Abstract
An additional activity for pituitary growth hormone is described--i.e., the in vitro induction of an antimitogenic state in murine 3T3-F442A preadipocyte fibroblasts. We previously developed a serum-free, hormonally defined medium permissive for the adipose differentiation of 3T3-F442A cells. When 3T3-F442A fibroblasts were maintained in serum-free medium without insulin but with growth hormone (2 nM), typical adipose differentiation did not occur. However, we found that growth hormone induced a state of cellular refractoriness to the mitogenic stimulus of fetal bovine serum as assayed by de novo DNA synthesis. The mitogen refractory condition (i.e., the antimitogenic state) was time-dependent (half maximal at approximately 2.5 days) and growth hormone concentration-dependent (half maximal and maximal at approximately 0.05 and 2.0 nM, respectively). The antimitogenic state was specifically induced by growth hormone and was not mediated by insulin-like growth factor I or prolactin. The growth hormone-induced antimitogenic state was completely reversible. The antimitogenic state was not induced by growth hormone in 3T3-C2 cells, a sister clone of 3T3 cells that exhibits essentially no adipose conversion. The kinetics for growth hormone-dependent commitment to adipose differentiation and induction of the antimitogenic state were similar. We suggest a relationship of growth hormone-induced antimitogenic state and the growth hormone-induced adipose differentiation of 3T3-F442A cells.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Free C. A., Sonenberg M. Separation and properties of multiple components of bovine growth hormone. J Biol Chem. 1966 Nov 10;241(21):5076–5082. [PubMed] [Google Scholar]
- Green H., Kehinde O. Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J Cell Physiol. 1979 Oct;101(1):169–171. doi: 10.1002/jcp.1041010119. [DOI] [PubMed] [Google Scholar]
- Guller S., Corin R. E., Mynarcik D. C., London B. M., Sonenberg M. Role of insulin in growth hormone-stimulated 3T3 cell adipogenesis. Endocrinology. 1988 May;122(5):2084–2089. doi: 10.1210/endo-122-5-2084. [DOI] [PubMed] [Google Scholar]
- Guller S., Corin R. E., Wu K. Y., Sonenberg M. Growth hormone-induced alteration of morphology and tubulin expression in 3T3 preadipose cells. Biochem Biophys Res Commun. 1989 Sep 15;163(2):895–901. doi: 10.1016/0006-291x(89)92306-1. [DOI] [PubMed] [Google Scholar]
- Guller S., Sonenberg M., Wu K. Y., Szabo P., Corin R. E. Growth hormone-dependent events in the adipose differentiation of 3T3-F442A fibroblasts: modulation of macromolecular synthesis. Endocrinology. 1989 Nov;125(5):2360–2367. doi: 10.1210/endo-125-5-2360. [DOI] [PubMed] [Google Scholar]
- Harrington M. A., Pledger W. J. Characterization of growth factor-modulated events regulating cellular proliferation. Methods Enzymol. 1987;147:400–407. doi: 10.1016/0076-6879(87)47129-2. [DOI] [PubMed] [Google Scholar]
- Hayashi I., Nixon T., Morikawa M., Green H. Adipogenic and anti-adipogenic factors in the pituitary and other organs. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3969–3972. doi: 10.1073/pnas.78.6.3969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuri-Harcuch W., Green H. Adipose conversion of 3T3 cells depends on a serum factor. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6107–6109. doi: 10.1073/pnas.75.12.6107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindahl A., Nilsson A., Isaksson O. G. Effects of growth hormone and insulin-like growth factor-I on colony formation of rabbit epiphyseal chondrocytes at different stages of maturation. J Endocrinol. 1987 Nov;115(2):263–271. doi: 10.1677/joe.0.1150263. [DOI] [PubMed] [Google Scholar]
- Miska D., Bosmann H. B. Existence of an upper-limit to elongation of the prereplicative period in confluent cultures of C3H/10T 1/2 cells. Biochem Biophys Res Commun. 1980 Apr 29;93(4):1140–1145. doi: 10.1016/0006-291x(80)90608-7. [DOI] [PubMed] [Google Scholar]
- Morikawa M., Green H., Lewis U. J. Activity of human growth hormone and related polypeptides on the adipose conversion of 3T3 cells. Mol Cell Biol. 1984 Feb;4(2):228–231. doi: 10.1128/mcb.4.2.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morikawa M., Nixon T., Green H. Growth hormone and the adipose conversion of 3T3 cells. Cell. 1982 Jul;29(3):783–789. doi: 10.1016/0092-8674(82)90440-8. [DOI] [PubMed] [Google Scholar]
- Nilsson A., Isgaard J., Lindahl A., Dahlström A., Skottner A., Isaksson O. G. Regulation by growth hormone of number of chondrocytes containing IGF-I in rat growth plate. Science. 1986 Aug 1;233(4763):571–574. doi: 10.1126/science.3523759. [DOI] [PubMed] [Google Scholar]
- Pairault J., Green H. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5138–5142. doi: 10.1073/pnas.76.10.5138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
- Shipley G. D., Tucker R. F., Moses H. L. Type beta transforming growth factor/growth inhibitor stimulates entry of monolayer cultures of AKR-2B cells into S phase after a prolonged prereplicative interval. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4147–4151. doi: 10.1073/pnas.82.12.4147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. J., Wise L. S., Berkowitz R., Wan C., Rubin C. S. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem. 1988 Jul 5;263(19):9402–9408. [PubMed] [Google Scholar]
- Sparks R. L., Scott R. E. Transforming growth factor type beta is a specific inhibitor of 3T3 T mesenchymal stem cell differentiation. Exp Cell Res. 1986 Aug;165(2):345–352. doi: 10.1016/0014-4827(86)90588-4. [DOI] [PubMed] [Google Scholar]
- Sugihara H., Yonemitsu N., Miyabara S., Toda S. Proliferation of unilocular fat cells in the primary culture. J Lipid Res. 1987 Sep;28(9):1038–1045. [PubMed] [Google Scholar]
- Sugihara H., Yonemitsu N., Miyabara S., Yun K. Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation. 1986;31(1):42–49. doi: 10.1111/j.1432-0436.1986.tb00381.x. [DOI] [PubMed] [Google Scholar]
- TODARO G. J., GREEN H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963 May;17:299–313. doi: 10.1083/jcb.17.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wier M. L., Scott R. E. Defective control of terminal differentiation and its role in carcinogenesis in the 3T3 T proadipocyte stem cell line. Cancer Res. 1985 Jul;45(7):3339–3346. [PubMed] [Google Scholar]
- Wille J. J., Jr, Scott R. E. Topography of the predifferentiation GD growth arrest state relative to other growth arrest states in the G1 phase of the cell cycle. J Cell Physiol. 1982 Jul;112(1):115–122. doi: 10.1002/jcp.1041120117. [DOI] [PubMed] [Google Scholar]