Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Oct;87(19):7507–7511. doi: 10.1073/pnas.87.19.7507

Growth hormone and adipose differentiation: growth hormone-induced antimitogenic state in 3T3-F442A preadipose cells.

R E Corin 1, S Guller 1, K Y Wu 1, M Sonenberg 1
PMCID: PMC54776  PMID: 2217181

Abstract

An additional activity for pituitary growth hormone is described--i.e., the in vitro induction of an antimitogenic state in murine 3T3-F442A preadipocyte fibroblasts. We previously developed a serum-free, hormonally defined medium permissive for the adipose differentiation of 3T3-F442A cells. When 3T3-F442A fibroblasts were maintained in serum-free medium without insulin but with growth hormone (2 nM), typical adipose differentiation did not occur. However, we found that growth hormone induced a state of cellular refractoriness to the mitogenic stimulus of fetal bovine serum as assayed by de novo DNA synthesis. The mitogen refractory condition (i.e., the antimitogenic state) was time-dependent (half maximal at approximately 2.5 days) and growth hormone concentration-dependent (half maximal and maximal at approximately 0.05 and 2.0 nM, respectively). The antimitogenic state was specifically induced by growth hormone and was not mediated by insulin-like growth factor I or prolactin. The growth hormone-induced antimitogenic state was completely reversible. The antimitogenic state was not induced by growth hormone in 3T3-C2 cells, a sister clone of 3T3 cells that exhibits essentially no adipose conversion. The kinetics for growth hormone-dependent commitment to adipose differentiation and induction of the antimitogenic state were similar. We suggest a relationship of growth hormone-induced antimitogenic state and the growth hormone-induced adipose differentiation of 3T3-F442A cells.

Full text

PDF
7507

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Free C. A., Sonenberg M. Separation and properties of multiple components of bovine growth hormone. J Biol Chem. 1966 Nov 10;241(21):5076–5082. [PubMed] [Google Scholar]
  2. Green H., Kehinde O. Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J Cell Physiol. 1979 Oct;101(1):169–171. doi: 10.1002/jcp.1041010119. [DOI] [PubMed] [Google Scholar]
  3. Guller S., Corin R. E., Mynarcik D. C., London B. M., Sonenberg M. Role of insulin in growth hormone-stimulated 3T3 cell adipogenesis. Endocrinology. 1988 May;122(5):2084–2089. doi: 10.1210/endo-122-5-2084. [DOI] [PubMed] [Google Scholar]
  4. Guller S., Corin R. E., Wu K. Y., Sonenberg M. Growth hormone-induced alteration of morphology and tubulin expression in 3T3 preadipose cells. Biochem Biophys Res Commun. 1989 Sep 15;163(2):895–901. doi: 10.1016/0006-291x(89)92306-1. [DOI] [PubMed] [Google Scholar]
  5. Guller S., Sonenberg M., Wu K. Y., Szabo P., Corin R. E. Growth hormone-dependent events in the adipose differentiation of 3T3-F442A fibroblasts: modulation of macromolecular synthesis. Endocrinology. 1989 Nov;125(5):2360–2367. doi: 10.1210/endo-125-5-2360. [DOI] [PubMed] [Google Scholar]
  6. Harrington M. A., Pledger W. J. Characterization of growth factor-modulated events regulating cellular proliferation. Methods Enzymol. 1987;147:400–407. doi: 10.1016/0076-6879(87)47129-2. [DOI] [PubMed] [Google Scholar]
  7. Hayashi I., Nixon T., Morikawa M., Green H. Adipogenic and anti-adipogenic factors in the pituitary and other organs. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3969–3972. doi: 10.1073/pnas.78.6.3969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kuri-Harcuch W., Green H. Adipose conversion of 3T3 cells depends on a serum factor. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6107–6109. doi: 10.1073/pnas.75.12.6107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lindahl A., Nilsson A., Isaksson O. G. Effects of growth hormone and insulin-like growth factor-I on colony formation of rabbit epiphyseal chondrocytes at different stages of maturation. J Endocrinol. 1987 Nov;115(2):263–271. doi: 10.1677/joe.0.1150263. [DOI] [PubMed] [Google Scholar]
  10. Miska D., Bosmann H. B. Existence of an upper-limit to elongation of the prereplicative period in confluent cultures of C3H/10T 1/2 cells. Biochem Biophys Res Commun. 1980 Apr 29;93(4):1140–1145. doi: 10.1016/0006-291x(80)90608-7. [DOI] [PubMed] [Google Scholar]
  11. Morikawa M., Green H., Lewis U. J. Activity of human growth hormone and related polypeptides on the adipose conversion of 3T3 cells. Mol Cell Biol. 1984 Feb;4(2):228–231. doi: 10.1128/mcb.4.2.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morikawa M., Nixon T., Green H. Growth hormone and the adipose conversion of 3T3 cells. Cell. 1982 Jul;29(3):783–789. doi: 10.1016/0092-8674(82)90440-8. [DOI] [PubMed] [Google Scholar]
  13. Nilsson A., Isgaard J., Lindahl A., Dahlström A., Skottner A., Isaksson O. G. Regulation by growth hormone of number of chondrocytes containing IGF-I in rat growth plate. Science. 1986 Aug 1;233(4763):571–574. doi: 10.1126/science.3523759. [DOI] [PubMed] [Google Scholar]
  14. Pairault J., Green H. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5138–5142. doi: 10.1073/pnas.76.10.5138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  16. Shipley G. D., Tucker R. F., Moses H. L. Type beta transforming growth factor/growth inhibitor stimulates entry of monolayer cultures of AKR-2B cells into S phase after a prolonged prereplicative interval. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4147–4151. doi: 10.1073/pnas.82.12.4147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith P. J., Wise L. S., Berkowitz R., Wan C., Rubin C. S. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem. 1988 Jul 5;263(19):9402–9408. [PubMed] [Google Scholar]
  18. Sparks R. L., Scott R. E. Transforming growth factor type beta is a specific inhibitor of 3T3 T mesenchymal stem cell differentiation. Exp Cell Res. 1986 Aug;165(2):345–352. doi: 10.1016/0014-4827(86)90588-4. [DOI] [PubMed] [Google Scholar]
  19. Sugihara H., Yonemitsu N., Miyabara S., Toda S. Proliferation of unilocular fat cells in the primary culture. J Lipid Res. 1987 Sep;28(9):1038–1045. [PubMed] [Google Scholar]
  20. Sugihara H., Yonemitsu N., Miyabara S., Yun K. Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation. 1986;31(1):42–49. doi: 10.1111/j.1432-0436.1986.tb00381.x. [DOI] [PubMed] [Google Scholar]
  21. TODARO G. J., GREEN H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963 May;17:299–313. doi: 10.1083/jcb.17.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wier M. L., Scott R. E. Defective control of terminal differentiation and its role in carcinogenesis in the 3T3 T proadipocyte stem cell line. Cancer Res. 1985 Jul;45(7):3339–3346. [PubMed] [Google Scholar]
  23. Wille J. J., Jr, Scott R. E. Topography of the predifferentiation GD growth arrest state relative to other growth arrest states in the G1 phase of the cell cycle. J Cell Physiol. 1982 Jul;112(1):115–122. doi: 10.1002/jcp.1041120117. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES