoalloteichus cyanogriseus WH1-2216-6 Cytotoxic, antibacterial Fu et al., 2011
Marinacarbolines, Marine sediment sample from South China Sea Marinactinospora thermotolerans SCSIO 00652 Antimalarial Huang et al., 2011
Salinosporamides (Commercial name Marizomib) Deep sea-water of Bahamas Islands, Bahamas Salinispora tropica (strain CNB-392) Cytotoxic Feling et al., 2003; Williams et al., 2005
Abyssomicins Sediment sample from the Sea of Japan, Japan Verrucosispora sp. AB-18-032 Antibacterial Bister et al., 2004; Riedlinger et al., 2004
Marinomycins Sediment sample offshore of La Jolla, USA Marinispora strain CNQ-140 Cytotoxic Kwon et al., 2006
Levantilides Deep-sea sediment Eastern Mediterranean Sea Micromonospora M71-A77 Cytotoxic Gärtner et al., 2011
Salinoquinones Deep sea-water of Bahamas Islands, Bahamas Salinispora arenicola CNS-325. Cytotoxic Murphy et al., 2010
Neomaclafungin Marine sediment from Usa bay, Kochi Prefecture, Japan. Actinoalloteichus sp. NPS702 Antifungal Sato et al., 2012
Marthiapeptide A Deep-sea sediment of the South China Sea Marinactinospora thermotolerans SCSIO 00652 Antibacterial, Cytotoxic Zhou et al., 2012
Lucentamycins Sediment sample from Bahamas island, Bahamas Nocardiopsis lucentensis (strain CNR-712) Cytotoxic Cho et al., 2007
Juvenimicin C Sediment collected off the coast of Palau, USA Micromonospora sp (CNJ-878) Cancer chemo preventive Carlson et al., 2013
Levantilide C Shallow coastal waters near the island of Chiloe, Chile. Micromonospora strain FIM07-0019 Antiproliferative Fei et al., 2013
Nocapyrones Sediment sample, Ulleung Basin, Eastern sea, Korea Nocardiopsis sp. Reduced the pro-inflammatory factor Kim et al., 2013
Nocardiamides Sediment sample from La Jolla Canyon, San Diego, California, USA. Nocardiopsis sp. CNX037 Low antibacterial activity Wu Z. C. et al., 2013
Cyanogramides Marine sediments from the seashore of Weihai, China Actinoalloteichus cyanogriseus WH1-2216-6 Multidrug-resistance (MDR) reversing activity Fu et al., 2014
Taromycin Marine sediment sample from La Jolla Submarine Canyon, San Diego, California, USA. Saccharomonospora sp. CNQ-490 Antibacterial Yamanaka et al., 2014
Lodopyridone Marine sediment sample from La Jolla Submarine Canyon, San Diego, California, USA. Saccharomonospora CNQ490 Modest cytotoxic activity Maloney et al., 2009
Lynamicins Marine sediment off the coast of San Diego, California, USA Marinispora NPS12745 Antibacterial McArthur et al., 2008
Saccharothrixones Sediment sample from Heishijiao Bay, Dalian, China Saccharothrix sp. 10-10 Cytotoxic Gan et al., 2015
Saliniketals Sediment sample from Island of Guam, USA Salinispora arenicola CNR-005 Prevention of carcinogenesis Williams et al., 2007a
Arenicolides Sediment sample from Island of Guam, USA Salinispora arenicola CNR-005 Moderate cytotoxicity Williams et al., 2007b
Lagumycin B, Dehydrorabelomycin, Phenanthroviridone, WS-5995 A Sediment sample from Cát Bà Peninsula, East Sea Vietnam Micromonospora sp. Cytotoxic Mullowney et al., 2015
Dermacozines, Phenazine derivatives Sediment sample from Mariana Trench Dermacoccus abyssi sp. nov., strains MT1.1 and MT1.2 Cytotoxic and anti-oxidant Abdel-Mageed et al., 2010
Fijiolides Sediment sample from the Beqa Lagoon, Fiji Nocardiopsis CNS-653 Inhibitor of TNF-α-induced NFκB activation Nam et al., 2010
Fluostatin Sediment sample from South China Sea Micromonospora rosaria SCSIO N160 Antimicrobial Zhang et al., 2012
Retimycin Deep sea-water of Bahamas Islands, Bahamas S. arenicola strain CNT-005. Cytotoxic Duncan et al., 2015
Sioxanthin Deep sea-water of Bahamas Islands, Bahamas Salinispora tropica CNB-440 Siderophore Richter et al., 2015
Lobosamides Sediment sample from Point Lobos, Monterey Bay, California, USA. Micromonospora sp. RL09-050-HVF-A Antitryposomal Schulze et al., 2015a
Salinipostins Sediment sample from Keawekaheka Bay, Hawai, USA Salinispora sp. RL08-036-SPS-B Antimalarial Schulze et al., 2015b
Isomethoxyneihumicin Sediment sample at Chichijima, Ogasawara, Japan Nocardiopsis alba KM6-1 Cytotoxic Fukuda et al., 2016
Nocarimidazoles Sediment sample off the coast of southern California, USA Nocardiopsis sp. CNQ115 Weak antibacterila Leutou et al., 2015
Cyclomarine Cyclomarazine Marine sediment from Palau, Republic of Palau S. arenicola CNS-205 Anti-inflammatory Schultz et al., 2008
ISOLATES IN SYMBIOTIC ASSOCIATION
JBIR-65 Symbiont to unidentified marine sponge from Ishigaki Island, Okinawa Prefecture, Japan Actinomadura sp. SpB081030SC-15 Anti-oxidant Takagi et al., 2010
Nocapyrones Symbiont to sponge Halichondria panacea from Baltic Sea, Germany Nocardiopsis sp. HB383 Weak cytotoxic Schneemann et al., 2010
Arenjimycin Symbiont to ascidian Ecteinascidia Salinispora arenicola Antimicrobial and ytotoxic Asolkar et al., 2010
Turbinate from Sweetings Cay, Grand Bahama Island, USA
Bendigoles Symbiont to sponge Suberites japonicas from unspecified source Alctinomadura sp. SBMs009 Antimicrobial and cytotoxic Simmons et al., 2011
Thiocoraline Symbiont to sponge Chondrilla caribensis from Florida Keys, USA Verrucosispora sp. Cytotoxic Wyche et al., 2011
Peptidolipins Symbiont to ascidian Trididemnum orbiculatum from Florida Keys, USA Nocardia sp. Antibacterial Wyche et al., 2012
Anthracyclinones Symbiont to tunicate Eudistoma vannamei from Taìba Beach, Ceará, Brazil Micromonospora sp. Cytotoxic Sousa et al., 2012
Halomadurone Symbiont to ascidian Ecteinascidia turbinata, from Florida Keys, USA Actinomadura sp. Active against neurodegenerative diseases Wyche et al., 2013
Solwaric acids Symbiont to ascidian, Trididemnum orbiculatum from Florida Keys, USA Solwaraspora sp. Antibacterial Ellis et al., 2014
Forazoline A Symbiont to ascidian, Ecteinascidia turbinate from Florida Keys Actinomadura sp. WMMB-499 Antifungal Wyche et al., 2014
Rifamycins Symbiont to sponge, Pseudoceratina clavata. From Great Barrier Reef, Australia Salinispora sp. strain M403 Antibacterial Kim et al., 2006
Saccharothrixmicines Symbiont to marine mollusk Anadara broughtoni from Sea of Japan Saccharothrix espanaensis An 113 Antibacterial, Antifungal Kalinovskaya et al., 2010
B. Approaches used for production and structural/functional diversification of bioactive compounds derived from marine rare actinobacteria
Compound name Genus Particulars Biological activity References
Retimycin Salinospora MS/MS spectrum pattern based genome mining Cytotoxic, Antibacterial Duncan et al., 2015
Thiolactomycin Salinospora Antibiotic resistance gene based genome mining, heterologous expression Bacterial fatty acid synthase inhibitor Tang et al., 2015
Lomaiviticin Salinospora Bioactivity guided genome mining Cytotoxic Kersten et al., 2013
Salinosporamide K Salinospora Genome mining, metabolomics and transcriptomics Cytotoxic Eustáquio et al., 2011
Taromycin Saccharomonospora BCG Genome mining, heterologous expression Antibacterial Yamanaka et al., 2014
Enterocin Salinispora BCG Genome mining, heterologous expression Antibacterial Bonet et al., 2014
Fluostatins Micromonospora Heterologous expression Antibacterial Yang et al., 2015
Thiocoraline Micromonospora Heterologous expression Cytotoxic Lombó et al., 2006
Bromosalinosporamide Salinospora Precursor directed biosynthesis Cytotoxic Lam et al., 2007
Salinosporamide A Salinospora Precursor pathway modulation Cytotoxic Lechner et al., 2011
Salinosporamide X1, Salinosporamide X2 Salinospora Combinatorial biosynthesis Cytotoxic McGlinchey et al., 2008
Salinosporamide X3 Salinospora Mutasynthesis Cytotoxic Nett et al., 2009
Salinosporamide X4
Salinosporamide X5
Salinosporamide X6
Salinosporamide X7
Fluorosalinosporamide Salinospora Mutasynthesis Cytotoxic Eustáquio and Moore, 2008
Salinosporamides analogs Salinospora Chemobiosynthesis Cytotoxic Liu et al., 2009
Salinosporamide A Salinospora Total chemical synthesis Cytotoxic Reddy et al., 2004; Endo and Danishefsky, 2005; Kaiya et al., 2011; Logan et al., 2014
Homosalinosporamide Salinospora Total chemical synthesis Cytotoxic Nguyen et al., 2010
Salinosporamides analogs Salinospora Chemobiosynthesis Cytotoxic Liu et al., 2009
Salinosporamide E Salinospora Semi-synthesis Cytotoxic Macherla et al., 2005
Bromosalinospramide
Iodosalinosporamide, Azidosalinosporamide, Hydroxysalinosporamide
Methylsalinosporamide Salinospora Semi-synthesis Cytotoxic Manam et al., 2008
Tosylsalinosporamide
Dansylsalinosporamide
Hydroxysalinosporamide
Flurosalinosporamide

Reinvigorating natural product discovery from marine rare actinobacteria

Though isolation and cultivation of marine rare actinobacteria is difficult, the development of novel and facile bacterial cultivation platforms such as hollow-fiber membrane chamber (HFMC) and iChip for in situ cultivation of previously unculturable microbial species have expanded the scope of natural product discovery (Aoi et al., 2009; Nichols et al., 2010). By utilizing rationally designed iChip platform, Ling et al. (2015) has successfully isolated previously uncultivable soil bacteria Eleftheria terrae and characterized its bioactive molecule (Ling et al., 2015).

It is assumed that strain divergence (phylogenetic or ecological) can have great impact on metabolism and biosynthetic pathway and result in novel chemistry and bioactivities, so research is focused on previously unexplored strains (Monciardini et al., 2014). However, it is unrealistic to assume that every unexplored strain can provide bioactive compounds (Donadio et al., 2010). Hence, systematic approaches need to be employed for utilizing the true potential of natural products from marine rare actinobacteria. Some of the key foundations can be categorized as:

  1. Identification of target strains/molecules,

  2. Systematic enrichment of production,

  3. Explicit modification for functional/structural diversity.

  1. Identification of target strains/molecules

    The accessible diversity of useful microbial molecules have almost been exhausted by traditional approaches, hence it is speculated that unstudied marine rare actinobacteria can provide reservoir of new microbial molecules (Schorn et al., 2016). Recently, direct connection of genomic information to biomolecule can be attained in culture independent approach as introducing environment (eDNA) into a suitable expression host (metagenomic libraries) (Handelsman, 2004). But, compound rediscovery due to similar strain replications is a major limitation of this approach. To maximize the capacity to mine metagenomes for attaining biomolecules with novel activities, there is requisite for parallel developments in techniques for bioactivity screening, isolation and separation methods, and analytical chemistry (Trindade et al., 2015). Robust techniques for analytical characterization of compounds (Figure 1A) based on UV absorbance, high pressure liquid chromatography (HPLC), mass spectrometry, and nuclear magnetic resonance (NMR) analysis can be used to scrutinize the discovery of new compounds (Liu et al., 2012). The techniques utilizing coupling of biochemical analytical methods with genome information such as, in glycogenomics (Kersten et al., 2013), peptidogenomics (Medema et al., 2014), and metabolomics (Maansson et al., 2016) are recent advances facilitating easy access to diverse biomolecules. The results of such analytical analysis can be subsequently compared against databases repositories, such as MarinLit, ChemSpider, Pubchem, etc., to avoid already known compounds (Forner et al., 2013). Hence, robust analytical facilities and comparison with reference databases can assist on characterization of diverse chemical structures.

    The prime focus in drug discovery is identification of new bioactive chemical or discovery of previously unreported biological activity with known chemical structure. High throughput screening (HTS) can provide easy means for evaluating desired bioactivities against an array natural products (Monciardini et al., 2014). The robust screening strategies ranging from the classic whole cell assays to more sophisticated antisense based assay have been reviewed elsewhere (Silver and Bostian, 1990; Singh et al., 2011; Farha and Brown, 2016). Recently, the integrative approach of metabolite profiling, bioactivity studies and taxonomic studies have been utilized for characterizing different marine actinobacteria and biological properties of metabolites produced by them (Betancur et al., 2017). Such integrative approaches can be fascinating tool for directly assessing bioactivities at preliminary stages of study.

    The next focus in drug discovery is understanding the biogenesis of bioactive molecule in producer strains. The rapid development of genome sequencing methods has revolutionized such studies by unveiling information about the whole genome architecture (Figure 1B). The challenge now is mining the data and connect the predicted biosynthetic gene clusters (BGC) to bioactive molecules. A plethora of in silico tools are available for determining the nature of gene clusters (Weber and Kim, 2016). The classic genome mining approach (focusing on unique biosynthetic enzyme) has transitioned to the concept of comparative genome mining (complete BGC to next BGC comparison) and culture independent-metagenome mining (Ziemert et al., 2016). Due to its efficacy in studying BGCs, the genome mining concept has been expanded to different marine rare actinobacteria for getting insight on biosynthesis mechanisms of different secondary metabolites. The analysis of genome sequence of Micromonospora sp. RV43, Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 isolated from Mediterranean sponges revealed presence of numerous gene clusters of different secondary metabolites (Horn et al., 2015). The 5.2 Mb genome of marine rare actinobacteria, Salinispora tropica CNB-440 (Udwary et al., 2007) was interpreted using bioinformatics revealing at least 19 novel secondary metabolite BCGs. Later, diverse compounds have been characterized from S. tropica, including anticancer agent salinosporamide A, lymphocyte kinase inhibitor lymphostin, DNA-cleaving agent calicheamicin, novel lysin-primed polyene macrolactam polyketide, and various siderophores (Kersten et al., 2013). Biosynthetic analysis of the draft genome of Saccharomonospora sp. CNQ490 has revealed 19 conspicuous BGC, indicating diverse secondary metabolic capacity (Yamanaka et al., 2014). Using precise bioinformatics tools, 75 genomes from closely related Salinospora species were compared and 124 distinct prominent BCGs were predicted which are far greater than known compound classes from these bacteria (Ziemert et al., 2014). Duncan et al. (2015) has simultaneously compared a large number of complex microbial extract in a large number of Salinispora species. This molecular networking was coupled with genome sequence data for comparative analysis of metabolite profile and BCG to develop pattern-based genome mining (PBGM) approach. Concurrently, a novel non-ribosomal peptide, retimycin A was isolated and characterized based on genome and metabolome analysis (Duncan et al., 2015). Therefore, genome mining approach has provided new avenues on discoursing novel natural products from marine rare actinobacteria.

  2. Systematic enrichment of production

    Generally, genome information is the starting point for pathway discovery. Various “omics” based tools have been employed for engineering pathways for secondary metabolite production in various actinobacteria (Chaudhary et al., 2013; Hwang et al., 2014). But the lack of full understanding of physiological transition stage for secondary metabolite production is a major consideration during manipulation of cellular processes using metabolic engineering (Licona-Cassani et al., 2015). Engineering primary metabolism for enhancing the pools of building blocks without compromising the growth is a major constraint in most metabolic engineering approaches (Olano et al., 2008). System biology protocols have been successfully used to study physiological parameters, leading to the discovery of the activation of NPs biosynthesis and manipulation of pathways (Licona-Cassani et al., 2015). Genome scale metabolic models are valuable for predicting organisms' phenotypes from genotypes basically by providing simulated mathematical prediction of cellular behavior under different genetic and physiological conditions (Henry et al., 2010; Ates et al., 2011). Community system biology approaches provide understanding about the complex relationship of individual members in a community and the modes of interactions they are engaged (Zengler and Palsson, 2012). The systematic application of systems biological approaches as metabolic network analysis coupled with pathway engineering or genetic engineering (Figure 2A) from a single strain to the larger community level can provide breakthrough in rational metabolic engineering approaches.

    Synthetic biology is particularly focused on precise design and construction of new biological systems (metabolic pathways or genetic circuits) that are not prevalent in nature (Andrianantoandro et al., 2006). Previously, efforts in synthetic biology have been largely focused on creating and perfecting genetic devices. But the current focus is directed to customizable larger scale system engineering by assembling devices or modular organizations (Purnick and Weiss, 2009). Most often, biologically valuable natural products are produced in lower titer or are cryptic under normal laboratory conditions, whereas many rare actinobacteria are not amenable to genetic manipulation. Hence, in such cases transferring natural products biosynthesis into well-developed heterologous host is a logical approach for producing parent NPs or generating novel analogs through biosynthetic engineering (Wenzel and Müller, 2005). Direct cloning and refactoring of previously silent lipopeptide gene cluster of Saccharomonospora sp. CNQ490 have been achieved by heterologous expression in Streptomyces coelicolor to yield taromycin A by Transformation Assisted Recombination (TAR)-based genetic platform (Yamanaka et al., 2014). Besides, tuning of metabolic pathway by altering promoters (Siegl et al., 2013; Wang et al., 2013), terminators (Pulido and Jimenez, 1987), and RBS (Bai et al., 2015) and/or host manipulation by genome engineering (Siegl and Luzhetskyy, 2012; Tong et al., 2015) are providing new avenues for systemic level metabolic engineering of actinobacteria. Promoter exchange (Horbal et al., 2012) and the use of exogenous principal sigma factor (σHrdB) (Wang et al., 2014) have been utilized for increasing teicoplanin in an industrial strain of Actinoplanes teichomyceticus. Approach for constructing genetic circuit or holistic host engineering (Figure 2B) can be an effective approach for designing and synthesizing unnatural but effective molecules from marine rare actinobacteria.

  3. Explicit modification for functional/structural diversity

    Fundamentally, engineering or modulating the precursor pathways can lead to enhancement or diversification of natural products (Dhakal et al., 2016). Combinatorial biosynthesis exploits the shuffling of anabolic pathways by precursor directed biosynthesis, enzyme level modulations, and pathway level recombination, leading to novel natural products (Sun et al., 2015; Winn et al., 2016). The precursor-directed in-situ synthesis (PDSS) has been successfully employed for generating new congeners of saccharothriolides from Saccharothrix sp. A1506 (Lu et al., 2016). Such type of precursor modulations can be manifested chemically or biologically to generate structural diversity in compounds from marine rare actinobacteria. Mutasynthesis is another variant of modulation of anabolic pathway by generating mutant strain deficient in key aspects of biosynthetic pathway and substituting natural precursor with analog of precursor to produce new natural products (Kennedy, 2008). Mutasynthesis couples the power of chemical synthesis with molecular biology to create diverse derivatives of medicinally valuable natural products (Weissman, 2007). One such example is the production of fluorinated analog fluorosalinosporamide. It has better proteasome inhibition and cytotoxic activity than naturally produced salinosporamides isolated from various Salinispora species (Feling et al., 2003). The halogenase gene salL in Salinispora tropica has been inactivated and 5′-fluoro-5′-deoxyadenosine, a fluorinated analog of its natural precursor 5′-chloro-5′-deoxyadenosine, has been used to generate fluorosalinosporamide by chemistry mediated mutasynthesis (Eustáquio and Moore, 2008). In another approach, salL was replaced by fluorinase gene flA from Streptomyces catteleya. The mutant strain salLflA+ produced fluorosalinosporamide in the presence of inorganic fluoride (Eustáquio et al., 2010). Moreover, combinatorial biosynthetic approach by feeding L-3-cyclohex-2′-enylalanine (CHA) residue in SalX disruption mutant of S. tropica enabled the generation of other unnatural salinosporamide derivatives such as salinosporamide X1 and salinosporamide X2, with lower activity (McGlinchey et al., 2008). But in another approach utilizing mutasynthetic approach with fine-tuned feeding of readily available amino acid precursors to SalX disruption mutant of S. tropica led to generation of many salinosporamide derivatives. Among them salinosporamide X7 exhibited equal to slightly improved cytotoxic potential than the natural counterpart (Nett et al., 2009). Hence, such approaches of precursor engineering, mutasynthesis, and combinatorial biosynthesis (Figure 3A, Table 1B) can be rationally utilized to diversify structure and perform structure-activity relationship studies of versatile molecules from various marine rare actinobacteria.

    The advent of combinatorial synthetic chemistry has created huge excitement in the pharmaceutical industry by generating libraries of millions of compounds which could be screened by HTS (Butler, 2004). The total synthesis of complex natural products offers greater potential for direct access to bioactive molecule from marine sources. However, large scale production of complex natural product remains elusive due to low yields and high cost (Yeung and Paterson, 2005). Recent achievement as total synthesis of natural products in absence of protecting groups can lead to development of superior molecules with greater flexibility (Young and Baran, 2009). The generation of microbial chemicals by total enzymatic synthesis has been used as alternative to total chemical synthesis (Cheng et al., 2007). There have been ample of examples illustrating improvement in physical and biological properties of natural products (including many marine natural products) by chemical modifications, semisynthesis, mutasynthesis, and chemobiosynthesis (Hamann, 2003; Kennedy, 2008) mediated by biological and chemical techniques. Bioinspired total synthesis of salinosporamides and structurally related derivatives have provided access to novel functionalities of tremendously effective molecule (Nguyen et al., 2010; Chen et al., 2012). Suitable integration of synthetic chemistry (Figure 3B, Table 1B) with biological production system can be utilized for generating structurally and functionally diverse analogs/derivatives of target molecule. One of the successful example illustrating application of synthetic chemistry in marine natural products is rationalized for structural/functional diversification of salinosporamides (Baran et al., 2007; Potts and Lam, 2010). The synergy between genome sequencing, mass spectroscopy based analysis and bio-inspired synthesis have been utilized for studying biosynthetic mechanism and structural diversification of nocardioazine B from Nocardiopsis sp. CMB-M0232 (Alqahtani et al., 2015). Hence, it is no doubt that rational integration of biological processes and chemical techniques (Dhakal and Sohng, 2015, 2017) can provide new foundations for drug discoveries from marine rare actinobacteria.

Figure 1.

Figure 1

Different approaches for enhancing natural product discovery from marine rare actinobacteria.

Future outlook

As evident from examples above, the innovative methods for procurement of bioactive molecules from potent strains, efficient production and/or modifications by biological and chemical methods can assist in harnessing the full potential of biomolecules derived from marine rare actinobacteria. Further, tuning of structural and functional properties based on structure activity relationship studies can lead to development of superior analogs. But the prime focus should be on application of cutting edge translational research, such as transferring the achievements of discovery or synthesis of such biomolecule to the industrial bench-tops and clinics. The successful collaboration between biologists/chemists in academics and/or pharmaceutical companies can open new avenues for development of highly effective drugs. Salinosporamide A (Marizomib) has been a significant representation of compound derived from marine rare actinobacteria leading to phase trials. It is no doubt that exploration of new candidate strains with sophisticated techniques will certainly unravel tremendous opportunities to identify novel natural products and improve their applicability by structural/functional diversifications.

Author contributions

DD, ARP, BS, and JS made substantial, direct, and intellectual contribution to the work, and approved it for publication with full consent.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1A2A2A05000939).

References

  1. Abdel-Mageed W. M., Milne B. F., Wagner M., Schumacher M., Sandor P., Pathom-aree W., et al. (2010). Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org. Biomol. Chem. 8, 2352–2362. 10.1039/c001445a [DOI] [PubMed] [Google Scholar]
  2. Alqahtani N., Porwal S. K., James E. D., Bis D. M., Karty J. A., Lane A. L., et al. (2015). Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis. Org. Biomol. Chem. 13, 7177–7192. 10.1039/C5OB00537J [DOI] [PubMed] [Google Scholar]
  3. Andrianantoandro E., Basu S., Karig D. K., Weiss R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2:2006.0028. 10.1038/msb4100073 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aoi Y., Kinoshita T., Hata T., Ohta H., Obokata H., Tsuneda S. (2009). Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Appl. Environ. Microbiol. 75, 3826–3833. 10.1128/AEM.02542-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Asolkar R. N., Kirkland T. N., Jensen P. R., Fenical W. (2010). Arenimycin, an antibiotic effective against rifampin-and methicillin-resistant Staphylococcus aureus from the marine actinomycete Salinispora arenicola. J. Antibiot. 63, 37–39. 10.1038/ja.2009.114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ates Ö., Oner E. T., Arga K. Y. (2011). Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043. BMC Syst. Biol. 5:12. 10.1186/1752-0509-5-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Azman A. S., Othman I., Velu S. S., Chan K. G., Lee L. H. (2015). Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Front. Microbiol. 6:856. 10.3389/fmicb.2015.00856 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bai C., Zhang Y., Zhao X., Hu Y., Xiang S., Miao J., et al. (2015). Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc. Natl. Acad. Sci. U.S.A. 112, 2181–12186. 10.1073/pnas.1511027112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Baltz R. H. (2006). Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J. Ind. Microbiol. Biotechnol. 33, 507–513. 10.1007/s10295-005-0077-9 [DOI] [PubMed] [Google Scholar]
  10. Baran P. S., Maimone T. J., Richter J. M. (2007). Total synthesis of marine natural products without using protecting groups. Nature 446, 404–408. 10.1038/nature05569 [DOI] [PubMed] [Google Scholar]
  11. Berdy J. (2005). Bioactive microbial metabolites. J. Antibiot. 58, 1–26. 10.1038/ja.2005.1 [DOI] [PubMed] [Google Scholar]
  12. Bernard L., Schäfer H., Joux F., Courties C., Muyzer G., Lebaron P. (2000). Genetic diversity of total, active and culturable marine bacteria in coastal seawater. AME 23, 1–11. 10.3354/ame023001 [DOI] [Google Scholar]
  13. Betancur L. A., Naranjo-Gaybor S. J., Vinchira-Villarraga D. M., Moreno-Sarmiento N. C., Maldonado L. A., Suarez-Moreno Z. R., et al. (2017). Marine Actinobacteria as a source of compounds for phytopathogen control: an integrative metabolic-profiling/bioactivity and taxonomical approach. PLoS ONE 12:e0170148. 10.1371/journal.pone.0170148 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bister B., Bischoff D., Ströbele M., Riedlinger J., Reicke A., Wolter F., et al. (2004). Abyssomicin C-A polycyclic antibiotic from a marine Verrucosispora Strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew. Chem. Int. Ed. Engl. 43, 2574–2576. 10.1002/anie.200353160 [DOI] [PubMed] [Google Scholar]
  15. Blunt J. W., Copp B. R., Hu W. P., Munro M. H., Northcote P. T., Prinsep M. R. (2007). Marine natural products. Nat. Prod. Rep. 24, 31–86. 10.1039/b603047p [DOI] [PubMed] [Google Scholar]
  16. Bonet B., Teufel R., Cruüsemann M., Ziemert N., Moore B. S. (2014). Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin. J. Nat. Prod. 78, 539–542. 10.1021/np500664q [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bredholdt H., Galatenko O. A., Engelhardt K., Fjærvik E., Terekhova L. P., Zotchev S. B. (2007). Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: isolation, diversity and biological activity. Environ. Microbiol. 9, 2756–2764. 10.1111/j.1462-2920.2007.01387.x [DOI] [PubMed] [Google Scholar]
  18. Bull A. T., Stach J. E. (2007). Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol. 15, 491–499. 10.1016/j.tim.2007.10.004 [DOI] [PubMed] [Google Scholar]
  19. Butler M. S. (2004). The role of natural product chemistry in drug discovery. J. Nat. Prod. 67, 2141–2153. 10.1021/np040106y [DOI] [PubMed] [Google Scholar]
  20. Carlson S., Marler L., Nam S. J., Santarsiero B. D., Pezzuto J. M., Murphy B. T. (2013). Potential chemopreventive activity of a new macrolide antibiotic from a marine-derived Micromonospora sp. Mar. Drugs. 11, 1152–1161. 10.3390/md11041152 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Cavalier-Smith T. (2002). The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52, 7–76. 10.1099/00207713-52-1-7 [DOI] [PubMed] [Google Scholar]
  22. Chaudhary A. K., Dhakal D., Sohng J. K. (2013). An insight into the “-omics” based engineering of streptomycetes for secondary metabolite overproduction. Biomed. Res. Int. 2013:968518. 10.1155/2013/968518 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Chen Z. H., Wang B. L., Kale A. J., Moore B. S., Wang R. W., Qing F. L. (2012). Coupling of sterically hindered aldehyde with fluorinated synthons: stereoselective synthesis of fluorinated analogues of salinosporamide A. J. Fluor. Chem. 136, 12–19. 10.1016/j.jfluchem.2012.01.003 [DOI] [Google Scholar]
  24. Cheng Q., Xiang L., Izumikawa M., Meluzzi D., Moore B. S. (2007). Enzymatic total synthesis of enterocin polyketides. Nat. Chem. Biol. 3, 557–558. 10.1038/nchembio.2007.22 [DOI] [PubMed] [Google Scholar]
  25. Cho J. Y., Williams P. G., Kwon H. C., Jensen P. R., Fenical W. (2007). Lucentamycins, A. D., cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis. J. Nat. Prod. 70, 321–1328. 10.1021/np070101b [DOI] [PubMed] [Google Scholar]
  26. Deamer D., Akeson M., Branton D. (2016). Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524. 10.1038/nbt.3423 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dhakal D., Sohng J. K. (2015). Commentary: toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front. Microbiol. 6:727. 10.3389/fmicb.2015.00727 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Dhakal D., Sohng J. K. (2017). Coalition of biology and chemistry for ameliorating antimicrobial drug discovery. Front. Microbiol. 8:734. 10.3389/fmicb.2017.00734 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Dhakal D., Chaudhary A. K., Yi J. S., Pokhrel A. R., Shrestha B., Parajuli P., et al. (2016). Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform. Appl. Microbiol. Biotechnol. 100, 9917–9931. 10.1007/s00253-016-7705-3 [DOI] [PubMed] [Google Scholar]
  30. Donadio S., Maffioli S., Monciardini P., Sosio M., Jabes D. (2010). Antibiotic discovery in the twenty-first century: current trends and future perspectives. J. Antibiot. 63, 423–430. 10.1038/ja.2010.62 [DOI] [PubMed] [Google Scholar]
  31. Duncan K. R., Crüsemann M., Lechner A., Sarkar A., Li J., Ziemert N., et al. (2015). Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem. Biol. 22, 460–471. 10.1016/j.chembiol.2015.03.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ellis G. A., Wyche T. P., Fry C. G., Braun D. R., Bugni T. S. (2014). Solwaric acids A and B, antibacterial aromatic acids from a marine Solwaraspora sp. Mar. Drugs 12, 1013–1022. 10.3390/md12021013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Endo A., Danishefsky S. J. (2005). Total synthesis of salinosporamide A. J. Am. Chem. Soc. 127, 8298–8299. 10.1021/ja0522783 [DOI] [PubMed] [Google Scholar]
  34. Eustáquio A. S., Moore B. S. (2008). Mutasynthesis of fluorosalinosporamide, a potent and reversible inhibitor of the proteasome. Angew. Chem. Int. Ed. Engl. 47, 3936–3938. 10.1002/anie.200800177 [DOI] [PubMed] [Google Scholar]
  35. Eustáquio A. S., Nam S. J., Penn K., Lechner A., Wilson M. C., Fenical W., et al. (2011). The discovery of salinosporamide K from the marine bacterium “Salinispora pacifica” by genome mining gives insight into pathway evolution. Chembiochem 12, 61–64. 10.1002/cbic.201000564 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Eustáquio A. S., O'Hagan D., Moore B. S. (2010). Engineering fluorometabolite production: fluorinase expression in Salinispora tropica yields fluorosalinosporamide. J. Nat. Prod. 73, 378–382. 10.1021/np900719u [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Farha M. A., Brown E. D. (2016). Strategies for target identification of antimicrobial natural products. Nat. Prod. Rep. 33, 668–680. 10.1039/C5NP00127G [DOI] [PubMed] [Google Scholar]
  38. Fei P., Chuan-xi W., Yang X., Hong-lei J., Lu-jie C., Uribe P., et al. (2013). A new 20-membered macrolide produced by a marine-derived Micromonospora strain. Nat. Prod. Res. 27, 1366–1371. 10.1080/14786419.2012.740038 [DOI] [PubMed] [Google Scholar]
  39. Feling R. H., Buchanan G. O., Mincer T. J., Kauffman C. A., Jensen P. R., Fenical W. (2003). Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int. Ed. Engl. 42, 355–357. 10.1002/anie.200390115 [DOI] [PubMed] [Google Scholar]
  40. Fenical W., Jensen P. R. (2006). Developing a new resource for drug discovery: marine actinomycete bacteria. Nat. Chem. Biol. 2, 666–673. 10.1038/nchembio841 [DOI] [PubMed] [Google Scholar]
  41. Fenical W., Baden D., Burg M., de-Goyet C. V., Grimes J. D., Katz M., et al. (1999). Marine derived pharmaceuticals and related bioactive compounds, in From Monsoons to Microbes: Understanding the Ocean's Role in Human Health, ed Fenical W. (Washington, DC: National Academies Press; ), 71–86. [PubMed] [Google Scholar]
  42. Forner D., Berrué F., Correa H., Duncan K., Kerr R. G. (2013). Chemical dereplication of marine actinomycetes by liquid chromatography–high resolution mass spectrometry profiling and statistical analysis. Anal. Chim. Acta 805, 70–79. 10.1016/j.aca.2013.10.029 [DOI] [PubMed] [Google Scholar]
  43. Freel K. C., Nam S. J., Fenical W., Jensen P. R. (2011). Evolution of secondary metabolite gene evolution in three closely related marine actinomycete species. Appl. Environ. Microbiol. 20, 7261–7270. 10.1128/AEM.05943-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Fu P., Kong F., Li X., Wang Y., Zhu W. (2014). Cyanogramide with a new spiro [indolinone-pyrroloimidazole] skeleton from Actinoalloteichus cyanogriseus. Org. Lett. 16, 3708–3711. 10.1021/ol501523d [DOI] [PubMed] [Google Scholar]
  45. Fu P., Wang S., Hong K., Li X., Liu P., Wang Y., et al. (2011). Cytotoxic bipyridines from the marine-derived actinomycete Actinoalloteichus cyanogriseus WH1-2216-6. J. Nat. Prod. 74, 1751–1756. 10.1021/np200258h [DOI] [PubMed] [Google Scholar]
  46. Fukuda T., Takahashi M., Nagai K., Harunari E., Imada C., Tomoda H. (2016). Isomethoxyneihumicin, a new cytotoxic agent produced by marine Nocardiopsis alba KM6-1. J. Antibiot. 70, 590–594. 10.1038/ja.2016.152 [DOI] [PubMed] [Google Scholar]
  47. Gan M., Liu B., Tan Y., Wang Q., Zhou H., He H., et al. (2015). Saccharothrixones A–D, tetracenomycin-type polyketides from the marine-derived actinomycete Saccharothrix sp. 10-10. J. Nat. Prod. 78, 2260–2265. 10.1021/acs.jnatprod.5b00577 [DOI] [PubMed] [Google Scholar]
  48. Gärtner A., Ohlendorf B., Schulz D., Zinecker H., Wiese J., Imhoff J. F. (2011). Levantilides, A., and B, 20-membered macrolides from a Micromonospora strain isolated from the mediterranean deep sea sediment. Mar. Drugs 9, 98–108. 10.3390/md9010098 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Goodfellow M., Stach J. E., Brown R., Bonda A. N. V., Jones A. L., Mexson J., et al. (2012). Verrucosispora maris sp. nov., a novel deep-sea actinomycete isolated from a marine sediment which produces abyssomicins. Antonie Van Leeuwenhoek 101, 185–193. 10.1007/s10482-011-9651-5 [DOI] [PubMed] [Google Scholar]
  50. Hamann M. T. (2003). Enhancing marine natural product structural diversity and bioactivity through semisynthesis and biocatalysis. Curr. Pharm. Des. 9, 879–889. 10.2174/1381612033455297 [DOI] [PubMed] [Google Scholar]
  51. Handelsman J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685. 10.1128/MMBR.68.4.669-685.2004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Henry C. S., DeJongh M., Best A. A., Frybarger P. M., Linsay B., Stevens R. L. (2010). High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982. 10.1038/nbt.1672 [DOI] [PubMed] [Google Scholar]
  53. Hirayama H., Sunamura M., Takai K., Nunoura T., Noguchi T., Oida H., et al. (2007). Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl. Environ. Microbiol. 73, 7642–7656. 10.1128/AEM.01258-07 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Hong K., Gao A. H., Xie Q. Y., Gao H. G., Zhuang L., Lin H. P., et al. (2009). Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar. Drugs 7, 24–44. 10.3390/md7010024 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Horbal L., Zaburannyy N., Ostash B., Shulga S., Fedorenko V. (2012). Manipulating the regulatory genes for teicoplanin production in Actinoplanes teichomyceticus. World J. Microbiol. Biotechnol. 28, 2095–2100. 10.1007/s11274-012-1013-6 [DOI] [PubMed] [Google Scholar]
  56. Horn H., Hentschel U., Abdelmohsen U. R. (2015). Mining genomes of three marine sponge-associated actinobacterial isolates for secondary metabolism. Genome Announc. 3, e01106–e01115. 10.1128/genomeA.01106-15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Huang H., Yao Y., He Z., Yang T., Ma J., Tian X., et al. (2011). Antimalarial β-carboline and indolactam alkaloids from Marinactinospora thermotolerans, a deep sea isolate. J. Nat. Prod. 74, 2122–2127. 10.1021/np200399t [DOI] [PubMed] [Google Scholar]
  58. Hwang K. S., Kim H. U., Charusanti P., Palsson B. Ø., Lee S. Y. (2014). Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol. Adv. 32, 255–268. 10.1016/j.biotechadv.2013.10.008 [DOI] [PubMed] [Google Scholar]
  59. Kaeberlein T., Lewis K., Epstein S. S. (2002). Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129. 10.1126/science.1070633 [DOI] [PubMed] [Google Scholar]
  60. Kaiya Y., Hasegawa J. I., Momose T., Sato T., Chida N. (2011). Total synthesis of (−)-Salinosporamide, A. Chem. Asian J. 6, 209–219. 10.1002/asia.201000602 [DOI] [PubMed] [Google Scholar]
  61. Kalinovskaya N. I., Kalinovsky A. I., Romanenko L. A., Dmitrenok P. S., Kuznetsova T. A. (2010). New angucyclines and antimicrobial diketopiperazines from the marine mollusk-derived actinomycete Saccharothrix espanaensis An 113. Nat. Prod. Commun. 5, 597–602. [PubMed] [Google Scholar]
  62. Kennedy J. (2008). Mutasynthesis, chemobiosynthesis, and back to semi-synthesis: combining synthetic chemistry and biosynthetic engineering for diversifying natural products. Nat. Prod. Rep. 25, 25–34. 10.1039/B707678A [DOI] [PubMed] [Google Scholar]
  63. Kersten R. D., Ziemert N., Gonzalez D. J., Duggan B. M., Nizet V., Dorrestein P. C., et al. (2013). Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules. Proc. Natl. Acad. Sci. U.S.A. 110, E4407–E4416. 10.1073/pnas.1315492110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Kim M. C., Kwon O. W., Park J. S., Kim S. Y., Kwon H. C. (2013). Nocapyrones H–J, 3, 6-disubstituted α-pyrones from the marine actinomycete Nocardiopsis sp. KMF-001. Chem. Pharm. Bull. 61, 511–515. 10.1248/cpb.c12-00956 [DOI] [PubMed] [Google Scholar]
  65. Kim T. K., Hewavitharana A. K., Shaw P. N., Fuerst J. A. (2006). Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction. Appl. Environ. Microbiol. 72, 2118–2125. 10.1128/AEM.72.3.2118-2125.2006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Kisand V., Valente A., Lahm A., Tanet G., Lettieri T. (2012). Phylogenetic and functional metagenomic profiling for assessing microbial biodiversity in environmental monitoring. PLoS ONE 7:e43630. 10.1371/journal.pone.0043630 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Kwon H. C., Kauffman C. A., Jensen P. R., Fenical W. (2006). Marinomycins, A–D., antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”. J. Am. Chem. Soc. 128, 1622–1632. 10.1021/ja0558948 [DOI] [PubMed] [Google Scholar]
  68. Lam K. S., Tsueng G., McArthur K. A., Mitchell S. S., Potts B. C., Xu J. (2007). Effects of halogens on the production of salinosporamides by the obligate marine actinomycete Salinispora tropica. J. Antibiot. 60, 13–19. 10.1038/ja.2007.2 [DOI] [PubMed] [Google Scholar]
  69. Lazzarini A., Cavaletti L., Toppo G., Marinelli F. (2001). Rare genera of actinomycetes as potential producers of new antibiotics. Antonie Van Leeuwenhoek 79, 399–405. [PubMed] [Google Scholar]
  70. Lechner A., Eustáquio A. S., Gulder T. A., Hafner M., Moore B. S. (2011). Selective overproduction of the proteasome inhibitor salinosporamide A via precursor pathway regulation. Chem. Biol. 18, 1527–1536. 10.1016/j.chembiol.2011.10.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Leutou A. S., Yang I., Kang H., Seo E. K., Nam S. J., Fenical W. (2015). Nocarimidazoles, A., and B from a marine-derived actinomycete of the genus Nocardiopsis. J. Nat. Prod. 78, 2846–2849. 10.1021/acs.jnatprod.5b00746 [DOI] [PubMed] [Google Scholar]
  72. Li S., Tian X., Niu S., Zhang W., Chen Y., Zhang H., et al. (2011). Pseudonocardians A–C, new diazaanthraquinone derivatives from a deap-sea actinomycete Pseudonocardia sp. SCSIO 01299. Mar Drugs 9, 1428–1439. 10.3390/md9081428 [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Licona-Cassani C., Cruz-Morales P., Manteca A., Barona-Gomez F., Nielsen L. K., Marcellin E. (2015). Systems biology approaches to understand natural products biosynthesis. Front. Bioeng. Biotechnol. 3:199 10.3389/fbioe.2015.00199 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Ling L. L., Schneider T., Peoples A. J., Spoering A. L., Engels I., Conlon B. P., et al. (2015). A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459. 10.1038/nature14098 [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Liu X., Bolla K., Ashforth E. J., Zhuo Y., Gao H., Huang P., et al. (2012). Systematics-guided bioprospecting for bioactive microbial natural products. Antonie Van Leeuwenhoek 101, 55–66. 10.1007/s10482-011-9671-1 [DOI] [PubMed] [Google Scholar]
  76. Liu Y., Hazzard C., Eustáquio A. S., Reynolds K. A., Moore B. S. (2009). Biosynthesis of salinosporamides from α, β-unsaturated fatty acids: implications for extending polyketide synthase diversity. J. Am. Chem. Soc. 131, 10376–10377. 10.1021/ja9042824 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Logan A. W., Sprague S. J., Foster R. W., Marx L. B., Garzya V., Hallside M. S., et al. (2014). Diastereoselective synthesis of fused lactone-pyrrolidinones; application to a formal synthesis of (−)-Salinosporamide, A. Org. Lett. 16, 4078–4081. 10.1021/ol501662t [DOI] [PubMed] [Google Scholar]
  78. Lombó F., Velasco A., Castro A., De la Calle F., Braña A. F., Sánchez-Puelles J. M., et al. (2006). Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two Streptomyces species. Chembiochem 7, 366–376. 10.1002/cbic.200500325 [DOI] [PubMed] [Google Scholar]
  79. Lu S., Nishimura S., Ito M., Kato T., Kakeya H. (2016). Precursor-directed in situ synthesis of Saccharothriolides, G., and H by the Actinomycete Saccharothrix sp. A1506. J. Antibiot. 70, 718–720. 10.1038/ja.2016.153 [DOI] [PubMed] [Google Scholar]
  80. Maansson M., Vynne N. G., Klitgaard A., Nybo J. L., Melchiorsen J., Nguyen D. D., et al. (2016). An integrated metabolomic and genomic mining workflow to uncover the biosynthetic potential of bacteria. Msystems 1, e00028–e00015. 10.1128/mSystems.00028-15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Macherla V. R., Mitchell S. S., Manam R. R., Reed K. A., Chao T. H., Nicholson B., et al. (2005). Structure activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J. Med. Chem. 48, 3684–3687. 10.1021/jm048995+ [DOI] [PubMed] [Google Scholar]
  82. Maloney K. N., MacMillan J. B., Kauffman C. A., Jensen P. R., DiPasquale A. G., Rheingold A. L., et al. (2009). Lodopyridone, a structurally unprecedented alkaloid from a marine actinomycete. Org. Lett. 11, 5422–5424. 10.1021/ol901997k [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Manam R. R., McArthur K. A., Chao T. H., Weiss J., Ali J. A., Palombella V. J., et al. (2008). Leaving groups prolong the duration of 20S proteasome inhibition and enhance the potency of salinosporamides. J. Med. Chem. 51, 6711–6724. 10.1021/jm800548b [DOI] [PubMed] [Google Scholar]
  84. McArthur K. A., Mitchell S. S., Tsueng G., Rheingold A., White D. J., Grodberg J., et al. (2008). Lynamicins A−E, chlorinated bisindole pyrrole antibiotics from a novel marine Actinomycete. J. Nat. Prod. 71, 1732–1737. 10.1021/np800286d [DOI] [PubMed] [Google Scholar]
  85. McGlinchey R. P., Nett M., Eustáquio A. S., Asolkar R. N., Fenical W., Moore B. S. (2008). Engineered biosynthesis of antiprotealide and other unnatural salinosporamide proteasome inhibitors. J. Am. Chem. Soc. 130:7822. 10.1021/ja8029398 [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Medema M., Paalvast Y., Nguyen D., Melnik A., Dorrestein P., Takano E., et al. (2014). Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products. PLoS Comput. Biol. 10:e1003822. 10.1371/journal.pcbi.1003822 [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Monciardini P., Iorio M., Maffioli S., Sosio M., Donadio S. (2014). Discovering new bioactive molecules from microbial sources. Microbiol. Biotechnol. 7, 209–220. 10.1111/1751-7915.12123 [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Mullowney M. W., Ó hAinmhire E., Tanouye U., Burdette J. E., Pham V. C., Murphy B. T. (2015). A pimarane diterpene and cytotoxic angucyclines from a marine-derived Micromonospora sp. in Vietnam's East Sea. Mar. Drugs. 13, 5815–5827. 10.3390/md13095815 [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Murphy B. T., Narender T., Kauffman C. A., Woolery M., Jensen P. R., Fenical W. (2010). Saliniquinones A–F, new members of the highly cytotoxic anthraquinone-γ-pyrones from the marine actinomycete Salinispora arenicola. Aust. J. Chem. 63, 929–934. 10.1071/CH10068 [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Nam S. J., Gaudêncio S. P., Kauffman C. A., Jensen P. R., Kondratyuk T. P., Marler L. E., et al. (2010). Fijiolides, A., and B, inhibitors of TNF-α-induced NFκB activation, from a marine-derived sediment bacterium of the genus Nocardiopsis. J. Nat. Prod. 73, 1080–1086. 10.1021/np100087c [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Nett M., Gulder T. A., Kale A. J., Hughes C. C., Moore B. S. (2009). Function-oriented biosynthesis of β-lactone proteasome inhibitors in Salinispora tropica. J. Med. Chem. 52:6163. 10.1021/jm901098m [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Nguyen H., Ma G., Gladysheva T., Fremgen T., Romo D. (2010). Bioinspired total synthesis and human proteasome inhibitory activity of (−)-salinosporamide A, (−)-homosalinosporamide A, and derivatives obtained via organonucleophile promoted bis-cyclizations. J. Org. Chem. 76, 2–12. 10.1021/jo101638r [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Nichols D., Cahoon N., Trakhtenberg E. M., Pham L., Mehta A., Belanger A., et al. (2010). Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol. 76, 2445–2450. 10.1128/AEM.01754-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Nübel U., Garcia-Pichel F., Kühl M., Muyzer G. (1999). Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl. Environ. Microbiol. 65, 422–430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Ogura A., Lin M., Shigenobu Y., Fujiwara A., Ikeo K., Nagai S. (2011). Effective gene collection from the metatranscriptome of marine microorganisms. BMC Genomics 12:S15. 10.1186/1471-2164-12-S3-S15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Olano C., Lombo F., Mendez C., Salas J. A. (2008). Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab. Eng. 10, 281–292. 10.1016/j.ymben.2008.07.001 [DOI] [PubMed] [Google Scholar]
  97. Pathom-Aree W., Nogi Y., Sutcliffe I. C., Ward A. C., Horikoshi K., Bull A. T., et al. (2006). Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int. J. Syst. Evol. Microbiol. 56, 1233–1237. 10.1099/ijs.0.64133-0 [DOI] [PubMed] [Google Scholar]
  98. Pinhassi J., Zweifel U. L., Hagstroëm A. (1997). Dominant marine bacterioplankton species found among colony-forming bacteria. Appl. Environ. Microbiol. 63, 3359–3366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Potts B. C., Lam K. S. (2010). Generating a generation of proteasome inhibitors: from microbial fermentation to total synthesis of salinosporamide a (marizomib) and other salinosporamides. Mar. Drugs 8, 835–880. 10.3390/md8040835 [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Pulido D., Jimenez A. (1987). Optimization of gene expression in Streptomyces lividans by a transcription terminator. Nucleic Acids Res. 15, 4227–4240. 10.1093/nar/15.10.4227 [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Purnick P. E., Weiss R. (2009). The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422. 10.1038/nrm2698 [DOI] [PubMed] [Google Scholar]
  102. Rastogi G., Sani R. (2011). Molecular techniques to assess microbial community structure, function, and dynamics in the environment, in Microbes and Microbial Technology, eds Ahmad I., Ahmad F., Pichtel J. (New York, NY: Springer; ), 29–57. [Google Scholar]
  103. Reddy L. R., Saravanan P., Corey E. J. (2004). A simple stereocontrolled synthesis of salinosporamide A. J. Am. Chem. Soc. 126, 6230–6231. 10.1021/ja048613p [DOI] [PubMed] [Google Scholar]
  104. Richter T. K., Hughes C. C., Moore B. S. (2015). Sioxanthin, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway. Environ. Microbiol. 17, 2158–2171. 10.1111/1462-2920.12669 [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Riedlinger J., Reicke A., Zähner H., Krismer B., Bull A. T., Maldonado L. A., et al. (2004). Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J. Antibiot. 57, 271–279. 10.7164/antibiotics.57.271 [DOI] [PubMed] [Google Scholar]
  106. Sato S., Iwata F., Yamada S., Katayama M. (2012). Neomaclafungins A–I: oligomycin-class macrolides from a marine-derived actinomycete. J. Nat. Prod. 75, 1974–1982. 10.1021/np300719g [DOI] [PubMed] [Google Scholar]
  107. Schneemann I., Ohlendorf B., Zinecker H., Nagel K., Wiese J., Imhoff J. F. (2010). Nocapyrones A–D, γ-pyrones from a Nocardiopsis strain isolated from the marine sponge Halichondria panicea. J. Nat. Prod. 73, 1444–1447. 10.1021/np100312f [DOI] [PubMed] [Google Scholar]
  108. Schorn M. A., Alanjary M. M., Aguinaldo K., Korobeynikov A., Podell S., Patin N., et al. (2016). Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. Microbiology 162, 2075–2086. 10.1099/mic.0.000386 [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Schultz A. W., Oh D. C., Carney J. R., Williamson R. T., Udwary D. W., Jensen P. R., et al. (2008). Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J. Am. Chem. Soc. 130, 4507–4516. 10.1021/ja711188x [DOI] [PubMed] [Google Scholar]
  110. Schulze C. J., Donia M. S., Siqueira-Neto J. L., Ray D., Raskatov J. A., Green R. E., et al. (2015a). Genome-directed lead discovery: biosynthesis, structure elucidation, and biological evaluation of two families of polyene macrolactams against Trypanosoma brucei. ACS Chem. Biol. 10, 2373–2381. 10.1021/acschembio.5b00308 [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Schulze C. J., Navarro G., Ebert D., DeRisi J., Linington R. G. (2015b). Salinipostins A–K, long-chain bicyclic phosphotriesters as a potent and selective antimalarial chemotype. J. Org. Chem. 80, 1312–1320. 10.1021/jo5024409 [DOI] [PubMed] [Google Scholar]
  112. Siegl T., Luzhetskyy A. (2012). Actinomycetes genome engineering approaches. Antonie Van Leeuwenhoek 102, 503–516. 10.1007/s10482-012-9795-y [DOI] [PubMed] [Google Scholar]
  113. Siegl T., Tokovenko B., Myronovskyi M., Luzhetskyy A. (2013). Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab. Eng. 19, 98–106. 10.1016/j.ymben.2013.07.006 [DOI] [PubMed] [Google Scholar]
  114. Silver L., Bostian K. (1990). Screening of natural products for antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 9, 455–461. 10.1007/BF01964283 [DOI] [PubMed] [Google Scholar]
  115. Simmons L., Kaufmann K., Garcia R., Schwär G., Huch V., Müller R. (2011). Bendigoles D–F, bioactive sterols from the marine sponge-derived Actinomadura sp. SBMs009. Bioorg. Med. Chem. 19, 6570–6575. 10.1016/j.bmc.2011.05.044 [DOI] [PubMed] [Google Scholar]
  116. Singh S. B., Young K., Miesel L. (2011). Screening strategies for discovery of antibacterial natural products. Expert Rev. Anti Infect. Ther. 9, 589–613. 10.1586/eri.11.81 [DOI] [PubMed] [Google Scholar]
  117. Slattery M., Ankisetty S., Corrales J., Marsh-Hunkin K. E., Gochfeld D. J., Willett K. L., et al. (2012). Marine proteomics: a critical assessment of an emerging technology. J. Nat. Prod. 75, 1833–1877. 10.1021/np300366a [DOI] [PubMed] [Google Scholar]
  118. Sousa T. D. S., Jimenez P. C., Ferreira E. G., Silveira E. R., Braz-Filho R., Pessoa O. D., et al. (2012). Anthracyclinones from Micromonospora sp. J. Nat. Prod. 75, 489–493. 10.1021/np200795p [DOI] [PubMed] [Google Scholar]
  119. Stewart E. J. (2012). Growing unculturable bacteria. J. Bacteriol. 194, 4151–4160. 10.1128/JB.00345-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Subramani R., Aalbersberg W. (2013). Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Appl. Microbiol. Biotechnol. 97, 9291–9321. 10.1007/s00253-013-5229-7 [DOI] [PubMed] [Google Scholar]
  121. Sun H., Liu Z., Zhao H., Ang E. L. (2015). Recent advances in combinatorial biosynthesis for drug discovery. Drug Des. Devel. Ther. 9, 823–833. 10.2147/DDDT.S63023 [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Takagi M., Motohashi K., Khan S. T., Hashimoto J., Shin-ya K. (2010). JBIR-65, a new diterpene, isolated from a sponge-derived Actinomadura sp. SpB081030SC-15. J. Antibiot. 63, 401–403. 10.1038/ja.2010.61 [DOI] [PubMed] [Google Scholar]
  123. Tang X., Li J., Millán-Aguinaaga N., Zhang J. J., O'Neill E. C., Ugalde J. A., et al. (2015). Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. ACS Chem. Biol. 10, 2841–2849. 10.1021/acschembio.5b00658 [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Tiwari K., Gupta R. K. (2013). Diversity and isolation of rare actinomycetes: an overview. Crit. Rev. Biotechnol. 39, 256–294. 10.3109/1040841x.2012.709819 [DOI] [PubMed] [Google Scholar]
  125. Tong Y., Charusanti P., Zhang L., Weber T., Lee S. Y. (2015). CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4, 1020–1029. 10.1021/acssynbio.5b00038 [DOI] [PubMed] [Google Scholar]
  126. Trindade M., van Zyl L. J., Navarro-Fernández J., Abd Elrazak A. (2015). Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front. Microbiol. 6:890. 10.3389/fmicb.2015.00890 [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Udwary D. W., Zeigler L., Asolkar R. N., Singan V., Lapidus A., Fenical W., et al. (2007). Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc. Natl. Acad. Sci. U.S.A. 104, 10376–10381. 10.1073/pnas.0700962104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Vartoukian S. R., Palmer R. M., Wade W. G. (2010). Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol. Lett. 2010, 1–7. 10.1111/j.1574-6968.2010.02000.x [DOI] [PubMed] [Google Scholar]
  129. Wang H., Yang L., Wu K., Li G. (2014). Rational selection and engineering of exogenous principal sigma factor (σ HrdB) to increase teicoplanin production in an industrial strain of Actinoplanes teichomyceticus. Microb. Cell Fact. 13:10. 10.1186/1475-2859-13-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Wang W., Li X., Wang J., Xiang S., Feng X., Yang K. (2013). An engineered strong promoter for streptomycetes. Appl. Environ. Microbiol. 79, 4484–4492. 10.1128/AEM.00985-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Weber T., Kim H. U. (2016). The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production. Synth. Syst. Biotechnol. 1, 69–79. 10.1016/j.synbio.2015.12.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Webster N. S., Taylor M. W., Behnam F., Lücker S., Rattei T., Whalan S., et al. (2010). Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ. Microbiol. 12, 2070–2082. 10.1111/j.1462-2920.2009.02065.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Weissman K. J. (2007). Mutasynthesis–uniting chemistry and genetics for drug discovery. Trends Biotechnol. 25, 139–142. 10.1016/j.tibtech.2007.02.004 [DOI] [PubMed] [Google Scholar]
  134. Wenzel S. C., Müller R. (2005). Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr. Opin. Biotechnol. 16, 594–606. 10.1016/j.copbio.2005.10.001 [DOI] [PubMed] [Google Scholar]
  135. Williams P. G., Asolkar R. N., Kondratyuk T., Pezzuto J. M., Jensen P. R., Fenical W. (2007a). Saliniketals, A., and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola. J. Nat. Prod. 70, 83–88. 10.1021/np0604580 [DOI] [PubMed] [Google Scholar]
  136. Williams P. G., Buchanan G. O., Feling R. H., Kauffman C. A., Jensen P. R., Fenical W. (2005). New cytotoxic Salinosporamides from the marine actinomycete Salinispora tropica. J. Org. Chem. 70, 6196–6203. 10.1021/jo050511+ [DOI] [PubMed] [Google Scholar]
  137. Williams P. G., Miller E. D., Asolkar R. N., Jensen P. R., Fenical W. (2007b). Arenicolides, A. C., 26-membered ring macrolides from the marine actinomycete Salinispora arenicola. J. Org. Chem. 72, 5025–5034. 10.1021/jo061878x [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Winn M., Fyans J. K., Zhuo Y., Micklefield J. (2016). Recent advances in engineering nonribosomal peptide assembly lines. Nat. Prod. Rep. 33, 317–347. 10.1039/C5NP00099H [DOI] [PubMed] [Google Scholar]
  139. Wu J., Gao W., Johnson R. H., Zhang W., Meldrum D. R. (2013). Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso-and bathypelagic realm of North Pacific Ocean. Mar. Drugs 11, 3777–3801. 10.3390/md11103777 [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Wu Z. C., Li S., Nam S. J., Liu Z., Zhang C. (2013). Nocardiamides, A., and B, two cyclohexapeptides from the marine-derived actinomycete Nocardiopsis sp. CNX037. J. Nat. Prod. 76, 694–701. 10.1021/np400009a [DOI] [PubMed] [Google Scholar]
  141. Wyche T. P., Hou Y., Braun D., Cohen H. C., Xiong M. P., Bugni T. S. (2011). First natural analogs of the cytotoxic thiodepsipeptide thiocoraline A from a marine Verrucosispora sp. J. Org. Chem. 76, 6542–6547. 10.1021/jo200661n [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Wyche T. P., Hou Y., Vazquez-Rivera E., Braun D., Bugni T. S. (2012). Peptidolipins B–F, antibacterial lipopeptides from an ascidian-derived Nocardia sp. J. Nat. Prod. 75, 735–740. 10.1021/np300016r [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Wyche T. P., Piotrowski J. S., Hou Y., Braun D., Deshpande R., McIlwain S., et al. (2014). Forazoline A: marine-derived polyketide with antifungal in vivo Efficacy. Angew. Chem. Int. Ed. 126, 11767–11770. 10.1002/ange.201405990 [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Wyche T. P., Standiford M., Hou Y., Braun D., Johnson D. A., Johnson J. A., et al. (2013). Activation of the nuclear factor E2-related factor 2 pathway by novel natural products halomadurones A–D and a synthetic analogue. Mar. Drugs 11, 5089–5099. 10.3390/md11125089 [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Yamanaka K., Reynolds K. A., Kersten R. D., Ryan K. S., Gonzalez D. J., Nizet V., et al. (2014). Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl. Acad. Sci. U.S.A. 111, 1957–1962. 10.1073/pnas.1319584111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Yang C., Huang C., Zhang W., Zhu Y., Zhang C. (2015). Heterologous expression of fluostatin gene cluster leads to a bioactive heterodimer. Org. Lett. 17, 5324–5327. 10.1021/acs.orglett.5b02683 [DOI] [PubMed] [Google Scholar]
  147. Yeung K. S., Paterson I. (2005). Advances in the total synthesis of biologically important marine macrolides. Chem. Rev. 105, 4237–4313. 10.1021/cr040614c [DOI] [PubMed] [Google Scholar]
  148. Young I. S., Baran P. S. (2009). Protecting-group-free synthesis as an opportunity for invention. Nat. Chem. 1, 193–205. 10.1038/nchem.216 [DOI] [PubMed] [Google Scholar]
  149. Zeng Y., Zou Y., Grebmeier J., He J., Zheng T. (2012). Culture-independent and -dependent methods to investigate the diversity of planktonic bacteria in the northern Bering Sea. Polar Biol. 35, 117–129. 10.1007/s00300-011-1044-8 [DOI] [Google Scholar]
  150. Zengler K., Palsson B. O. (2012). A road map for the development of community systems (CoSy) biology. Nat. Rev. Microbiol. 10, 366–372. 10.1038/nrmicro2763 [DOI] [PubMed] [Google Scholar]
  151. Zengler K., Toledo G., Rappé M., Elkins J., Mathur E. J., Short J. M., et al. (2002). Cultivating the uncultured. Proc. Natl. Acad. Sci. U.S.A. 99, 15681–15686. 10.1073/pnas.252630999 [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Zhang W., Liu Z., Li S., Lu Y., Chen Y., Zhang H., et al. (2012). Fluostatins I–K from the South China Sea-derived Micromonospora rosaria SCSIO N160. J. Nat. Prod. 75, 1937–1943. 10.1021/np300505y [DOI] [PubMed] [Google Scholar]
  153. Zhou X., Huang H., Chen Y., Tan J., Song Y., Zou J., et al. (2012). Marthiapeptide, A., an anti-infective and cytotoxic polythiazole cyclopeptide from a 60 L scale fermentation of the deep sea-derived Marinactinospora thermotolerans SCSIO 00652. J. Nat. Prod. 75, 2251–2255. 10.1021/np300554f [DOI] [PubMed] [Google Scholar]
  154. Ziemert N., Alanjary M., Weber T. (2016). The evolution of genome mining in microbes–a review. Nat. Prod. Rep. 33, 988–1005. 10.1039/c6np00025h [DOI] [PubMed] [Google Scholar]
  155. Ziemert N., Lechner A., Wietz M., Millán-Aguiñaga N., Chavarria K. L., Jensen P. R. (2014). Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc. Natl. Acad. Sci. U.S.A. 111, E1130–E1139. 10.1073/pnas.1324161111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Zotchev S. B. (2012). Marine actinomycetes as an emerging resource for the drug development pipelines. J. Biotechnol. 158, 68–175. 10.1016/j.jbiotec.2011.06.002 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES