Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Oct;87(20):7930–7934. doi: 10.1073/pnas.87.20.7930

Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase.

W K Yip 1, J G Dong 1, J W Kenny 1, G A Thompson 1, S F Yang 1
PMCID: PMC54865  PMID: 2122449

Abstract

The pyridoxal phosphate (PLP)-dependent 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (S-adenosyl-L-methionine methylthioadenosine-lyase, EC 4.4.1.14), the key enzyme in ethylene biosynthesis, is inactivated by its substrate S-adenosylmethionine (AdoMet). Apple ACC synthase was purified with an immunoaffinity gel, and its active site was probed with NaB3H4 or Ado[14C]Met. HPLC separation of the trypsin digest yielded a single radioactive peptide. Peptide sequencing of both 3H- and 14C-labeled peptides revealed a common dodecapeptide of Ser-Leu-Ser-Xaa-Asp-Leu-Gly-Leu-Pro-Gly-Phe-Arg, where Xaa was the modified, radioactive residue in each case. Acid hydrolysis of the 3H-labeled enzyme released radioactive N-pyridoxyllysine, indicating that the active-site peptide contained lysine at position 4. Mass spectrometry of the 14C-labeled peptide indicated a protonated molecular ion at m/z 1390.6, from which the mass of Xaa was calculated to be 229, a number that is equivalent to the mass of a lysine residue alkylated by the 2-aminobutyrate portion of AdoMet, as we previously proposed. These results indicate that the same active-site lysine binds the PLP and convalently links to the 2-aminobutyrate portion of AdoMet during inactivation. The active site of tomato ACC synthase was probed in the same manner with Ado[14C]Met. Sequencing of the tomato active-site peptide revealed two highly conserved dodecapeptides; the minor peptide possessed a sequence identical to that of the apple enzyme, whereas the major peptide differed from the minor peptide in that methionine replaced leucine at position 6.

Full text

PDF
7930

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Yang S. F. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci U S A. 1979 Jan;76(1):170–174. doi: 10.1073/pnas.76.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bleecker A. B., Kenyon W. H., Somerville S. C., Kende H. Use of monoclonal antibodies in the purification and characterization of 1-aminocyclopropane-1-carboxylate synthase, an enzyme in ethylene biosynthesis. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7755–7759. doi: 10.1073/pnas.83.20.7755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CORDES E. H., JENCKS W. P. Semicarbazone formation from pyridoxal, pyridoxal phosphate, and their Schiff bases. Biochemistry. 1962 Sep;1:773–778. doi: 10.1021/bi00911a007. [DOI] [PubMed] [Google Scholar]
  4. Falick A. M., Wang G. H., Walls F. C. Ion source for liquid matrix secondary ionization mass spectrometry. Anal Chem. 1986 Jun;58(7):1308–1311. doi: 10.1021/ac00298a009. [DOI] [PubMed] [Google Scholar]
  5. Ford G. C., Eichele G., Jansonius J. N. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. Proc Natl Acad Sci U S A. 1980 May;77(5):2559–2563. doi: 10.1073/pnas.77.5.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forrey A. W., Olsgaard R. B., Nolan C., Fischer E. H. Synthesis and properties of alpha and epsilon pyridoxyl lysines and their phosphorylated derivatives. Biochimie. 1971;53(3):269–281. doi: 10.1016/s0300-9084(71)80093-7. [DOI] [PubMed] [Google Scholar]
  7. Henderson L. E., Oroszlan S., Konigsberg W. A micromethod for complete removal of dodecyl sulfate from proteins by ion-pair extraction. Anal Biochem. 1979 Feb;93(1):153–157. [PubMed] [Google Scholar]
  8. Kagamiyama H., Sakakibara R., Wada H., Tanase S., Morino Y. The complete amino acid seqeunce of mitochondrial asparatate aminotransferase from pig heart. J Biochem. 1977 Jul;82(1):291–294. doi: 10.1093/oxfordjournals.jbchem.a131682. [DOI] [PubMed] [Google Scholar]
  9. Kondo K., Wakabayashi S., Yagi T., Kagamiyama H. The complete amino acid sequence of aspartate aminotransferase from Escherichia coli: sequence comparison with pig isoenzymes. Biochem Biophys Res Commun. 1984 Jul 18;122(1):62–67. doi: 10.1016/0006-291x(84)90439-x. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Mattingly J. R., Jr, Rodriguez-Berrocal F. J., Gordon J., Iriarte A., Martinez-Carrion M. Molecular cloning and in vivo expression of a precursor to rat mitochondrial aspartate aminotransferase. Biochem Biophys Res Commun. 1987 Dec 31;149(3):859–865. doi: 10.1016/0006-291x(87)90487-6. [DOI] [PubMed] [Google Scholar]
  12. Nishiwaki K., Hayashi N., Irie S., Chung D. H., Harashima S., Oshima Y. Structure of the yeast HIS5 gene responsive to general control of amino acid biosynthesis. Mol Gen Genet. 1987 Jun;208(1-2):159–167. doi: 10.1007/BF00330437. [DOI] [PubMed] [Google Scholar]
  13. Ovchinnikov Y. A., Egorov C. A., Aldanova N. A., Feigina M. Y., Lipkin V. M., Abdulaev N. G., Grishin E. V., Kiselev A. P., Modyanov N. N., Braunstein A. E. The complete amino acid sequence of cytoplasmic aspartate aminotransferase from pig heart. FEBS Lett. 1973 Jan 1;29(1):31–34. doi: 10.1016/0014-5793(73)80008-0. [DOI] [PubMed] [Google Scholar]
  14. Privalle L. S., Graham J. S. Radiolabeling of a wound-inducible pyridoxal phosphate-utilizing enzyme: evidence for its identification as ACC synthase. Arch Biochem Biophys. 1987 Mar;253(2):333–340. doi: 10.1016/0003-9861(87)90186-x. [DOI] [PubMed] [Google Scholar]
  15. Ramalingam K., Lee K. M., Woodard R. W., Bleecker A. B., Kende H. Stereochemical course of the reaction catalyzed by the pyridoxal phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate synthase. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7820–7824. doi: 10.1073/pnas.82.23.7820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reeves H. C., Heeren R., Malloy P. Enzyme purification using antibody crosslinked to protein A agarose: application to Escherichia coli NADP-isocitrate dehydrogenase. Anal Biochem. 1981 Jul 15;115(1):194–196. doi: 10.1016/0003-2697(81)90545-5. [DOI] [PubMed] [Google Scholar]
  17. Sato T., Theologis A. Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6621–6625. doi: 10.1073/pnas.86.17.6621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Satoh S., Yang S. F. Inactivation of 1-Aminocyclopropane-1-Carboxylate Synthase by l-Vinylglycine as Related to the Mechanism-Based Inactivation of the Enzyme by S-Adenosyl-l-Methionine. Plant Physiol. 1989 Nov;91(3):1036–1039. doi: 10.1104/pp.91.3.1036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Satoh S., Yang S. F. S-adenosylmethionine-dependent inactivation and radiolabeling of 1-aminocyclopropane-1-carboxylate synthase isolated from tomato fruits. Plant Physiol. 1988 Sep;88(1):109–114. doi: 10.1104/pp.88.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Satoh S., Yang S. F. Specificity of S-adenosyl-L-methionine in the inactivation and the labeling of 1-aminocyclopropane-1-carboxylate synthase isolated from tomato fruits. Arch Biochem Biophys. 1989 May 15;271(1):107–112. doi: 10.1016/0003-9861(89)90260-9. [DOI] [PubMed] [Google Scholar]
  21. Shlyapnikov S. V., Myasnikov A. N., Severin E. S., Myagkova M. A., Torchinsky Y. M., Braunstein A. E. Primary structure of cytoplasmic aspartate aminotransferase from chicken heart and its homology with pig heart isoenzymes. FEBS Lett. 1979 Oct 15;106(2):385–388. doi: 10.1016/0014-5793(79)80537-2. [DOI] [PubMed] [Google Scholar]
  22. Tanase S., Kojima H., Morino Y. Pyridoxal 5'-phosphate binding site of pig heart alanine aminotransferase. Biochemistry. 1979 Jul 10;18(14):3002–3007. doi: 10.1021/bi00581a015. [DOI] [PubMed] [Google Scholar]
  23. Teranishi H., Kagamiyama H., Teranishi K., Wada H., Yamano T., Morino Y. Cytosolic and mitochondrial isoenzymes of glutamic-oxalacetic transaminase from human heart. Structural comparison with the isoenzymes from pig heart. J Biol Chem. 1978 Dec 25;253(24):8842–8847. [PubMed] [Google Scholar]
  24. Tsai D. S., Arteca R. N., Bachman J. M., Phillips A. T. Purification and characterization of 1-aminocyclopropane-1-carboxylate synthase from etiolated mung bean hypocotyls. Arch Biochem Biophys. 1988 Aug 1;264(2):632–640. doi: 10.1016/0003-9861(88)90329-3. [DOI] [PubMed] [Google Scholar]
  25. Van der Straeten D., Van Wiemeersch L., Goodman H. M., Van Montagu M. Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4859–4863. doi: 10.1073/pnas.87.12.4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Van der Straeten D., Van Wiemeersch L., Goodman H. M., Van Montagu M. Purification and partial characterization of 1-aminocyclopropane-1-carboxylate synthase from tomato pericarp. Eur J Biochem. 1989 Jul 1;182(3):639–647. doi: 10.1111/j.1432-1033.1989.tb14873.x. [DOI] [PubMed] [Google Scholar]
  27. Yu Y. B., Adams D. O., Yang S. F. 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis. Arch Biochem Biophys. 1979 Nov;198(1):280–286. doi: 10.1016/0003-9861(79)90420-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES