Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Oct;87(19):7583–7587. doi: 10.1073/pnas.87.19.7583

In vitro desensitization of isolated nephron segments to vasopressin.

I Dublineau 1, P Pradelles 1, C de Rouffignac 1, J M Elalouf 1
PMCID: PMC54792  PMID: 1699229

Abstract

Recent studies have demonstrated that in vivo administration of 1-deamino-8-D-arginine-vasopressin, an analog of arginine-8-vasopressin, induces homologous desensitization to vasopressin in the thick ascending limb of the loop of Henle. Desensitization has been documented by a decreased physiological response to vasopressin in vivo and by a reduced cAMP accumulation in the cortical thick ascending limb (CTAL). By measuring cAMP content in single isolated medullary thick ascending limbs (MTALs), we now report that desensitization can occur all along the thick ascending limb and, more importantly, that it can also be induced in vitro. In a first series of experiments, we observed that 1 hr after in vivo injection of 1-deamino-8-D-arginine-vasopressin, MTALs were desensitized by 80% to vasopressin, whereas the effects of the other hormones acting on the same cyclase pool (glucagon, calcitonin) were fully maintained. In a second set of experiments, desensitization was induced in vitro by vasopressin, the natural hormone. A 60-min preincubation of MTALs with vasopressin caused a marked (up to 86%) and highly reproducible desensitization. The process was dose and time dependent. The apparent Ka for desensitization was 0.2 nM, and the half-maximal effect was obtained within 20 min. The desensitization induced in vitro by vasopressin was again essentially homologous in nature, with 80% of the maximal stimulation of cAMP accumulation being obtained in the presence of glucagon. Desensitization to vasopressin was observed in the presence and absence of indomethacin, indicating that it is independent of prostaglandin synthesis. It is concluded that (i) vasopressin and its analog 1-deamino-8-D-arginine-vasopressin cause marked desensitization in the CTAL and MTAL and (ii) the low vasopressin concentrations required to induce desensitization and the rapid onset of the process suggest that it has a physiological significance.

Full text

PDF
7583

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chabardès D., Brick-Ghannam C., Montégut M., Siaume-Perez S. Effect of PGE2 and alpha-adrenergic agonists on AVP-dependent cAMP levels in rabbit and rat CCT. Am J Physiol. 1988 Jul;255(1 Pt 2):F43–F48. doi: 10.1152/ajprenal.1988.255.1.F43. [DOI] [PubMed] [Google Scholar]
  2. Chabardès D., Montégut M., Imbert-Teboul M., Morel F. Inhibition of alpha 2-adrenergic agonists on AVP-induced cAMP accumulation in isolated collecting tubule of the rat kidney. Mol Cell Endocrinol. 1984 Oct;37(3):263–275. doi: 10.1016/0303-7207(84)90096-0. [DOI] [PubMed] [Google Scholar]
  3. Clark R. B., Kunkel M. W., Friedman J., Goka T. J., Johnson J. A. Activation of cAMP-dependent protein kinase is required for heterologous desensitization of adenylyl cyclase in S49 wild-type lymphoma cells. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1442–1446. doi: 10.1073/pnas.85.5.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dublineau I., Elalouf J. M., Pradelles P., de Rouffignac C. Independent desensitization of rat renal thick ascending limbs and collecting ducts to ADH. Am J Physiol. 1989 Apr;256(4 Pt 2):F656–F663. doi: 10.1152/ajprenal.1989.256.4.F656. [DOI] [PubMed] [Google Scholar]
  5. Elalouf J. M., Di Stefano A., de Rouffignac C. Sensitivities of rat kidney thick ascending limbs and collecting ducts to vasopressin in vivo. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2276–2280. doi: 10.1073/pnas.83.7.2276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elalouf J. M., Sari D. C., Roinel N., de Rouffignac C. Desensitization of rat renal thick ascending limb cells to vasopressin. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2407–2411. doi: 10.1073/pnas.85.7.2407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frindt G., Burg M. B. Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int. 1972 Apr;1(4):224–231. doi: 10.1038/ki.1972.32. [DOI] [PubMed] [Google Scholar]
  8. Hall D. A., Varney D. M. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle's loop. J Clin Invest. 1980 Oct;66(4):792–802. doi: 10.1172/JCI109917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hausdorff W. P., Bouvier M., O'Dowd B. F., Irons G. P., Caron M. G., Lefkowitz R. J. Phosphorylation sites on two domains of the beta 2-adrenergic receptor are involved in distinct pathways of receptor desensitization. J Biol Chem. 1989 Jul 25;264(21):12657–12665. [PubMed] [Google Scholar]
  10. Imbert-Teboul M., Chabardès D., Montégut M., Clique A., Morel F. Vasopressin-dependent adenylate cyclase activities in the rat kidney medulla: evidence for two separate sites of action. Endocrinology. 1978 Apr;102(4):1254–1261. doi: 10.1210/endo-102-4-1254. [DOI] [PubMed] [Google Scholar]
  11. Morel F., Chabardès D., Imbert-Teboul M., Le Bouffant F., Hus-Citharel A., Montégut M. Multiple hormonal control of adenylate cyclase in distal segments of the rat kidney. Kidney Int Suppl. 1982 May;11:S55–S62. [PubMed] [Google Scholar]
  12. Roy C., Guillon G., Jard S. Hormone-dependent desensitization of vasopressin-sensitive adenylate cyclase. Biochem Biophys Res Commun. 1976 Oct 18;72(4):1265–1270. doi: 10.1016/s0006-291x(76)80151-9. [DOI] [PubMed] [Google Scholar]
  13. Roy C., Hall D., Karish M., Ausiello D. A. Relationship of (8-lysine) vasopressin receptor transition to receptor functional properties in a pig kidney cell line (LLC-PK1). J Biol Chem. 1981 Apr 10;256(7):3423–3427. [PubMed] [Google Scholar]
  14. Sibley D. R., Benovic J. L., Caron M. G., Lefkowitz R. J. Regulation of transmembrane signaling by receptor phosphorylation. Cell. 1987 Mar 27;48(6):913–922. doi: 10.1016/0092-8674(87)90700-8. [DOI] [PubMed] [Google Scholar]
  15. Sibley D. R., Daniel K., Strader C. D., Lefkowitz R. J. Phosphorylation of the beta-adrenergic receptor in intact cells: relationship to heterologous and homologous mechanisms of adenylate cyclase desensitization. Arch Biochem Biophys. 1987 Oct;258(1):24–32. doi: 10.1016/0003-9861(87)90318-3. [DOI] [PubMed] [Google Scholar]
  16. Sibley D. R., Lefkowitz R. J. Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature. 1985 Sep 12;317(6033):124–129. doi: 10.1038/317124a0. [DOI] [PubMed] [Google Scholar]
  17. Star R. A., Nonoguchi H., Balaban R., Knepper M. A. Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest. 1988 Jun;81(6):1879–1888. doi: 10.1172/JCI113534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Takaichi K., Kurokawa K. Inhibitory guanosine triphosphate-binding protein-mediated regulation of vasopressin action in isolated single medullary tubules of mouse kidney. J Clin Invest. 1988 Oct;82(4):1437–1444. doi: 10.1172/JCI113749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tomita K., Pisano J. J., Burg M. B., Knepper M. A. Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway. J Clin Invest. 1986 Jan;77(1):136–141. doi: 10.1172/JCI112268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Torikai S., Kurokawa K. Effect of PGE2 on vasopressin-dependent cell cAMP in isolated single nephron segments. Am J Physiol. 1983 Jul;245(1):F58–F66. doi: 10.1152/ajprenal.1983.245.1.F58. [DOI] [PubMed] [Google Scholar]
  21. Wilson P. D., Dixon B. S., Dillingham M. A., Garcia-Sainz J. A., Anderson R. J. Pertussis toxin prevents homologous desensitization of adenylate cyclase in cultured renal epithelial cells. J Biol Chem. 1986 Feb 5;261(4):1503–1506. [PubMed] [Google Scholar]
  22. Wittner M., di Stefano A., Wangemann P., Nitschke R., Greger R., Bailly C., Amiel C., Roinel N., de Rouffignac C. Differential effects of ADH on sodium, chloride, potassium, calcium and magnesium transport in cortical and medullary thick ascending limbs of mouse nephron. Pflugers Arch. 1988 Oct;412(5):516–523. doi: 10.1007/BF00582541. [DOI] [PubMed] [Google Scholar]
  23. de Rouffignac C., Elalouf J. M., Roinel N. Physiological control of the urinary concentrating mechanism by peptide hormones. Kidney Int. 1987 Feb;31(2):611–620. doi: 10.1038/ki.1987.42. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES