Skip to main content
Data in Brief logoLink to Data in Brief
. 2017 Jun 7;13:415–431. doi: 10.1016/j.dib.2017.06.001

Dataset on transcriptional profiles and the developmental characteristics of PDGFRα expressing lung fibroblasts

Mehari Endale a, Shawn Ahlfeld a, Erik Bao a, Xiaoting Chen b, Jenna Green a, Zach Bess a, Matthew Weirauch b, Yan Xu a, Anne Karina Perl a,
PMCID: PMC5484972  PMID: 28702480

Abstract

The following data are derived from key stages of acinar lung development and define the developmental role of lung interstitial fibroblasts expressing platelet-derived growth factor alpha (PDGFRα). This dataset is related to the research article entitled “Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development” (Endale et al., 2017) [1]. At E16.5 (canalicular), E18.5 (saccular), P7 (early alveolar) and P28 (late alveolar), PDGFRαGFP mice, in conjunction with immunohistochemical markers, were utilized to define the spatiotemporal relationship of PDGFRα+ fibroblasts to endothelial, stromal and epithelial cells in both the proximal and distal acinar lung. Complimentary analysis with flow cytometry was employed to determine changes in cellular proliferation, define lipofibroblast and myofibroblast populations via the presence of intracellular lipid or alpha smooth muscle actin (αSMA), and evaluate the expression of CD34, CD29, and Sca-1. Finally, PDGFRα+ cells isolated at each stage of acinar lung development were subjected to RNA-Seq analysis, data was subjected to Bayesian timeline analysis and transcriptional factor promoter enrichment analysis.

Keywords: Lung, PDGFRα-fibroblast, Transcription, Development

Highlights

  • Spatiotemporal and transcriptional analysis of PDGFRα-expressing fibroblasts during acinar lung development.

  • The RNA-Seq data provide a vast source to study PDGFRα+ fibroblasts in lung development and disease.

  • The transcription factor promoter enrichment analysis identify specific targets of PDGFRα+ fibroblast function.


Specifications Table

Subject area Developmental Biology
More specific subject area Lung Development
Type of data Table, image, text file, graph, figure
How data was acquired 3D Confocal Microscope inverted A1Rsi (Nikon Instruments, Melville, NY), fluorescent activated sorting flow cytometry (LSR II, BD Bioscience), MACS microbeads (Miltenyi Biotec technology, Gladbach, Germany), RNA-Seq (Illumina Inc. San Diego, CA, USA).
Data format Filtered, analyzed
Experimental factors Samples were not pretreated
Experimental features The transcriptional profile, temporal, spatial and functional roles of PDGFαGFP expressing fibroblasts were examined at different stages of acinar lung development using RNA-Seq, confocal microscopy and flow cytometry, respectively.
Data source location Cincinnati, OH 45229, USA
Data accessibility Data is incorporated with this article
Data is accessible at: https://research.cchmc.org/pbge/lunggens/mainportal.html

1. Data

The data presented herein are representative of the key stages of acinar lung development and define the developmental role of lung interstitial fibroblasts expressing platelet-derived growth factor alpha (PDGFRα). Cells expressing PDGFRα were analyzed at E16.5, E18.5, P7 and P28. The spatiotemporal localization of PDGFRαGFP E18.5 at (Fig. 1) demonstrates the relationship of PDGFRα+ fibroblasts to proximal and distal saccular lung structures. Flow cytometry using direct flow cytometry of whole-lung single cell suspension preparation and selection by differential adherence in tissue culture to enrich and analyze PDGFRα+ fibroblast populations is presented in Fig. 2. PDGFRαGFP expression was assessed at E16.5, P7, and P28 for GFPdim and GFPbright sub-populations. For the two distinct sub-populations present at P7, the relative abundance of myofibroblasts (αSMA+) and lipofibroblasts (LipidTOX+) within each population is presented (Fig. 3). Fig. 4 shows data on temporal changes in neutral lipid, αSMA, proliferation, and cell surface expression of CD34, CD29, and Sca-1 in CD326+, CD31+, CD140+ and CD140aneg stromal cells. The gene expression profile from RNA-Seq data provides information in cell-cycle gene changes of isolated PDGFRα+ fibroblasts throughout acinar lung development (Fig. 5 and Table 1), individual genes upregulated at E18.5 in PDGFRα+ fibroblasts (Table 2), and changes in contractile gene expression in PDGFRα+ fibroblasts (Table 3). Additionally, data from computational transcription factor binding site analyses (Table 4), ChIP-Seq enrichment profiles (Table 5), and promoter sequences of individual genes dynamically expressed by PDGFRα+ fibroblasts during acinar lung development. The three transcription factors identified by ChIP-Seq analysis are presented in Table 6.

Fig. 1.

Fig. 1

Spatial distribution of PDGFRαGFP cells during the saccular stage of development. Confocal microscopy of lung sections from E18.5 PDGFRαGFP mouse lungs co-stained with αSMA and pro-SPC to demonstrate the relationship of PDGFRαGFP cells to saccular epithelial cells and contribution to αSMA-containing developing conducting airways (A) and blood vessels (B). Images obtained with 40X objective.

Fig. 2.

Fig. 2

Proportions and characteristics of PDGFRαGFP cells obtained by direct FACS compared to isolation by differential adherence. Flow cytometry profile of lung cell lineage proportions and PDGFRαGFP proportions of fresh whole cell suspension or after selection by differential adherence. Single cell suspensions were stained and subjected to FACS directly after isolation (whole prep) or following incubation for 2 h to obtain non-adherent cells (supernatant) and adherent stromal cells (adherent). (A) Relative proportion of hematopoietic (CD45+), epithelial (CD326+), endothelial (CD31+), CD140a+ (PDGFRα+) stromal, and CD140aneg stromal cell populations analyzed by FACS in samples obtained from whole-lung suspension vs. non-adherent and adherent cells following differential adherence. (B) Distribution of PDGFRα-GFPbright and PDGFRα-GFPdim stromal cells contained in non-adherent and adherent cell fractions following differential adherence. (C) Proportion of PDGFRα-GFPbright (dark green) and PDGFRα-GFPdim (light green) fibroblasts contained in single cell suspensions by direct FACS or FACS following differential adherence. (D) The relative proportion CD29+, CD34+CD29+, CD34+ or CD29-CD34- subpopulations in CD140a+ cells analyzed by direct FACS or FACS following differential adherence.

Fig. 3.

Fig. 3

Assessment of PDGFRα-GFP interstitial fibroblasts for PDGFRα-GFPdim and PDGFRα-GFPbright subpopulations. Flow cytometry profiles of PDGFRαGFP dim and bright sub-populations throughout acinar lung development. (A) Relative proportions at E16.5, P7, and P28 of PDGFRα-GFPdim and PDGFRα-GFPbright subpopulations. (B-C) Contribution of αSMA+ myofibroblasts (B) and LipidTOX+ lipofibroblasts (C) to the discernible PDGFRα-GFPdim and PDGFRα-GFPbright subpopulations that comprise the pool of P7 PDGFRα-GFP interstitial fibroblasts. (E) Quantification of GFPdim and GFPbright in CD140 positive cells. (F) Quantification of GFPdim and GFPbright in all GFP positive cells. (F) Histogram overlay of GFP intensity in E16.5, PN7 and PN28 GFP cells.

Fig. 4.

Fig. 4

Temporal profiles of proliferation, neutral lipid, αSMA and surface marker expressions of CD45+, CD326+, CD31+, CD140a+ stromal and CD140aneg stromal cell lineages. Proliferation, αSMA, lipid, CD29, CD34 and Sca-1 expressions of CD45+ hematopoietic (A), CD31+ endothelial (B), CD326+ epithelial (C), CD140a+ stromal (D) or CD140a- stromal (E) cells at E16.5 (canalicular), E18.5 (saccular), P7 (early alveolar), P21 (mid alveolar), and P28 (late alveolar) stages of acinar lung development. Data is presented as the relative percentage of cells within each individual cell lineage.

Fig. 5.

Fig. 5

Transcriptional profile of cell cycle genes expressed in PDGFRα+ fibroblasts throughout critical stages of acinar lung development. Expression profile obtained by Bayesian and STEM analysis of RNA-Seq data to identify cell cycle genes that are differentially expressed in PDGFRα+ fibroblasts between E16.5, E18.5, P7, and P28 during acinar lung development.

Table 1.

Cell cycle genes that are differentially expressed in PDGFRα+ fibroblasts during distinct stages of acinar lung development.

Gene E16 E18 PN7 PN28
Calm2 −0.00571762 −0.870833 1.40198 −0.525428
Dusp1 −0.621371 −0.627324 −0.2244 1.47309
Pmp22 −0.742166 −0.979494 0.798682 0.922978
Sptbn1 −0.789379 −0.936042 0.940708 0.784713
Srsf5 0.236167 −1.08452 1.26328 −0.414932
Hsp90aa1 1.41313 −0.874767 −0.484744 −0.0536168
Rhoa −0.135108 −1.06733 1.34942 −0.146979
Tubb5 0.832279 −0.958058 0.894011 −0.768232
Thbs1 0.872403 0.828917 −0.622006 −1.07931
Gnai2 −0.147148 −1.03287 1.36953 −0.18952
Jun −0.851524 −0.510853 −0.055664 1.41804
Anapc13 1.1925 −0.897243 −0.751497 0.456244
Gnb2l1 1.40582 −0.040552 −0.47046 −0.89481
Stmn1 0.934956 −1.09228 0.757047 −0.599728
Smc1a 0.883569 −1.00734 0.835485 −0.711719
Tuba1a −0.354266 −0.839746 1.45038 −0.256367
Pcna 1.26778 −0.642412 0.313621 −0.938985
Rhob −0.535957 −1.11043 0.573782 1.0726
Ywhah 0.729312 −1.24987 0.880943 −0.360389
Calm1 0.056566 −1.42903 0.766416 0.606044
Mapre2 −0.362037 −0.861711 1.44181 −0.218067
Sept2 −0.191729 −0.869314 1.43734 −0.376292
Plk2 −0.294531 −0.463503 1.47699 −0.718961
Rad21 0.830549 −1.05783 0.876974 −0.649691
Txnip −1.04578 −0.321895 0.0252466 1.34242
Cdk4 1.21118 −0.889579 0.426562 −0.74816
Trp53 0.304485 −1.02912 1.25272 −0.528087
Ube2c 1.31111 −0.750289 0.249112 −0.809935
Sept4 −0.884936 −0.73429 0.381385 1.23784
Mapk3 −0.467964 −1.05953 1.25962 0.267868
Chd4 0.965382 −1.06658 0.73079 −0.629589
Csnk1a1 0.145345 −0.458597 1.32271 −1.00946
Sept11 0.38547 −0.834781 1.23797 −0.788659
Cetn3 0.920627 −1.39894 0.440421 0.0378935
Nsmce2 0.927752 −1.12649 0.751502 −0.552767
Ppp1cc 0.757517 −0.961919 0.962431 −0.758029
Ppp1ca 0.769955 −1.19987 0.876423 −0.446511
Smc4 1.16898 −0.798464 0.49566 −0.866176
Ppp1cb −0.197787 −1.11343 1.31193 −0.0007138
Smc3 1.1891 −1.03988 0.422153 −0.571375
Cks1b 1.34665 −0.629637 0.15774 −0.874757
Sept7 −0.183509 −0.878618 1.43392 −0.371793
Mki67 1.18879 −0.728754 0.459143 −0.919178
Spin1 0.10549 −0.943386 1.35379 −0.515895
Top2a 1.20696 −0.806017 0.43718 −0.838125
Tubb4b 0.286298 −1.44805 0.310388 0.851369
Kmt2e 0.0343548 −1.37276 0.999874 0.33853
Rgs2 −0.0296069 1.39706 −0.446672 −0.920779
Son 0.19415 −1.31686 1.10814 0.0145653
Gnai3 0.490256 −1.24935 1.05433 −0.295233
Cdkn1c 1.41418 −0.105178 −0.397307 −0.911693
Usp9x 0.0760878 −1.4367 0.72769 0.632917
Zak −0.700217 −1.01532 0.918107 0.797432
Ier3 0.980432 0.73242 −0.723419 −0.989433
Wapal 0.632021 −1.23307 0.971144 −0.370096
Anapc5 0.682133 −1.37308 0.798597 −0.10765
Ppm1g 0.965661 −1.34965 0.485437 −0.101447
Specc1l −0.56199 −0.715791 −0.184349 1.46213
Nedd9 −0.579639 −1.04244 1.17282 0.449265
Ube2i 0.696443 −1.44155 0.654793 0.0903107
Sirt2 −0.128286 −1.19834 1.24105 0.0855696
Usp47 0.972221 −1.25556 0.60976 −0.326424
Nasp 1.35164 −0.650695 0.151524 −0.85247
Ccar1 1.19936 −0.85878 0.448599 −0.789176
Lats2 −0.50131 −1.12181 1.10564 0.517486
Ccny 0.0769666 −1.09766 1.30669 −0.285998
Calm3 0.207701 −1.12116 1.25756 −0.344101
Eid1 −0.207967 −0.932492 1.41784 −0.277379
Foxn3 −0.353993 −1.18568 1.14637 0.393299
Mtus1 −0.231669 −1.04971 1.35605 −0.0746687
Usp8 0.0653615 −1.32136 0.147907 1.10809
Ran 1.27067 −0.982225 0.291102 −0.579552
Cdc123 0.684283 −1.30701 0.872431 −0.249708
Ccnt1 0.350793 −1.48693 0.669501 0.466636
Ppp6c −0.0845592 −1.25198 1.18414 0.152397
Dynlt3 −0.662532 −1.02528 1.05067 0.637141
Smarca4 0.897716 −0.966186 0.827408 −0.758938
Pafah1b1 −0.0028538 −1.05804 1.34217 −0.281278
Trp53bp2 0.0115787 −1.34168 1.06203 0.268075
Marveld1 −0.809342 −0.848667 1.18272 0.475286
Ccndbp1 −0.23958 −1.27197 1.0577 0.453849
Ccpg1 −0.647646 −0.929798 0.302994 1.27445
Cdk6 0.385309 −0.958141 1.22701 −0.654178
Ctgf −0.476914 −1.05691 0.277427 1.2564
Khdrbs1 0.834267 −0.819132 0.89601 −0.911146
Arl8b 0.352736 −1.47068 0.34949 0.768457
Nudc 1.41244 −0.834935 −0.023113 −0.554394
Anxa1 −0.049034 −0.778171 −0.598799 1.426
Nipbl 0.583539 −1.21221 1.01876 −0.390092
Stag1 0.412112 −1.08482 1.18106 −0.508359
Junb 0.410953 1.17702 −1.09807 −0.489902
Cdk11b 0.0832837 −1.20526 1.2359 −0.113924
Cast −0.2003 −1.33032 0.668522 0.862097
Klhl9 0.406837 −1.35494 0.998055 −0.0499484
Ctcf 0.823152 −1.16313 0.845177 −0.505199
Usp16 0.280098 −1.43447 0.891483 0.262886
Pcnp 0.473111 −1.32507 0.999318 −0.147358
Brd7 0.444032 −1.49762 0.47713 0.576461
Cdkn1a 0.0916268 0.462374 −1.4225 0.868503
Cdc5l 1.11105 −1.1579 0.483718 −0.436864
Psme3 1.21813 −1.16459 0.254701 −0.30825
Ckap5 0.976807 −0.964173 0.740723 −0.753357
Setd8 0.947553 −1.26396 0.634908 −0.318502
Erh 1.03215 −1.0091 0.665275 −0.688322
Sept9 0.555875 −0.684408 1.11649 −0.987952
Gas6 −0.610436 −0.642252 −0.219312 1.472
Yeats4 1.06306 −1.19386 0.532339 −0.401537
Ralb 0.445575 −0.909659 1.19804 −0.733953
Hcfc1 1.0087 −1.15647 0.636994 −0.489225
H2afx 1.36257 −0.760365 0.137039 −0.73924
Ccnd2 −0.26808 −0.727408 1.47332 −0.477836
Mapre1 0.403968 −0.845579 1.22686 −0.78525
Ep300 0.310167 −1.46051 0.341653 0.80869
Tacc1 −0.582128 −0.859333 0.0559869 1.38547

Table 2.

Genes upregulated in PDGFRα+ fibroblasts at E18.5 relative to other stages of acinar lung development.

Gene E16 E18 PN7 PN28
ADAMTS1 −1.0996 1.89932 −0.778615 0.109199
HBA-A1 −0.72184 1.89803 −0.602954 −0.736058
HBB-BT −0.698284 1.89715 −0.648254 −0.725893
OLFR62 −0.658434 1.89326 −0.719626 −0.719626
HBB-B1 −0.701092 1.8915 −0.598885 −0.7459
ENPP2 −0.696722 1.89078 −0.611701 −0.668638
GM17644 −0.743782 1.88918 −0.860528 −0.196981
4930470H14RIK −1.12671 1.88433 −0.794499 0.185705
LARS2 −0.712029 1.88186 −0.874364 −0.206367
PENK −0.697763 1.8681 −0.466888 −0.81606
PROS1 −1.42972 1.85969 −0.092791 −0.456466
MT1 −0.547424 1.82338 −0.993104 −0.15854
GM10052 −0.166882 1.70856 −0.893127 −0.893127
TGFBR3 −1.64478 1.69903 −0.353873 0.405727
HBB-Y −0.127185 1.68753 −0.892553 −0.910755
TRIB1 −0.115112 1.65209 −1.06878 −0.363624
RGS2 −0.070595 1.59547 −0.557646 −1.11131
ALDH2 −0.916657 1.55663 −1.19667 0.944171
NDRG2 −0.78057 1.55655 −1.26841 0.882676
ODC1 −0.038573 1.55499 −0.483119 −1.21095
HHIP 0.188624 1.48161 −0.840506 −0.864842
SPRED1 −0.149031 1.45532 −0.070748 −1.56369
ZFP36 0.226683 1.45129 −1.11433 −0.463834
BC117090 0.303844 1.42934 −1.00008 −1.00008
HBA-X 0.373835 1.37937 −1.01109 −1.01109
MYC 0.149769 1.35186 −0.277893 −1.49285
SNORA52 0.415108 1.34884 −1.01697 −1.01697
RMRP 0.351773 1.29452 −1.3491 −0.068137
MAFF 0.437803 1.28682 −0.755838 −1.05255
JUNB 0.463468 1.27891 −1.14282 −0.495453
IIGP1 0.246262 1.27624 −0.268592 −1.53017
CCDC3 −1.24372 1.25611 0.861579 −1.34577
1500012F01RIK 0.45529 1.25174 −0.659759 −1.17327
BHLHE40 0.544517 1.19043 −1.25119 −0.321188
FAU 0.622948 1.15584 −0.922513 −0.866115
BTG2 0.632911 1.11406 −1.25966 −0.320921
HSPB1 −0.866861 1.1016 −1.24201 1.53001
RPPH1 −0.046067 1.05871 −1.60545 1.10958
KLF9 −1.24071 1.04622 −0.906275 1.56238
ATF3 0.811023 0.98054 −1.12267 −0.576751
SOCS3 0.870832 0.928448 −1.02609 −0.729075
ITGAV −0.712633 0.916735 1.02392 −1.81532
SLC2A1 0.891161 0.905855 −1.0727 −0.655793
THBS1 0.900603 0.854342 −0.689139 −1.17562
IFRD1 0.217954 0.829998 −1.65768 1.15147
SKIL 0.157235 0.777133 0.584415 −2.05964
EIF3E 0.93836 0.777077 −0.563455 −1.31203
H19 1.03227 0.774112 −0.959012 −1.08616
CCNL1 1.02674 0.764284 −0.973248 −0.792439
IER3 1.01516 0.75419 −0.777739 −1.05766
EEF1A1 0.893956 0.731323 −0.340296 −1.53243
CDKN1A 0.256919 0.726925 −1.66259 1.24179
IGF2 1.05441 0.725075 −0.829588 −1.09723
ELN −1.81889 0.705691 0.891242 0.0251241
LOX 1.10847 0.663704 −1.10496 −0.568685
SNORA15 1.17483 0.621342 −1.02944 −1.02944
MMP2 −0.11503 0.562767 −1.52805 1.71138
FMO2 −1.01789 0.561459 −0.900695 1.89521
PTN 1.19277 0.559803 −0.808516 −1.06382
HES1 1.13426 0.553428 −0.544956 −1.29785
TREM3 1.23746 0.5435 −1.02013 −1.02013
PLAGL1 1.11539 0.540813 −0.457605 −1.38903
SNORA75 1.24616 0.532386 −1.01866 −1.01866
GLUL −1.67974 0.52869 0.0790104 1.29294
EDNRB 1.22549 0.501732 −0.735441 −1.08308

Table 3.

Transcriptional profile of contractile genes differentially expressed in PDGFRα+ fibroblasts over the course of acinar lung development.

Gene E16 E18 PN7 PN28
Sparc −0.782064 −0.884034 0.502201 1.1639
Npm1 1.3844 −0.154564 −0.225484 −1.00435
Sod1 −0.106237 −1.29861 0.305218 1.09963
Vim −0.32131 −0.867333 1.44228 −0.253635
Eln −1.43045 0.610192 0.760175 0.0600839
Tpm1 −0.297888 −0.0921075 1.38385 −0.993852
Pfn1 1.07808 −1.01729 0.602467 −0.663255
Tmsb4x 0.783135 −1.23122 −0.396606 0.844691
Tgfbi −0.201384 0.321878 1.13319 −1.25368
Fhl1 −0.834609 −0.825804 0.481646 1.17877
Myadm −0.950365 −0.74732 1.06936 0.628329
Gng5 0.799333 −1.39643 0.63971 −0.0426118
Tmsb10 0.134493 −0.868777 1.35647 −0.622189
Fn1 −0.568048 −0.828443 −0.014463 1.41095
Rac1 −0.170999 −0.967267 1.402 −0.263733
Cfl1 0.952984 −0.798067 0.771927 −0.926844
Msn −0.353353 −1.04234 1.33608 0.0596072
Arpc2 0.673331 −1.25646 0.923198 −0.340072
Fbn1 −0.745338 −0.971735 0.74445 0.972623
Itgb1 −0.573494 −0.606145 1.48646 −0.306817
Arf1 0.0803654 −1.29798 1.14149 0.0761276
Cdh11 0.801392 −1.367 0.68846 −0.122848
Rhoa −0.135108 −1.06733 1.34942 −0.146979
Cald1 −0.306922 −0.723712 1.47733 −0.446696
Mmp2 −0.20158 0.299274 −1.24572 1.14803
Myl6 0.415826 −1.29762 1.0551 −0.173303
App −0.830414 −0.877626 1.05587 0.652173
Ctnnb1 −0.136582 −1.31422 1.04303 0.40777
Gnai2 −0.147148 −1.03287 1.36953 −0.18952
Cdc42 0.368935 −1.11146 1.19372 −0.451196
Igf1 1.34653 0.102391 −0.472771 −0.976149
Mylk 0.0820497 −0.892443 1.37175 −0.561356
Cav1 −0.71922 −0.744583 1.38648 0.0773188
Flna 0.713322 −1.17997 0.936876 −0.470232
Gnb2l1 1.40582 −0.0405521 −0.47046 −0.89481
Tnc −0.424942 −0.295052 1.47202 −0.752022
Tpm3 0.592418 −0.696541 1.09092 −0.986797
Capzb 0.642076 −1.23233 0.964042 −0.373784
Ctnnd1 −0.483005 −0.886022 1.4072 −0.0381741
Akap2 −0.574534 −0.49027 1.49745 −0.432647
Myh10 0.222398 −1.36676 1.03463 0.109729
Gnb1 0.0972075 −1.15717 1.26814 −0.208171
Hspb1 −0.718661 0.699476 −0.988926 1.00811
F2r −0.749158 −0.912192 0.494055 1.1673
Ednra 1.13125 −1.15915 −0.419792 0.447694
Rhob −0.535957 −1.11043 0.573782 1.0726
Sptan1 −0.603347 −0.903481 1.33841 0.168423
Cul3 0.560345 −1.28661 0.982377 −0.256117
Myh11 0.459331 −0.102365 0.986597 −1.34356
Pdlim3 −0.571051 0.0286009 1.39505 −0.852598
Rdx −0.197531 −1.10317 1.32045 −0.0197473
Myh9 −0.079762 −0.635771 1.43791 −0.722382
Zyx −0.379613 −1.08824 0.188798 1.27906
Dstn −0.768233 −0.733085 0.140156 1.36116
Actr3 1.3969 −0.260784 −0.977504 −0.158609
Bmp4 −0.288633 −1.28364 0.914452 0.657823
Cyb5r3 −0.745596 −0.907206 1.1836 0.4692
Cdk4 1.21118 −0.889579 0.426562 −0.74816
Aldoa 0.826149 −1.14381 −0.533523 0.851188
Cdh5 −0.650899 −0.644739 1.46062 −0.164986
Ghr 0.275738 −0.76286 1.29793 −0.810804
Atp2a2 −0.51177 −1.14786 0.977006 0.682622
Ltbp2 −0.596826 −0.0823989 1.4365 −0.757278
Pls3 0.23697 −1.20358 1.20027 −0.233664
Cap1 0.554204 −1.36045 0.911563 −0.105319
Lima1 −0.323465 −1.15467 1.22366 0.254468
Dpysl2 −0.696809 −1.01872 0.807133 0.908401
Ppp1ca 0.769955 −1.19987 0.876423 −0.446511
S100a10 0.0334959 −1.01683 −0.368988 1.35232
Slc9a3r2 −0.786913 −0.833294 1.24245 0.377755
Marcks −0.095569 −0.286677 1.38184 −0.999596
Sorbs3 −0.673773 −0.914912 1.2671 0.32158
Fus 0.644405 −0.755523 1.0575 −0.946377
Gsn −0.512083 −0.503138 −0.484682 1.4999
Nckap1 −0.301663 −1.20117 1.16187 0.340968
Add1 −0.311211 −1.218 1.11843 0.410786
Tgfbr2 −0.717995 −0.912799 0.414436 1.21636
Cd44 0.0409719 −0.805395 1.39648 −0.632058
Tns3 −0.464562 −1.03593 0.209286 1.29121
Actn1 0.458479 −1.0762 1.15762 −0.539902
Wasf2 −0.352504 −1.07925 1.30154 0.130213
Dlc1 −0.741294 −0.879296 1.23701 0.383584
Rap1gap −0.481962 −0.533931 −0.483672 1.49956
Dnajb6 1.06517 −1.34927 0.189553 0.0945508
Lcp1 1.41617 −0.90207 −0.101197 −0.412904
Cdkn1c 1.41418 −0.105178 −0.397307 −0.911693
Sdc4 −0.63846 −0.381346 −0.471663 1.49147
Tmod3 −0.388687 −1.17516 1.13201 0.431829
Net1 −0.145783 −0.07899 1.32632 −1.10154
Iqgap1 −0.257395 −1.23511 0.362558 1.12995
Kank2 −0.552174 −1.12744 0.921746 0.757869
Pecam1 −0.675754 −0.620807 1.45989 −0.163329
Slk −0.082074 −0.947722 1.39944 −0.369648
Specc1l −0.56199 −0.715791 −0.184349 1.46213
Rock2 −0.752439 −0.893999 0.449575 1.19686
Atf3 0.761761 0.925637 −1.10758 −0.579823
Actn4 −0.441928 −1.03076 1.30985 0.162832
Myo1b −0.595032 −1.09886 0.890657 0.803232
Cxcl12 −0.377019 −0.839748 1.44875 −0.23198
Vcam1 −0.118534 −0.76449 −0.561394 1.44442
Chchd2 1.12552 −1.04178 0.525748 −0.609493
Arhgef12 −0.728362 −0.801487 1.33803 0.191823
Bcl2 0.69956 0.36696 0.417325 −1.48384
Cryab −0.831001 −0.825524 0.470555 1.18597
Tpm2 0.358849 −0.0645877 1.0411 −1.33536
Stat3 −0.951892 −0.420543 −0.012086 1.38452
Capza1 0.945866 −0.94505 0.778122 −0.778938
Il1b 1.47332 −0.225586 −0.622641 −0.625097
Rnd3 1.34749 −0.576498 0.141145 −0.912138
Slit2 −0.72262 −0.638973 −0.075036 1.43663
Dnm2 −0.296382 −1.16068 1.23026 0.226806
Emp2 −0.964067 −0.678616 0.460195 1.18249
Marcksl1 1.2413 −0.274669 0.193641 −1.16027
Myc 0.184816 1.20839 −0.179336 −1.21387
Mif 1.49932 −0.52861 −0.458383 −0.512332
Fnbp1 0.540304 −1.46099 0.733985 0.186696
Clec2d −0.773785 −0.863032 0.420383 1.21643
Crh 1.228 0.402804 −0.815403 −0.815403
Smarca4 0.897716 −0.966186 0.827408 −0.758938
Rhoj −0.69625 −0.652373 1.44251 −0.0938856
Palld −0.057783 0.00800809 1.24868 −1.19891
Pafah1b1 −0.002853 −1.05804 1.34217 −0.281278
Pik3r1 −0.845334 −0.292798 −0.311845 1.44998
Fblim1 −0.364685 −1.24792 0.737608 0.875
Cdk6 0.385309 −0.958141 1.22701 −0.654178
Ctgf −0.476914 −1.05691 0.277427 1.2564
S1pr1 −0.673846 −0.700603 1.43239 −0.0579363
Shc1 1.07814 −0.51254 0.558318 −1.12392
Coro1b 0.085574 −1.32288 1.10712 0.130185
Mapk14 −0.241958 1.28682 −1.13058 0.0857137
Junb 0.410953 1.17702 −1.09807 −0.489902
Mprip −0.666687 −1.02581 1.03463 0.657863
Rock1 0.158822 −1.39264 0.987159 0.246661
Hax1 0.684126 −1.47716 0.263223 0.529807
Akap13 0.0260559 −1.18589 −0.098462 1.25829
Gng12 −0.35838 −1.00589 1.36373 0.000544535
Cdkn1a 0.0916268 0.462374 −1.4225 0.868503
Gna13 −0.44997 −0.936124 1.38607 2.05e−05
Gnaq −0.091048 −1.03193 1.36656 −0.243584
Sept9 0.555875 −0.684408 1.11649 −0.987952
Gna12 −0.300922 −0.871765 1.44129 −0.268605
Sh3pxd2a −0.403176 −0.808365 1.45726 −0.245722
Prnp −1.32794 0.522858 −0.162763 0.967841
Dab2 1.12043 −1.10753 −0.515332 0.502433
Mapre1 0.403968 −0.845579 1.22686 −0.78525
Fat1 0.727381 0.507463 0.234335 −1.46918
Clec7a 1.49561 −0.390523 −0.549357 −0.555734

Table 4.

Computational transcriptional factor binding site motif enrichment analyzed in the differential gene expression pattern of six profiles.

Profile Gene/TF −log Pval
Profile_1 KLF3 29.92
Profile_1 ELK3 29.31
Profile_1 YBX1 19.67
Profile_1 SP1 19.52
Profile_1 HBP1 12.97
Profile_1 FOXF2 6.998
Profile_1 ID3 6.854
Profile_1 CUX1 3.526
Profile_1 CTCF 2.103
Profile_13 KLF6 28.86
Profile_13 ELK4 13.64
Profile_13 SMARCC2 6.029
Profile_13 NFE2L1 4.113
Profile_13 NFIA 3.98
Profile_13 NFIX 3.98
Profile_13 MEF2A 3.491
Profile_13 MAX 2.221
Profile_13 FOXN3 3.203
Profile_10 RUNX3 4.56
Profile_10 JUNB 4.264
Profile_18 KLF7 5.862
Profile_23 FOSB 4.769
Profile_39 KLF4 36.43

Table 5.

Previously published ChIP-Seq data with significant overlap of genes differentially expressed in CD140+ fibroblasts throughout lung development.

Profile Track Cell TF Overlap Total Ratio Enrichment p-Val
Profile_1 Caltech_Tfbs C2C12 NRSF 207 465 0.45 3.41 5.80E−66
Profile_1 Licr_Chip MEL CTCF 286 465 0.62 2.22 4.26E−46
Profile_13 Sydh_Tfbs CH12 Max 193 257 0.75 2.17 1.62E−37

Table 6.

Genes identified in the ChIP-Seq enrichment analysis and differentially expressed in CD140+ cells.

CTCF & NRSF NRSF CTCF MAX
ACTN1 ANAPC5 1110004F10RIK 1700016K19RIK
ACTR2 AP2M1 1700020I14RIK ACAA2
ANXA6 ATP5B 2700081O15RIK ACO2
AP3B1 ATP6V0C-PS2 6820431F20RIK ACTN4
API5 BRD2 ACAT1 ADD1
ARPC1B CALD1 ADNP ADIPOR1
ARPC2 CALU ANKRD11 AHCYL1
ARPC5 CBX3 ANKRD17 AKAP12
ATP5C1 CDK11B ANP32A ANO6
B230219D22RIK CFDP1 ATF7IP AP2B1
BCLAF1 CNN3 ATP5J ARF4
CALM2 CXCL12 ATXN2L ARHGAP1
CALM3 DDX1 BAZ1B ARHGDIA
CANX DDX3X BC005537 ARL8B
CAPRIN1 DHX15 BPTF ASAH1
CAPZA1 DLD BZW1 ATL3
CAPZA2 EIF5 CCND2 ATP1A1
CAPZB FKBP10 CCNI ATP1B3
CCNY FOXF2 CDC123 ATP2A2
CDC42 FSTL1 CDK6 ATP6AP1
CFL1 FZD1 CDV3 ATP6V0D1
CHD4 GSK3B CLINT1 ATP6V0E
CKAP4 GTF2A2 CNN2 ATP6V1A
COMMD3 GTF3C6 CNOT1 BAG1
COPS5 HDAC2 COPZ2 BAG6
CORO1C HNRNPH1 CPD BCAP31
CSNK1A1 IDH3B CRTAP BRD7
CUL3 IMMT CTCF CALM1
CYC1 ITSN2 CTDNEP1 CAPNS1
DDX39B KTN1 CTDSP1 CAST
DENND5A LGALS1 CUL1 CCDC47
DHX9 MDH2 CUX1 CCNDBP1
EID1 NARS CXXC1 CCNT1
EIF3C NCOR1 DDB1 CD164
EIF3D NDUFA10 DNAJC10 CD47
EIF4G2 NRD1 DNAJC7 CHMP2A
EIF5B NSMCE2 DNMT3A CHTOP
EPB4.1L2 NXF1 DNTTIP2 CIR1
ERH PCNP EIF2S3X CLIP1
EWSR1 POMP EIF3G CLN5
FBXO11 PPP4R2 EIF4A3 COPA
FKBP1A PRCP EIF4G3 COPE
FLNA PRDX2 ELK3 COPG1
FUS PSMB5 ERBB2IP CR1L
GDI2 RCN2 ESF1 CRIPT
GHR RHOA EXT2 CSNK1G2
GLUD1 RNF4 FAM120A CTDSP2
GNB1 RTN4 FAM193A CTNNB1
H3F3A SDCBP GALNT1 CTSA
HMGB3 SETD5 GINS4 CTSB
HMOX2 SLC25A3 GNG12 CTSD
HNRNPA0 SND1 GNG5 CUTA
HNRNPA2B1 SNRNP200 GOLGA7 DAP
HNRNPDL SNRNP70 GPBP1 DAZAP2
HPRT STRAP GSK3A DCTN4
HTATSF1 TAF13 GTPBP4 DCTN6
ID3 TRP53 H1F0 DDOST
IK TUBB6 HDGF DEGS1
ILF3 VDAC3 HIC1 DHRS1
IVNS1ABP VIM HIPK2 DNAJA1
KANSL1 YBX1 HMGN1 DNAJB11
KHDRBS1 YEATS4 HNRNPA3 DPP8
KLF3 ZFP207 HNRNPH2 EGLN1
KPNB1 HNRNPLL EIF4EBP2
LEO1 HNRNPUL1 EIF4ENIF1
LRRC59 ILK ELK4
LSM14A KLHDC2 ELOVL5
MBD2 KLHL9 EMC3
MFSD1 LARP4B EMC4
MSL1 LASP1 EMC7
MYH9 LIX1L EP300
NCBP2 LSM12 ERGIC3
NDUFA12 MAP4 ERP29
NEDD4 MAP7D1 ESYT1
NUP62 MAPK1IP1L ETFA
P4HB MAPKAP1 FADS1
PABPC1 MAPRE1 FAM114A1
PAICS MAPRE2 FBXO22
PCBP1 MIDN GANAB
PCBP2 MRFAP1 GM13363
PFN1 MTDH GM6644
PNRC2 MTSS1L GOLGA4
POLR2A NDUFS2 GORASP2
PPP1CC NONO GRN
PPP1R12A NRBP1 GTF2B
PPP3R1 NUCKS1 H2-K1
PRELID1 PABPN1 HADHA
PRKAR1A PAPOLA HADHB
PRPF40A PCM1 HAX1
PRPF4B PDCD5 HDLBP
PRRC2A PDS5A HECTD1
PSMD11 PICALM HIAT1
PSMD12 PITPNA HIPK1
PSMD6 POLR2M HNRNPUL2
PTBP1 PPP1CA HSP90B1
PTP4A2 PSMA7 IFITM2
PTPN12 PSMC2 IFT20
QK PSMD1 IQGAP1
RAB10 PTBP3 IRF2BP2
RAB14 PTCH1 ITFG1
RAB6A PTOV1 JAGN1
RAC1 PUM2 KCMF1
RNF187 RAD21 KDELR2
RNF7 RAP1A KIF1B
SCAF11 RBBP6 KLF6
SENP6 RERE KMT2E
SH3BGRL3 REST KRCC1
SH3GLB1 RRP1 LAMP1
SLTM SETD8 LAMTOR5
SMC6 SHFM1 LGALS9
SRP72 SHOC2 LIMA1
SRRM1 SKAP2 LIMS1
SRSF2 SKIV2L2 LMAN1
SRSF3 SLK MAPK3
SRSF5 SMARCA4 MAT2A
SSR3 SMARCE1 MAX
STAG1 SMO MEF2A
STMN1 SNAI2 MLF2
STX12 SNHG5 MYL12A
SUPT16 SNX4 NBR1
TAB2 SP1 NCOA4
TBL1X SPIN1 NCSTN
TCF12 SUCLG2 NDFIP1
TFG SYNCRIP NFE2L1
THRAP3 TCEA1 NFIX
TMED9 THOC7 NISCH
TMEM123 TOMM22 OCIAD1
TMEM131 TPR PAFAH1B2
TMEM234 TSPAN3 PDHB
TMPO UBE2E3 PDIA4
TOP2B UBE2I PDZD11
TRIP12 UBE2V1 PHLDA1
TTC3 UBE4B PLXNB2
TUBA1A USP47 PPP2R1A
TUBB5 UTP3 PPT1
VAMP3 VCP PSMC5
VDAC2 WAPAL PTPRS
WDR1 WDR26 RAB1
XRN2 YWHAB RAB7
YTHDC1 ZC3H15 RAB9
YWHAE ZFP664 RANBP9
YWHAH ZMYND11 RAP2A
YWHAQ RCN1
ZCRB1 REEP5
RHOB
RNH1
RTN3
S100A11
SAR1A
SAR1B
SEC. 31A
SEC. 61A1
SEC. 63
SERINC1
SIRT2
SMDT1
SNAPIN
SRPR
STAU1
STT3A
STT3B
STX4A
STX5A
SUPT6
SWI5
TAGLN2
TAOK1
TCF25
TECR
TLN1
TM9SF2
TMBIM6
TMED10
TMED2
TMOD3
TOR1AIP2
TRAPPC6B
TRP53BP2
TUBB4B
TXNDC5
UBR5
UBXN4
UGP2
USP16
USP8
VGLL4
VPS25
VPS28
YWHAG
ZFP106
ZMIZ1
ZYX

2. Experimental design, materials and methods

2.1. Animals

B6.129S4-PDGFRαtm11(EGFP)Sor/J mouse-line herein designated PDGFRαGFP [2], with PDGFRα promoter driving the expression of the H2B-eGFP fusion gene were used for immunohistochemical, differential plate-down, and flow cytometry analyses. Mice lacking the PDGFRα GFP tag were used for PDGFRα+ cell RNA-Seq analysis.

2.2. Confocal microscopy

Lung tissues were harvested, fixed with 4% PFA in PBS and frozen. Tissue was sectioned into 200 μm slices and stained with anti-αSMA (Sigma-Aldrich, St. Louis, MO), Pro-SPC and chicken polyclonal anti-GFP antibody (Abcam, Cambridge, MA). Data was analyzed by Imaris software, version 7.6.

2.3. Characterization of PDGFRαGFP Cells by flow cytometry in plate-adhered or suspension cells

Lung tissue from PDGFRαGFP mice was harvested, processed into single cell suspension as previously described [3]. Cells were incubated in Dulbecco׳s DMEM/F12 (10% FBS, 2% pen/strep) after 2 h of culture, the media containing the non-adherent cell fraction was collected, and the adherent fraction was collected using Accutase (1× ACCUTASE enzymes in Dulbecco׳s PBS (0.2 g/L KCl, 0.2 g/L KH2PO4, 8 g/L NaCl, and 1.15 g/L Na2HPO4) containing 0.5 mM EDTA·4Na and 3 mg/L Phenol Red).

2.4. Bioinformatics data analysis

RNA-Seq data was quantitated using TopHat and Cufflinks [4], genes were included with the expression level (FPKM) was more than 1 in all samples. Bayesian Analysis of Time Series (BATS) identified genes as differentially expressed at one or more timepoints, co-regulated genes were identified by using pattern recognition using STEM and grouped into Gene expression profiles. Gene expression profiles were subjected to gene set enrichment analysis with Toppgene and Toppcluster [5], [6], [7].

2.5. Transcription factor promoter enrichment analysis

Transcription factor promoter enrichment analysis of PDGFRα+ fibroblast RNA-Seq profiles identified three candidate transcription factors: NRSF/REST, CTCF, and MAX. ChIP-Seq has been performed in the following mouse cell lines, and the data available in the public domain:

To identify potential candidate genes in PDGFRα+ fibroblasts regulated by NRSF/REST, CTCF, or MAX during acinar lung development, we cross-referenced the dynamically regulated genes identified by our present RNA-Seq analysis with the above, previously-published gene sets [1].

Acknowledgements

We want to thank the FACS core and the Nikon core for excellence at CCHMC for technical assistance. This work was supported by NIH grants R01 HL 104003 01 (AKP), R56 HL 123969 (AKP), U01 HL122642 (LungMAP, AKP, YX), and R21 HG008186 (MTW).

Footnotes

This work was supported by NIH grants R01 HL 104003 01 (AKP), R56 HL 123969 (AKP), U01 HL122642 (LungMAP, AKP, YX), and R21 HG008186 (MTW).

Transparency document

Transparency data associated with this article can be found in the online version at 10.1016/j.dib.2017.06.001.

Transparency document. Supplementary material

Supplementary material

mmc1.pdf (1.2MB, pdf)

References

  • 1.Endale M. Temporal, spatial, and phenotypical changes of PDGFR⍺ expressing fibroblasts during late lung development. Dev. Biol. 2017;425(2):161–175. doi: 10.1016/j.ydbio.2017.03.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Hamilton T.G. Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol. Cell Biol. 2003;23(11):4013–4025. doi: 10.1128/MCB.23.11.4013-4025.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Green J. Diversity of interstitial lung fibroblasts is regulated by platelet-derived growth factor receptor alpha kinase activity. Am. J. Respir. Cell Mol. Biol. 2016;54(4):532–545. doi: 10.1165/rcmb.2015-0095OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Trapnell C. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012;7(3):562–578. doi: 10.1038/nprot.2012.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Angelini C. BATS: a Bayesian user-friendly software for analyzing time series microarray experiments. BMC Bioinform. 2008;9:415. doi: 10.1186/1471-2105-9-415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Ernst J., Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinform. 2006;7:191. doi: 10.1186/1471-2105-7-191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Chen J. ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucl. Acids Res. 2009;37:W305–W311. doi: 10.1093/nar/gkp427. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material

mmc1.pdf (1.2MB, pdf)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES