Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Oct;87(19):7410–7413. doi: 10.1073/pnas.87.19.7410

Electron transfer to the binuclear center in cytochrome oxidase: catalytic significance and evidence for an additional intermediate.

F Malatesta 1, P Sarti 1, G Antonini 1, B Vallone 1, M Brunori 1
PMCID: PMC54756  PMID: 2170978

Abstract

We have followed, by transient kinetics, the reduction of cytochrome a3 in the presence of carbon monoxide under different experimental conditions. We have observed that the internal electron transfer rate accounts for the turnover number, and both display the same pH and temperature dependence [pKa = 7.4 and activation energy (Ea) = 14.7 +/- 0.1 kcal/mol]. Moreover, comparison of the time course of cytochrome c oxidation and cytochrome a3 reduction indicates that two electrons are transferred internally and with different rates to the oxygen-binding site. A kinetic model based on sequential internal electron transfer pathways, describing quantitatively the experimental data, is presented and discussed.

Full text

PDF
7410

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antalis T. M., Palmer G. Kinetic characterization of the interaction between cytochrome oxidase and cytochrome c. J Biol Chem. 1982 Jun 10;257(11):6194–6206. [PubMed] [Google Scholar]
  2. Antonini E., Brunori M., Greenwood C., Malmström B. G. Catalytic mechanism of cytochrome oxidase. Nature. 1970 Dec 5;228(5275):936–937. doi: 10.1038/228936a0. [DOI] [PubMed] [Google Scholar]
  3. Brunori M., Antonini G., Malatesta F., Sarti P., Wilson M. T. Structure and function of cytochrome oxidase: a second look. Adv Inorg Biochem. 1988;7:93–153. [PubMed] [Google Scholar]
  4. Brzezinski P., Malmström B. G. The mechanism of electron gating in proton pumping cytochrome c oxidase: the effect of pH and temperature on internal electron transfer. Biochim Biophys Acta. 1987 Oct 29;894(1):29–38. doi: 10.1016/0005-2728(87)90209-x. [DOI] [PubMed] [Google Scholar]
  5. Chan S. I., Li P. M. Cytochrome c oxidase: understanding nature's design of a proton pump. Biochemistry. 1990 Jan 9;29(1):1–12. doi: 10.1021/bi00453a001. [DOI] [PubMed] [Google Scholar]
  6. Ferguson-Miller S., Brautigan D. L., Margoliash E. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem. 1976 Feb 25;251(4):1104–1115. [PubMed] [Google Scholar]
  7. GIBSON Q. H., GREENWOOD C. Reactions of cytochrome oxidase with oxygen and carbon monoxide. Biochem J. 1963 Mar;86:541–554. doi: 10.1042/bj0860541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gray H. B., Malmström B. G. Long-range electron transfer in multisite metalloproteins. Biochemistry. 1989 Sep 19;28(19):7499–7505. doi: 10.1021/bi00445a001. [DOI] [PubMed] [Google Scholar]
  9. Greenwood C., Brittain T. Studies on partially reduced mammalian cytochrome oxidase reactions with ferrocytochrome c. Biochem J. 1976 Sep 1;157(3):591–598. doi: 10.1042/bj1570591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kobayashi K., Une H., Hayashi K. Electron transfer process in cytochrome oxidase after pulse radiolysis. J Biol Chem. 1989 May 15;264(14):7976–7980. [PubMed] [Google Scholar]
  11. Lindsay J. G., Owen C. S., Wilson D. F. The invisible copper of cytochrome c oxidase. pH and ATP dependence of its midpoint potential and its role in the oxygen reaction. Arch Biochem Biophys. 1975 Aug;169(2):492–505. doi: 10.1016/0003-9861(75)90192-7. [DOI] [PubMed] [Google Scholar]
  12. Michel B., Bosshard H. R. Oxidation of cytochrome c by cytochrome c oxidase: spectroscopic binding studies and steady-state kinetics support a conformational transition mechanism. Biochemistry. 1989 Jan 10;28(1):244–252. doi: 10.1021/bi00427a034. [DOI] [PubMed] [Google Scholar]
  13. Sarti P., Antonini G., Malatesta F., Vallone B., Brunori M. Is the internal electron transfer the rate-limiting step in the catalytic cycle of cytochrome c oxidase? Ann N Y Acad Sci. 1988;550:161–166. doi: 10.1111/j.1749-6632.1988.tb35332.x. [DOI] [PubMed] [Google Scholar]
  14. Wilson M. T., Peterson J., Antonini E., Brunori M., Colosimo A., Wyman J. A plausible two-state model for cytochrome c oxidase. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7115–7118. doi: 10.1073/pnas.78.11.7115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. YONETANI T. Studies on cytochrome oxidase. III. Improved preparation and some properties. J Biol Chem. 1961 Jun;236:1680–1688. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES