Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1968 Apr;16(4):620–623. doi: 10.1128/am.16.4.620-623.1968

Choline and Inositol Distribution in Algae and Fungi1

Miyoshi Ikawa 1, Paul T Borowski 1, Ashima Chakravarti 1
PMCID: PMC547481  PMID: 5647522

Abstract

Inositol and choline were present in varying amounts among the species of Rhodophyta, Phaeophyta, Chlorophyta, and Euglenophyta examined. However, in the two members of the order Fucales (division Phaeophyta) examined, no detectable amounts of choline were found. In contrast, the species of Cyanophyta examined contained no detectable amounts of either choline or inositol. All species of the fungal classes Phycomyceteae, Ascomyceteae, and Basidiomyceteae collected contained both inositol and choline in varying amounts. The red, brown, and blue-green algae usually contained much less inositol and choline than do plant and animals sources, but the fungi and the algae Chlorella and Euglena contained amounts comparable to those present in plant sources.

Full text

PDF
620

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON J. A., SUN F. K., MCDONALD J. K., CHELDELIN V. H. OXIDASE ACTIVITY AND LIPID COMPOSITION OF RESPIRATORY PARTICLES FROM CLAVICEPS PURPUREA (ERGOT FUNGUS). Arch Biochem Biophys. 1964 Jul;107:37–50. doi: 10.1016/0003-9861(64)90266-8. [DOI] [PubMed] [Google Scholar]
  2. BENSON A. A., MARUO B. Piant phospholipids. I. Identification of the phosphatidyl glycerols. Biochim Biophys Acta. 1958 Jan;27(1):189–195. doi: 10.1016/0006-3002(58)90308-1. [DOI] [PubMed] [Google Scholar]
  3. BENSON A. A., STRICKLAND E. H. Plant phospholipids. 3. Identification of diphosphatidyl glycerol. Biochim Biophys Acta. 1960 Jul 1;41:328–333. doi: 10.1016/0006-3002(60)90016-0. [DOI] [PubMed] [Google Scholar]
  4. Benson A. A., Wintermans J. F., Wiser R. Chloroplast Lipids as Carbohydrate Reservoirs. Plant Physiol. 1959 May;34(3):315–317. doi: 10.1104/pp.34.3.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cecil R., Jack M. Lipid patterns in the major classes of fungi. J Bacteriol. 1966 May;91(5):2101–2102. doi: 10.1128/jb.91.5.2101-2102.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ikawa M. Bacterial phosphatides and natural relationships. Bacteriol Rev. 1967 Mar;31(1):54–64. doi: 10.1128/br.31.1.54-64.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kates M., Volcani B. E. Lipid components of diatoms. Biochim Biophys Acta. 1966 Apr 4;116(2):264–278. doi: 10.1016/0005-2760(66)90009-9. [DOI] [PubMed] [Google Scholar]
  8. LEEGWATER D. C., YOUNGS C. G., SPENCER J. F., CRAIG B. M. Investigations into the production of lipids by submerged cultures of the mushroom Tricholoma nudum. I. Fatty acid composition of neutral lipids and phospholipids as a function of time. Can J Biochem Physiol. 1962 Jul;40:847–855. [PubMed] [Google Scholar]
  9. Nichols B. W., Harris R. V., James A. T. The lipid metabolism of blue-green algae. Biochem Biophys Res Commun. 1965 Jul 26;20(3):256–262. doi: 10.1016/0006-291x(65)90356-6. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES