Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1968 Aug;16(8):1124–1131. doi: 10.1128/am.16.8.1124-1131.1968

Method for Measuring Microbial Growth in Rumen Content

D J Walker 1, C J Nader 1
PMCID: PMC547605  PMID: 5675502

Abstract

Radioactive sodium sulfide was used to label the sulfide pool of rumen contents in vitro. Microbial protein synthesis was calculated from the size and rate of dilution of label in the sulfide pool, and from the radioactivity incorporated into protein together with a conversion factor specifying the nitrogen-sulfur ratio determined for microbial protein. The microbial cell yield, calculated on the basis of the adenosine triphosphate (ATP) available from fermentation, was 13 to 14 g (dry weight) per mole of ATP, which is in good agreement with the values obtained for pure cultures of bacteria. Calculation of microbial protein yield per kilogram of ration agreed fairly well with previous estimates for similar rations.

Full text

PDF
1124

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
  2. BLOCK R. J., STEKOL J. A., LOOSLI J. K. Synthesis of sulfur amino acids from inorganic sulfate by ruminants. II. Synthesis of cystine and methionine from sodium sulfate by the goat and by the microorganisms of the rumen of the ewe. Arch Biochem Biophys. 1951 Oct;33(3):353–363. doi: 10.1016/0003-9861(51)90123-3. [DOI] [PubMed] [Google Scholar]
  3. Coleman G. S. The metabolism of the amino acids of Escherichia coli and other bacteria by the rumen ciliate Entodinium caudatum. J Gen Microbiol. 1967 Jun;47(3):449–464. doi: 10.1099/00221287-47-3-449. [DOI] [PubMed] [Google Scholar]
  4. LEWIS D. Amino-acid metabolism in the rumen of the sheep. Br J Nutr. 1955;9(3):215–230. doi: 10.1079/bjn19550035. [DOI] [PubMed] [Google Scholar]
  5. LEWIS D. The reduction of sulphate in the rumen of the sheep. Biochem J. 1954 Mar;56(3):391–399. doi: 10.1042/bj0560391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. McDONALD I. W. The extent of conversion of food protein to microbial protein in the rumen of the sheep. Biochem J. 1954 Jan;56(1):120–125. doi: 10.1042/bj0560120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Portugal A. V., Sutherland T. M. Metabolism of glutamic and aspartic acids in whole rumen contents. Nature. 1966 Jan 29;209(5022):510–511. doi: 10.1038/209510a0. [DOI] [PubMed] [Google Scholar]
  8. WELLER R. A., GRAY F. V., PILGRIM A. F. The conversion of plant nitrogen to microbial nitrogen in the rumen of the sheep. Br J Nutr. 1958;12(4):421–429. doi: 10.1079/bjn19580056. [DOI] [PubMed] [Google Scholar]
  9. WELLER R. A., PILGRIM A. F., GRAY F. V. Digestion of foodstuffs in the rumen of the sheep and the passage of digesta through its compartments. 3. The progress of nitrogen digestion. Br J Nutr. 1962;16:83–90. doi: 10.1079/bjn19620009. [DOI] [PubMed] [Google Scholar]
  10. Wright D. E., Hungate R. E. Amino acid concentrations in rumen fluid. Appl Microbiol. 1967 Jan;15(1):148–151. doi: 10.1128/am.15.1.148-151.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wright D. E., Hungate R. E. Metabolism of glycine by rumen microorganisms. Appl Microbiol. 1967 Jan;15(1):152–157. doi: 10.1128/am.15.1.152-157.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. el-Shazly K., Hungate R. E. Method for measuring diaminopimelic acid in total rumen contents and its application to the estimation of bacterial growth. Appl Microbiol. 1966 Jan;14(1):27–30. doi: 10.1128/am.14.1.27-30.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES