Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Oct;87(19):7395–7399. doi: 10.1073/pnas.87.19.7395

Localization of phosphatidylinositol signaling components in rat taste cells: role in bitter taste transduction.

P M Hwang 1, A Verma 1, D S Bredt 1, S H Snyder 1
PMCID: PMC54753  PMID: 2217172

Abstract

To assess the role of phosphatidylinositol turnover in taste transduction we have visualized, in rat tongue, ATP-dependent endoplasmic reticular accumulation of 45Ca2+, inositol 1,4,5-trisphosphate receptor binding sites, and phosphatidylinositol turnover monitored by autoradiography of [3H]cytidine diphosphate diacylglycerol formed from [3H]cytidine. Accumulated 45Ca2+, inositol 1,4,5-trisphosphate receptors, and phosphatidylinositol turnover are selectively localized to apical areas of the taste buds of circumvallate papillae, which are associated with bitter taste. Further evidence for a role of phosphatidylinositol turnover in bitter taste is our observation of a rapid, selective increase in mass levels of inositol 1,4,5-trisphosphate elicited by low concentrations of denatonium, a potently bitter tastant.

Full text

PDF
7395

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akabas M. H., Dodd J., Al-Awqati Q. A bitter substance induces a rise in intracellular calcium in a subpopulation of rat taste cells. Science. 1988 Nov 18;242(4881):1047–1050. doi: 10.1126/science.3194756. [DOI] [PubMed] [Google Scholar]
  2. Axelrod F. B., Branom N., Becker M., Nachtigall R., Dancis J. Treatment of familial dysautonomia with bethanecol (urecholine). J Pediatr. 1972 Sep;81(3):573–578. doi: 10.1016/s0022-3476(72)80195-1. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J., Downes C. P., Hanley M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 1982 Sep 15;206(3):587–595. doi: 10.1042/bj2060587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bredt D. S., Mourey R. J., Snyder S. H. A simple, sensitive, and specific radioreceptor assay for inositol 1,4,5-trisphosphate in biological tissues. Biochem Biophys Res Commun. 1989 Mar 31;159(3):976–982. doi: 10.1016/0006-291x(89)92204-3. [DOI] [PubMed] [Google Scholar]
  6. Breer H., Boekhoff I., Tareilus E. Rapid kinetics of second messenger formation in olfactory transduction. Nature. 1990 May 3;345(6270):65–68. doi: 10.1038/345065a0. [DOI] [PubMed] [Google Scholar]
  7. Ferris C. D., Huganir R. L., Supattapone S., Snyder S. H. Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature. 1989 Nov 2;342(6245):87–89. doi: 10.1038/342087a0. [DOI] [PubMed] [Google Scholar]
  8. GUTH L. The effects of glossopharyngeal nerve transection on the circumvallate papilla of the rat. Anat Rec. 1957 Aug;128(4):715–731. doi: 10.1002/ar.1091280406. [DOI] [PubMed] [Google Scholar]
  9. Ghosh T. K., Eis P. S., Mullaney J. M., Ebert C. L., Gill D. L. Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J Biol Chem. 1988 Aug 15;263(23):11075–11079. [PubMed] [Google Scholar]
  10. Godfrey P. P. Potentiation by lithium of CMP-phosphatidate formation in carbachol-stimulated rat cerebral-cortical slices and its reversal by myo-inositol. Biochem J. 1989 Mar 1;258(2):621–624. doi: 10.1042/bj2580621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HENKIN R. I., KOPIN I. J. ABNORMALITIES OF TASTE AND SMELL THRESHOLDS IN FAMILIAL DYSAUTONOMIA: IMPROVEMENT WITH METHACHOLINE. Life Sci. 1964 Nov;3:1319–1325. doi: 10.1016/0024-3205(64)90051-7. [DOI] [PubMed] [Google Scholar]
  12. Hand A. R. The fine structure of von Ebner's gland of the rat. J Cell Biol. 1970 Feb;44(2):340–353. doi: 10.1083/jcb.44.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heck G. L., Mierson S., DeSimone J. A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science. 1984 Jan 27;223(4634):403–405. doi: 10.1126/science.6691151. [DOI] [PubMed] [Google Scholar]
  14. Huque T., Bruch R. C. Odorant- and guanine nucleotide-stimulated phosphoinositide turnover in olfactory cilia. Biochem Biophys Res Commun. 1986 May 29;137(1):36–42. doi: 10.1016/0006-291x(86)91172-1. [DOI] [PubMed] [Google Scholar]
  15. Kennedy J. G. The effects of transection of the glossopharyngeal nerve on the taste buds of the circumvallate papilla of the rat. Arch Oral Biol. 1972 Aug;17(8):1197–1207. doi: 10.1016/0003-9969(72)90090-8. [DOI] [PubMed] [Google Scholar]
  16. Kinnamon S. C., Dionne V. E., Beam K. G. Apical localization of K+ channels in taste cells provides the basis for sour taste transduction. Proc Natl Acad Sci U S A. 1988 Sep;85(18):7023–7027. doi: 10.1073/pnas.85.18.7023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kinnamon S. C. Taste transduction: a diversity of mechanisms. Trends Neurosci. 1988 Nov;11(11):491–496. doi: 10.1016/0166-2236(88)90010-0. [DOI] [PubMed] [Google Scholar]
  18. Pace U., Hanski E., Salomon Y., Lancet D. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature. 1985 Jul 18;316(6025):255–258. doi: 10.1038/316255a0. [DOI] [PubMed] [Google Scholar]
  19. Pevsner J., Reed R. R., Feinstein P. G., Snyder S. H. Molecular cloning of odorant-binding protein: member of a ligand carrier family. Science. 1988 Jul 15;241(4863):336–339. doi: 10.1126/science.3388043. [DOI] [PubMed] [Google Scholar]
  20. SMITH A., FARBMAN A., DANCIS J. ABSENCE OF TASTE-BUD PAPILLAE IN FAMILIAL DYSAUTONOMIA. Science. 1965 Feb 26;147(3661):1040–1041. doi: 10.1126/science.147.3661.1040. [DOI] [PubMed] [Google Scholar]
  21. Sastry B. V., Sadavongvivad C. Cholinergic systems in non-nervous tissues. Pharmacol Rev. 1978 Mar;30(1):65–132. [PubMed] [Google Scholar]
  22. Schiffman S. S., Lockhead E., Maes F. W. Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6136–6140. doi: 10.1073/pnas.80.19.6136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schmale H., Holtgreve-Grez H., Christiansen H. Possible role for salivary gland protein in taste reception indicated by homology to lipophilic-ligand carrier proteins. Nature. 1990 Jan 25;343(6256):366–369. doi: 10.1038/343366a0. [DOI] [PubMed] [Google Scholar]
  24. Sklar P. B., Anholt R. R., Snyder S. H. The odorant-sensitive adenylate cyclase of olfactory receptor cells. Differential stimulation by distinct classes of odorants. J Biol Chem. 1986 Nov 25;261(33):15538–15543. [PubMed] [Google Scholar]
  25. Striem B. J., Pace U., Zehavi U., Naim M., Lancet D. Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. Biochem J. 1989 May 15;260(1):121–126. doi: 10.1042/bj2600121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tsuchiya S., Aoki T. Cholinesterase activities in the gustatory region of the rat tongue and their inhibition by bitter-tasting substances. Tohoku J Exp Med. 1967 Jan;91(1):41–52. doi: 10.1620/tjem.91.41. [DOI] [PubMed] [Google Scholar]
  27. Worley P. F., Baraban J. M., Snyder S. H. Inositol 1,4,5-trisphosphate receptor binding: autoradiographic localization in rat brain. J Neurosci. 1989 Jan;9(1):339–346. doi: 10.1523/JNEUROSCI.09-01-00339.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Worley P. F., Baraban J. M., Supattapone S., Wilson V. S., Snyder S. H. Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J Biol Chem. 1987 Sep 5;262(25):12132–12136. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES