Abstract
We developed a strategy to harness alkyl amines as alkylating agents via C–N bond activation. This Suzuki–Miyaura cross coupling of alkyl pyridinium salts, readily formed from primary amines, is the first example of a metal-catalyzed cross coupling via C–N bond activation of an amine with an unactivated alkyl group. This reaction enjoys broad scope and functional group tolerance. Primary and secondary alkyl groups can be installed. Preliminary studies suggest a NiI/NiIII catalytic cycle.
Graphical Abstract

Primary amines are prevalent across a wide range of molecules, from simple building blocks and synthetic intermediates, to biomolecules, drugs, and natural products (Scheme 1A).1 The amino (NH2) group is easily installed, is amenable to late-stage functionalization, and offers advantages such as purification via acid/base extraction. Although these benefits are well appreciated in the synthesis of nitrogen-containing products, alkyl amines have yet to be broadly recognized as alkylating agents. We envisioned that this underutilized reactivity of alkyl amines could be unlocked via metal-catalyzed C–N bond activation in a cross coupling. However, few cross couplings employ amine derivatives (Scheme 1B).2 Cross couplings have been achieved via cleavage of various Csp2–N bonds.3 For Csp3–N bonds, electronically activated (benzylic and allylic) and strain-activated (aziridinyl) C–N bonds have been employed.4 However, there are no cross couplings of an alkyl amine derivative with an unactivated alkyl group.
Scheme 1.

Alkyl amines and their potential in the context of cross-coupling reactions
In contrast, intense efforts have identified other reagents to install alkyl groups lacking activation (Scheme 1C).5 Following pioneering developments with alkyl halides,6 pseudohalides,6n, 7 and organometallic nucleophiles,8 dual photoredox/nickel catalysis has enabled use of oxalates,9 carboxylic acids,10 1,4-dihydropyridines,11 organoboronates,12 and organosilicates.13 Redox-active esters are also potent alkylating agents without need for a photocatalyst.14
Cross coupling an alkyl amine derivative would offer exciting complimentary opportunities in synthesis and late-stage functionalization. Our previous efforts toward C–N activation relied on benzylic trimethylammonium salts, in which chemoselectivity for the benzylic C–N bond is achieved via electronic activation.4a–c Due to the similarity of the alkyl groups and diminished reactivity of non-benzylic C–N bonds, activation of nonbenzylic alkyl amines required a new strategy. Toward this goal, we were drawn to Katritzky pyridinium salts (3, Scheme 1D).3b, 15 These air- and moisture-stable solids are easily prepared in a single step via condensation of a primary amine with commercially available 2,4,6-triphenylpyrylium tetrafluoroborate.16 Unlike pyridinium cations lacking 2,6-substitution, which undergo addition to the pyridinium ring,17 these pyridinium salts have been employed as alkyl electrophiles in non-metal-catalyzed transformations via SN218 or radical mechanisms.15a, 19 We envisioned that they would also serve as alkyl electrophiles in metal-catalyzed cross couplings, particularly Suzuki–Miyaura reactions with commercially available and functional group tolerant aryl boronic acids.20 Herein, we report the first example of a metal-catalyzed cross coupling via C–N bond activation of an amine derivative with an unactivated alkyl group. This reaction enjoys broad scope and functional group tolerance in the alkyl pyridinium and (hetero)aryl boronic acid. Both primary and secondary alkyl groups can be installed.
Optimization began with the cross coupling of pyridinium 3a and p-tolylboronic acid. Conditions similar to those for benzyl trimethylammonium triflates gave only 6% yield (Table 1, entry 1).4a However, with bathophenanthroline (BPhen) as ligand, the yield increased (entry 2). KOtBu as base also led to improvement (entry 3). The use of inexpensive, air- and moisture-stable Ni(OAc)2·4H2O gave increased yield, enabling set-up without an inert atmosphere glovebox (entry 4). Further improvement was realized by premixing Ni(OAc)2·4H2O and BPhen before the reaction (entry 5). Suspecting solubility was important, EtOH was added, giving 81% yield (entry 6). Not surprisingly, KOEt can be used (entry 7). Ni(OAc)2·4H2O, BPhen, and KOtBu are necessary (entries 8, 9, and 11). Replacing BPhen with bipy decreases yield (entry 10), as does K3PO4 instead of KOtBu (entry 12).
Table 1.
Optimizationa
| ||||
|---|---|---|---|---|
| entry | [Ni] | ligand | base | yield (%)b |
| 1 | Ni(cod)2 | PPh2Cy | K3PO4 | 6 |
| 2 | Ni(cod)2 | BPhen | K3PO4 | 21 |
| 3 | Ni(cod)2 | BPhen | KOtBu | 24 |
| 4 | Ni(OAc)2·4H2O | BPhen | KOtBu | 39 |
| 5c | Ni(OAc)2·4H2O | BPhen | KOtBu | 52 |
| 6c,d | Ni(OAc)2·4H2O | BPhen | KOtBu | 81 |
| 7c,d | Ni(OAc)2·4H2O | BPhen | KOEt | 68 |
| 8c,d | – | BPhen | KOtBu | 0 |
| 9c,d | Ni(OAc)2·4H2O | – | KOtBu | 0 |
| 10c,d | Ni(OAc)2·4H2O | bipy | KOtBu | 54 |
| 11c,d | Ni(OAc)2·4H2O | BPhen | – | 0 |
| 12c,d | Ni(OAc)2·4H2O | BPhen | K3PO4 | 3 |
Conditions: pyridinium salt 3a (0.1 mmol), [Ni] (10 mol %), ligand (24 mol %), p-TolB(OH)2 (3.0 equiv), base (3.4 equiv), dioxane (0.1 M), 60 °C, 24 h.
Determined by 1H NMR using 1,3,5-trimethoxybenzene as internal standard.
Two mixtures (Vial 1: [Ni], BPhen, dioxane. Vial 2: p-TolB(OH)2, KOtBu, EtOH, dioxane. 3a in either vial.) were stirred for 1 h before combining.
EtOH (5 equiv) added.
Under optimized conditions, we observed broad scope of alkyl pyridinium salts (Scheme 2). The reaction is somewhat tolerant of moisture and can be set up without oven-dried glassware, but low yield was observed when only minimal precautions were taken against air and moisture (6).16 Both primary and secondary (cyclic and acyclic) alkyl groups work. β-Substituted alkyl groups can be installed, including enantioenriched examples with β-stereocenters (17). Many functional groups, including ethers, silyl ethers, acetals, and esters, were well tolerated. Excitingly, unlike trimethylammonium substrates, this strategy is selective for primary amines; pyridinium formation and cross coupling does not affect tertiary or Boc-protected amines. Heterocycles, including piperidines, piperazines, and morpholine, can be used.
Scheme 2.

Reaction scope
aConditions: pyridinium salt 3 (1.0 mmol), Ni(OAc)2·4H2O (10 mol %), BPhen (24 mol %), ArB(OH)2 (3.0 equiv), KOt-Bu (3.4 equiv), EtOH (5 equiv), dioxane (0.1 M), 60 °C, 24 h. Average isolated yields (±6%) from duplicate experiments. bSingle experiment. cGlassware not oven-dried before use. dMinimal precautions to protect from air and moisture (see Supporting Information). e0.5-mmol scale. f0.05-mmol scale. p-(CF3)C6H4OH (2 equiv) added. Yield determined by 1H NMR using 1,3,5-(OMe)3C6H3 as internal standard. g12 mol % BPhen, dioxane (0.025 M).
Several products demonstrate the utility of this chemistry to create novel, potentially bioactive compounds from natural or synthetic molecules (Scheme 2). Products 16 and 17 are derived from proline and isoleucine, respectively. The synthesis of 17, which required only 4 steps from N-Boc isoleucine, is representative of the ease of synthesis enabled by this cross coupling. Cross coupling of the amino side chain of N-Boc lysine also proceeded in good yield, albeit poor conservation of ee (18). However, a much higher ee, but lower yield, was observed with the use of an acidic additive, suggesting conditions can be identified to solve this problem.21 Products 19 and 20 are derived from an amine intermediate in the synthesis of Mosapride, a treatment for gastrointestinal disorders.22 Product 29 derives from an amine intermediate used in the synthesis of Lipitor®, an anti-cholesterol drug.23
Broad scope was also achieved with the aryl boronic acid. Various functionalities were tolerated, including aryl chlorides (7) and fluorides (14, 16), methyl ketones (8, 12), esters (9), amides (10), ethers (11, 17), alkenes (13), silyl-protected alkynes (18), acetals (19), and nitriles (20). Given the prevalence of heterocycles in bioactive molecules, we investigated heteroarylboronic acids. N-Methyl indole was easily installed (15). Pyridyl boronic acids can also be used under slightly altered conditions (21–29). Both 3- and 4-pyridyl groups work, including those with fluoride, ether, and morpholino substituents. Notably, 2-fluoropyridines 21, 25, and 29 are primed for elaboration via SNAr chemistry. Unsubstituted pyridyl was also successful (23).
This cross coupling could proceed via a Ni0/II or NiI/III cycle. A Ni0/II mechanism would involve two-electron oxidative addition (SN1 or SN2), whereas a NiI/III cycle would proceed via single-electron transfer (SET) from a NiI intermediate to the pyridinium. Although pyridinium salts undergo SN2 reactions,18 they are also single-electron acceptors,15a and have been exploited as photosensitizers24 and sources of nitrogen radicals.25 Also, cross coupling of 3p, prepared from(S)-2-aminooctane, resulted in racemic 30; cross coupling of cyclopropane 3q gave ring-opened 31; and addition of TEMPO provided trapped product 32 (Scheme 3). These results, the superiority of bipyridyl ligands, which are often employed in NiI/III catalysis,5 and the fact that NiII precursors outcompete Ni0 suggest a SET mechanism (Scheme 4). Similarly to redox-active esters, pyridinium 3 undergoes SET with a Ni(I) intermediate, triggering fragmentation to give alkyl radical B, which recombines with an arylnickel(II) intermediate to give NiIII species C. Reductive elimination provides 4. Both monometallic “transmetallation-first” and radical chain bimetallic SET oxidative addition are known; we cannot currently distinguish these possibilities.6w, 26
Scheme 3.

Mechanistic experiments
Scheme 4.

Mechanistic proposal
In sum, we developed a nickel-catalyzed cross coupling of alkyl pyridinium salts with aryl boronic acids. When combined with efficient formation of pyridinium salts from primary amines, this method enables transformation of primary alkyl amines to alkyl arenes. This reaction is the first cross coupling to install unactivated alkyl groups via C–N bond activation. Additional highlights include selectivity for primary amines, broad scope for primary and secondary alkyl groups, and wide tolerance of functional groups and heterocycles. Mechanistic experiments suggest a NiI/III cycle. Current efforts are underway to expand the scope and utility of this chemistry, which we hope will find broad use in synthesis and late-stage functionalization of alkyl amines.
Supplementary Material
Acknowledgments
We thank NIH R01 GM111820, UD for University Graduate (CHB) and Summer Scholars (JP) Fellowships, and the Plastino Alumni Undergraduate Research Fellowship program (JP). Data were acquired at UD on instruments obtained with assistance of NSF and NIH funding (NSF CHE0421224, CHE1229234, CHE0840401, and CHE1048367; NIH P20 GM104316, P20 GM103541, and S10 OD016267).
Footnotes
Supporting Information. The Supporting Information is available free of charge on the ACS Publications website. Experimental details and data (PDF)
References
- 1.(a) Ruiz-Castillo P, Buchwald SL. Chem Rev. 2016;116:12564. doi: 10.1021/acs.chemrev.6b00512. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) McGrath NA, Brichacek M, Njardarson JT. J Chem Educ. 2010;87:1348. [Google Scholar]; (c) Liu Y, Ge H. Nat Chem. 2017;9:26. [Google Scholar]
- 2.Ouyang K, Hao W, Zhang WX, Xi Z. Chem Rev. 2015;115:12045. doi: 10.1021/acs.chemrev.5b00386. [DOI] [PubMed] [Google Scholar]
- 3.(a) Blakey S, MacMillan D. J Am Chem Soc. 2003;125:6046. doi: 10.1021/ja034908b. [DOI] [PubMed] [Google Scholar]; (b) Buszek KR, Brown N. Org Lett. 2007;9:707. doi: 10.1021/ol063027h. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Hie L, Baker EL, Anthony SM, Desrosiers JN, Senanayake C, Garg NK. Angew Chem, Int Ed. 2016;55:15129. doi: 10.1002/anie.201607856. [DOI] [PMC free article] [PubMed] [Google Scholar]; (d) Meng G, Szostak M. Org Lett. 2016;18:796. doi: 10.1021/acs.orglett.6b00058. [DOI] [PubMed] [Google Scholar]; (e) Peng C, Wang Y, Wang J. J Am Chem Soc. 2008;130:1566. doi: 10.1021/ja0782293. [DOI] [PubMed] [Google Scholar]; (f) Shi S, Meng G, Szostak M. Angew Chem, Int Ed. 2016;55:6959. doi: 10.1002/anie.201601914. [DOI] [PubMed] [Google Scholar]; (g) Simmons BJ, Weires NA, Dander JE, Garg NK. ACS Catalysis. 2016;6:3176. doi: 10.1021/acscatal.6b00793. [DOI] [PMC free article] [PubMed] [Google Scholar]; (h) Tobisu M, Nakamura K, Chatani N. J Am Chem Soc. 2014;136:5587. doi: 10.1021/ja501649a. [DOI] [PubMed] [Google Scholar]; (i) Weires NA, Baker EL, Garg NK. Nat Chem. 2016;8:75. doi: 10.1038/nchem.2388. [DOI] [PubMed] [Google Scholar]; (j) Wu G, Deng Y, Wu C, Zhang Y, Wang J. Angew Chem, Int Ed. 2014;53:10510. doi: 10.1002/anie.201406765. [DOI] [PubMed] [Google Scholar]
- 4.(a) Maity P, Shacklady-McAtee DM, Yap GPA, Sirianni ER, Watson MP. J Am Chem Soc. 2013;135:280. doi: 10.1021/ja3089422. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Shacklady-McAtee DM, Roberts KM, Basch CH, Song Y-G, Watson MP. Tetrahedron. 2014;70:4257. doi: 10.1016/j.tet.2014.03.039. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Basch CH, Cobb KM, Watson MP. Org Lett. 2016;18:136. doi: 10.1021/acs.orglett.5b03455. [DOI] [PMC free article] [PubMed] [Google Scholar]; (d) Hu J, Sun H, Cai W, Pu X, Zhang Y, Shi Z. J Org Chem. 2016;81:14. doi: 10.1021/acs.joc.5b02557. [DOI] [PubMed] [Google Scholar]; (e) Huang CY, Doyle AG. J Am Chem Soc. 2012;134:9541. doi: 10.1021/ja3013825. [DOI] [PubMed] [Google Scholar]; (f) Li MB, Wang Y, Tian SK. Angew Chem, Int Ed. 2012;51:2968. doi: 10.1002/anie.201109171. [DOI] [PubMed] [Google Scholar]; (g) Moragas T, Gaydou M, Martin R. Angewandte Chemie. 2016;128:5137. doi: 10.1002/anie.201600697. [DOI] [PubMed] [Google Scholar]; (h) Zhang H, Hagihara S, Itami K. Chem Eur J. 2015;21:16796. doi: 10.1002/chem.201503596. [DOI] [PubMed] [Google Scholar]; (i) Moragas T, Gaydou M, Martin R. Angew Chem, Int Ed. 2016;55:5053. doi: 10.1002/anie.201600697. [DOI] [PubMed] [Google Scholar]; (j) Jensen KL, Standley EA, Jamison TF. J Am Chem Soc. 2014;136:11145. doi: 10.1021/ja505823s. [DOI] [PubMed] [Google Scholar]
- 5.Tasker SZ, Standley EA, Jamison TF. Nature. 2014;509:299. doi: 10.1038/nature13274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.(a) Tsuji T, Yorimitsu H, Oshima K. Angew Chem, Int Ed. 2002;41:4137. doi: 10.1002/1521-3773(20021104)41:21<4137::AID-ANIE4137>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]; (b) Zhou JS, Fu GC. J Am Chem Soc. 2003;125:14726. doi: 10.1021/ja0389366. [DOI] [PubMed] [Google Scholar]; (c) Gonzalez-Bobes F, Fu GC. J Am Chem Soc. 2006;128:5360. doi: 10.1021/ja0613761. [DOI] [PubMed] [Google Scholar]; (d) Firmansjah L, Fu GC. J Am Chem Soc. 2007;129:11340. doi: 10.1021/ja075245r. [DOI] [PubMed] [Google Scholar]; (e) Saito B, Fu GC. J Am Chem Soc. 2007;129:9602. doi: 10.1021/ja074008l. [DOI] [PMC free article] [PubMed] [Google Scholar]; (f) Strotman NA, Sommer S, Fu GC. Angew Chem, Int Ed. 2007;46:3556. doi: 10.1002/anie.200700440. [DOI] [PubMed] [Google Scholar]; (g) Saito B, Fu GC. J Am Chem Soc. 2008;130:6694. doi: 10.1021/ja8013677. [DOI] [PubMed] [Google Scholar]; (h) Hatakeyama T, Nakagawa N, Nakamura M. Org Lett. 2009;11:4496. doi: 10.1021/ol901555r. [DOI] [PubMed] [Google Scholar]; (i) Owston NA, Fu GC. J Am Chem Soc. 2010;132:11908. doi: 10.1021/ja105924f. [DOI] [PMC free article] [PubMed] [Google Scholar]; (j) Lu Z, Wilsily A, Fu GC. J Am Chem Soc. 2011;133:8154. doi: 10.1021/ja203560q. [DOI] [PMC free article] [PubMed] [Google Scholar]; (k) Dudnik AS, Fu GC. J Am Chem Soc. 2012;134:10693. doi: 10.1021/ja304068t. [DOI] [PMC free article] [PubMed] [Google Scholar]; (l) Ito H, Kubota K. Org Lett. 2012;14:890. doi: 10.1021/ol203413w. [DOI] [PubMed] [Google Scholar]; (m) Wilsily A, Tramutola F, Owston NA, Fu GC. J Am Chem Soc. 2012;134:5794. doi: 10.1021/ja301612y. [DOI] [PMC free article] [PubMed] [Google Scholar]; (n) Yang CT, Zhang ZQ, Liang J, Liu JH, Lu XY, Chen HH, Liu L. J Am Chem Soc. 2012;134:11124. doi: 10.1021/ja304848n. [DOI] [PubMed] [Google Scholar]; (o) Cordier CJ, Lundgren RJ, Fu GC. J Am Chem Soc. 2013;135:10946. doi: 10.1021/ja4054114. [DOI] [PMC free article] [PubMed] [Google Scholar]; (p) Zultanski SL, Fu GC. J Am Chem Soc. 2013;135:624. doi: 10.1021/ja311669p. [DOI] [PMC free article] [PubMed] [Google Scholar]; (q) Bose SK, Fucke K, Liu L, Steel PG, Marder TB. Angew Chem, Int Ed. 2014;53:1799. doi: 10.1002/anie.201308855. [DOI] [PubMed] [Google Scholar]; (r) Choi J, Martin-Gago P, Fu GC. J Am Chem Soc. 2014;136:12161. doi: 10.1021/ja506885s. [DOI] [PMC free article] [PubMed] [Google Scholar]; (s) Liang Y, Fu GC. J Am Chem Soc. 2015;137:9523. doi: 10.1021/jacs.5b04725. [DOI] [PMC free article] [PubMed] [Google Scholar]; (t) Ratani TS, Bachman S, Fu GC, Peters JC. J Am Chem Soc. 2015;137:13902. doi: 10.1021/jacs.5b08452. [DOI] [PMC free article] [PubMed] [Google Scholar]; (u) Wang X, Wang S, Xue W, Gong H. J Am Chem Soc. 2015;137:11562. doi: 10.1021/jacs.5b06255. [DOI] [PubMed] [Google Scholar]; (v) Zhang P, Le CC, MacMillan DW. J Am Chem Soc. 2016;138:8084. doi: 10.1021/jacs.6b04818. [DOI] [PMC free article] [PubMed] [Google Scholar]; (w) Zhou J, Fu GC. J Am Chem Soc. 2004;126:1340. doi: 10.1021/ja039889k. [DOI] [PubMed] [Google Scholar]
- 7.(a) Liang Z, Xue W, Lin K, Gong H. Org Lett. 2014;16:5620. doi: 10.1021/ol502682q. [DOI] [PubMed] [Google Scholar]; (b) Liu JH, Yang CT, Lu XY, Zhang ZQ, Xu L, Cui M, Lu X, Xiao B, Fu Y, Liu L. Chem Eur J. 2014;20:15334. doi: 10.1002/chem.201405223. [DOI] [PubMed] [Google Scholar]; (c) Molander GA, Traister KM, O’Neill BT. J Org Chem. 2015;80:2907. doi: 10.1021/acs.joc.5b00135. [DOI] [PubMed] [Google Scholar]
- 8.(a) Joshi-Pangu A, Wang CY, Biscoe MR. J Am Chem Soc. 2011;133:8478. doi: 10.1021/ja202769t. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Lohre C, Dröge T, Wang C, Glorius F. Chem Eur J. 2011;17:6052. doi: 10.1002/chem.201100909. [DOI] [PubMed] [Google Scholar]; (c) Thapa S, Kafle A, Gurung SK, Montoya A, Riedel P, Giri R. Angew Chem, Int Ed. 2015;54:8236. doi: 10.1002/anie.201502379. [DOI] [PubMed] [Google Scholar]; (d) Wang CY, Derosa J, Biscoe MR. Chem Sci. 2015;6:5105. doi: 10.1039/c5sc01710f. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.(a) Nawrat CC, Jamison CR, Slutskyy Y, MacMillan DWC, Overman LE. J Am Chem Soc. 2015;137:11270. doi: 10.1021/jacs.5b07678. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Zhang X, MacMillan DW. J Am Chem Soc. 2016;138:13862. doi: 10.1021/jacs.6b09533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.(a) Johnston CP, Smith RT, Allmendinger S, MacMillan DW. Nature. 2016;536:322. doi: 10.1038/nature19056. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DWC. Science. 2014;345:437. doi: 10.1126/science.1255525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Gutiérrez-Bonet Á, Tellis JC, Matsui JK, Vara BA, Molander GA. ACS Catalysis. 2016;6:8004. doi: 10.1021/acscatal.6b02786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.(a) Tellis JC, Primer DN, Molander GA. Science. 2014;345:433. doi: 10.1126/science.1253647. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Primer DN, Karakaya I, Tellis JC, Molander GA. J Am Chem Soc. 2015;137:2195. doi: 10.1021/ja512946e. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Yamashita Y, Tellis JC, Molander GA. Proc Natl Acad Sci USA. 2015;112:12026. doi: 10.1073/pnas.1509715112. [DOI] [PMC free article] [PubMed] [Google Scholar]; (d) Tellis JC, Amani J, Molander GA. Org Lett. 2016;18:2994. doi: 10.1021/acs.orglett.6b01357. [DOI] [PubMed] [Google Scholar]; (e) Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc Chem Res. 2016;49:1429. doi: 10.1021/acs.accounts.6b00214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.(a) Jouffroy M, Primer DN, Molander GA. J Am Chem Soc. 2016;138:475. doi: 10.1021/jacs.5b10963. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Patel NR, Kelly CB, Jouffroy M, Molander GA. Org Lett. 2016;18:764. doi: 10.1021/acs.orglett.6b00024. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Patel NR, Molander GA. J Org Chem. 2016;81:7271. doi: 10.1021/acs.joc.6b00800. [DOI] [PMC free article] [PubMed] [Google Scholar]; (d) Vara BA, Jouffroy M, Molander GA. Chem Sci. 2017;8:530. doi: 10.1039/c6sc03236b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.(a) Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan CM, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J Am Chem Soc. 2016;138:2174. doi: 10.1021/jacs.6b00250. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Huihui KM, Caputo JA, Melchor Z, Olivares AM, Spiewak AM, Johnson KA, DiBenedetto TA, Kim S, Ackerman LK, Weix DJ. J Am Chem Soc. 2016;138:5016. doi: 10.1021/jacs.6b01533. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science. 2016;352:801. doi: 10.1126/science.aaf6123. [DOI] [PMC free article] [PubMed] [Google Scholar]; (d) Toriyama F, Cornella J, Wimmer L, Chen TG, Dixon DD, Creech G, Baran PS. J Am Chem Soc. 2016;138:11132. doi: 10.1021/jacs.6b07172. [DOI] [PMC free article] [PubMed] [Google Scholar]; (e) Wang J, Qin T, Chen TG, Wimmer L, Edwards JT, Cornella J, Vokits B, Shaw SA, Baran PS. Angew Chem, Int Ed. 2016;55:9676. doi: 10.1002/anie.201605463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.(a) Katritzky AR, De Ville G, Patel RC. Tetrahedron. 1981;37:25. [Google Scholar]; (b) Bapat JB, Blade RJ, Boulton AJ, Epsztajn J, Katrizky AR, Lewis J, Molina-Buendia P, Nie PL, Ramsden CA. Tetrahedron Lett. 1976;31:2691. [Google Scholar]; (c) Katrizky AR, Marson CM. Angew Chem, Int Ed. 1984;23:420. [Google Scholar]
- 16.See Supporting Information
- 17.(a) Kearney AM, Vanderwal CD. Angew Chem, Int Ed. 2006;45:7803. doi: 10.1002/anie.200602996. [DOI] [PubMed] [Google Scholar]; (b) Sun Z, Yu S, Ding Z, Ma D. J Am Chem Soc. 2007;129:9300. doi: 10.1021/ja0734849. [DOI] [PubMed] [Google Scholar]; (c) Black DA, Beveridge RE, Arndtsen BA. J Org Chem. 2008;73:1906. doi: 10.1021/jo702293h. [DOI] [PubMed] [Google Scholar]; (d) Chau ST, Lutz JP, Wu K, Doyle AG. Angew Chem, Int Ed. 2013;52:9153. doi: 10.1002/anie.201303994. [DOI] [PMC free article] [PubMed] [Google Scholar]; (e) Lutz JP, Chau ST, Doyle AG. Chem Sci. 2016;7:4105. doi: 10.1039/c6sc00702c. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Said SA, Fiksdahl A. Tetrahedron Asym. 2001;12:1947. [Google Scholar]
- 19.Vinyl pyridinium salts have been used in Pd-catalyzed cross couplings. See ref. 3b.
- 20.Maluenda I, Navarro O. Molecules. 2015;20:7528. doi: 10.3390/molecules20057528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Ohshima T, Hayashi Y, Agura K, Fujii Y, Yoshiyama A, Mashima K. Chem Commun. 2012;48:5434. doi: 10.1039/c2cc32153j. [DOI] [PubMed] [Google Scholar]
- 22.Kato S, Morie T, Yoshida N. Chem Pharm Bull. 1995;43:699. doi: 10.1248/cpb.43.699. [DOI] [PubMed] [Google Scholar]
- 23.Roth BD. US 4,681,893. 1987
- 24.Álvaro M, Formentín P, García H, Palomares E, Sabater MJ. J Org Chem. 2002;67:5184. doi: 10.1021/jo020113w. [DOI] [PubMed] [Google Scholar]
- 25.Greulich TW, Daniliuc CG, Studer A. Org Lett. 2015;17:254. doi: 10.1021/ol503338b. [DOI] [PubMed] [Google Scholar]
- 26.(a) Biswas S, Weix DJ. J Am Chem Soc. 2013;135:16192. doi: 10.1021/ja407589e. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Breitenfeld J, Ruiz J, Wodrich MD, Hu X. J Am Chem Soc. 2013;135:12004. doi: 10.1021/ja4051923. [DOI] [PubMed] [Google Scholar]; (c) Hu X. Chem Sci. 2011;2:1867. [Google Scholar]; (d) Jones GD, Martin JL, McFarland C, Allen OR, Hall RE, Haley AD, Brandon RJ, Konovalova T, Desrochers PJ, Pulay P, Vicic DA. J Am Chem Soc. 2006;128:13175. doi: 10.1021/ja063334i. [DOI] [PubMed] [Google Scholar]; (e) Lin X, Phillips DL. J Org Chem. 2008;73:3680. doi: 10.1021/jo702497p. [DOI] [PubMed] [Google Scholar]; (f) Powell DA, Fu GC. J Am Chem Soc. 2004;126:7788. doi: 10.1021/ja047433c. [DOI] [PubMed] [Google Scholar]; (g) Schley ND, Fu GC. J Am Chem Soc. 2014;136:16588. doi: 10.1021/ja508718m. [DOI] [PMC free article] [PubMed] [Google Scholar]; (h) Zheng B, Tang F, Luo J, Schultz JW, Rath NP, Mirica LM. J Am Chem Soc. 2014;136:6499. doi: 10.1021/ja5024749. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
