Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Oct;87(20):7834–7838. doi: 10.1073/pnas.87.20.7834

Protective effect of eicosapentaenoic acid on ouabain toxicity in neonatal rat cardiac myocytes.

H Hallaq 1, A Sellmayer 1, T W Smith 1, A Leaf 1
PMCID: PMC54844  PMID: 2172965

Abstract

Isolated neonatal cardiac myocytes have been utilized as a model for the study of cardiac arrhythmogenic factors. The myocytes respond to the toxic effects of a potent cardiac glycoside, ouabain at 0.1 mM, by an increase in their spontaneous beating rate and a reduction in amplitude of contractions resulting within minutes in a lethal state of contracture. Incubating the isolated myocytes for 3-5 days in culture medium enriched with 5 microM arachidonic acid [20:4 (n-6)] had no effect on the development of lethal contracture after subsequent exposure to 0.1 mM ouabain. By contrast, incubating the myocytes for 3-5 days with 5 microM eicosapentaenoic acid [20:5 (n-3)] completely prevented the toxic effects of ouabain at 0.1 mM. There were no measurable differences in the degree to which ouabain inhibited Na,K-ATPase activity by comparing the control with the arachidonic acid- or the eicosapentaenoic acid-enriched myocytes. No differences in bumetanide-inhibitable 86Rb flux were observed between the three preparations. However, measurements with fura-2 of cytosolic free calcium levels indicated that control and arachidonic acid-enriched myocytes developed toxic cytosolic calcium concentrations of 845 +/- 29 and 757 +/- 64 nM, respectively, on exposure to 0.1 mM ouabain, whereas in eicosapentaenoic acid-enriched myocytes, physiologic calcium levels (214 +/- 29 nM) were preserved. Incubating the myocytes with eicosapentaenoic acid (5 microM) for 3-5 days resulted in a small reduction of arachidonic acid and a small but significant increase of eicosapentaenoic acid in membrane phospholipids of the myocytes.

Full text

PDF
7834

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bang H. O., Dyerberg J., Hjøorne N. The composition of food consumed by Greenland Eskimos. Acta Med Scand. 1976;200(1-2):69–73. doi: 10.1111/j.0954-6820.1976.tb08198.x. [DOI] [PubMed] [Google Scholar]
  2. Barry W. H., Hasin Y., Smith T. W. Sodium pump inhibition, enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells. Circ Res. 1985 Feb;56(2):231–241. doi: 10.1161/01.res.56.2.231. [DOI] [PubMed] [Google Scholar]
  3. Burr M. L., Fehily A. M., Gilbert J. F., Rogers S., Holliday R. M., Sweetnam P. M., Elwood P. C., Deadman N. M. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet. 1989 Sep 30;2(8666):757–761. doi: 10.1016/s0140-6736(89)90828-3. [DOI] [PubMed] [Google Scholar]
  4. Culp B. R., Lands W. E., Lucches B. R., Pitt B., Romson J. The effect of dietary supplementation of fish oil on experimental myocardial infarction. Prostaglandins. 1980 Dec;20(6):1021–1031. doi: 10.1016/0090-6980(80)90056-8. [DOI] [PubMed] [Google Scholar]
  5. Dyerberg J., Bang H. O., Hjorne N. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr. 1975 Sep;28(9):958–966. doi: 10.1093/ajcn/28.9.958. [DOI] [PubMed] [Google Scholar]
  6. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  7. Force T., Malis C. D., Guerrero J. L., Varadarajan G. S., Bonventre J. V., Weber P. C., Leaf A. n-3 fatty acids increase postischemic blood flow but do not reduce myocardial necrosis. Am J Physiol. 1989 Oct;257(4 Pt 2):H1204–H1210. doi: 10.1152/ajpheart.1989.257.4.H1204. [DOI] [PubMed] [Google Scholar]
  8. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  9. Hallaq H., Hasin Y., Fixler R., Eilam Y. Effect of ouabain on the concentration of free cytosolic Ca++ and on contractility in cultured rat cardiac myocytes. J Pharmacol Exp Ther. 1989 Feb;248(2):716–721. [PubMed] [Google Scholar]
  10. Heller M., Hallaq H., Panet R. Interactions of cardiac glycosides with cells and membranes. IV. Effects of ouabain and bumetanide on 86Rb+ influx in cultured cardiac myocytes from neonatal rats. Biochim Biophys Acta. 1988 Apr 22;939(3):595–602. doi: 10.1016/0005-2736(88)90107-1. [DOI] [PubMed] [Google Scholar]
  11. Hock C. E., Holahan M. A., Reibel D. K. Effect of dietary fish oil on myocardial phospholipids and myocardial ischemic damage. Am J Physiol. 1987 Mar;252(3 Pt 2):H554–H560. doi: 10.1152/ajpheart.1987.252.3.H554. [DOI] [PubMed] [Google Scholar]
  12. Knapp H. R., FitzGerald G. A. The antihypertensive effects of fish oil. A controlled study of polyunsaturated fatty acid supplements in essential hypertension. N Engl J Med. 1989 Apr 20;320(16):1037–1043. doi: 10.1056/NEJM198904203201603. [DOI] [PubMed] [Google Scholar]
  13. Leaf A., Weber P. C. Cardiovascular effects of n-3 fatty acids. N Engl J Med. 1988 Mar 3;318(9):549–557. doi: 10.1056/NEJM198803033180905. [DOI] [PubMed] [Google Scholar]
  14. Lorenz R., Spengler U., Fischer S., Duhm J., Weber P. C. Platelet function, thromboxane formation and blood pressure control during supplementation of the Western diet with cod liver oil. Circulation. 1983 Mar;67(3):504–511. doi: 10.1161/01.cir.67.3.504. [DOI] [PubMed] [Google Scholar]
  15. McLennan P. L., Abeywardena M. Y., Charnock J. S. Dietary fish oil prevents ventricular fibrillation following coronary artery occlusion and reperfusion. Am Heart J. 1988 Sep;116(3):709–717. doi: 10.1016/0002-8703(88)90328-6. [DOI] [PubMed] [Google Scholar]
  16. McLennan P. L., Abeywardena M. Y., Charnock J. S. Influence of dietary lipids on arrhythmias and infarction after coronary artery ligation in rats. Can J Physiol Pharmacol. 1985 Nov;63(11):1411–1417. doi: 10.1139/y85-232. [DOI] [PubMed] [Google Scholar]
  17. Panet R., Fromer I., Atlan H. Differentiation between serum stimulation of ouabain-resistant and sensitive Rb influx in quiescent NIH 3T3 cells. J Membr Biol. 1982;70(2):165–169. doi: 10.1007/BF01870226. [DOI] [PubMed] [Google Scholar]
  18. Salem N., Jr, Shingu T., Kim H. Y., Hullin F., Bougnoux P., Karanian J. W. Specialization in membrane structure and metabolism with respect to polyunsaturated lipids. Prog Clin Biol Res. 1988;282:319–333. [PubMed] [Google Scholar]
  19. Scharschmidt B. F., Keeffe E. B., Blankenship N. M., Ockner R. K. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity. J Lab Clin Med. 1979 May;93(5):790–799. [PubMed] [Google Scholar]
  20. Singer P., Berger I., Lück K., Taube C., Naumann E., Gödicke W. Long-term effect of mackerel diet on blood pressure, serum lipids and thromboxane formation in patients with mild essential hypertension. Atherosclerosis. 1986 Dec;62(3):259–265. doi: 10.1016/0021-9150(86)90100-0. [DOI] [PubMed] [Google Scholar]
  21. Swanson J. E., Lokesh B. R., Kinsella J. E. Ca2+-Mg2+ ATPase of mouse cardiac sarcoplasmic reticulum is affected by membrane n-6 and n-3 polyunsaturated fatty acid content. J Nutr. 1989 Mar;119(3):364–372. doi: 10.1093/jn/119.3.364. [DOI] [PubMed] [Google Scholar]
  22. Yagev S., Heller M., Pinson A. Changes in cytoplasmic and lysosomal enzyme activities in cultured rat heart cells: the relationship to cell differentiation and cell population in culture. In Vitro. 1984 Dec;20(12):893–898. doi: 10.1007/BF02619662. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES