Abstract
The prevalence of mRNAs coding for the sea urchin embryo regulatory factors P3A1 and P3A2 was measured by single-strand probe excess solution hybridization. P3A1 and P3A2 are not homologous proteins, though they both bind specifically to a particular cis-regulatory sequence. Interaction at this target site is known to be required for lineage-specific expression of an aboral ectoderm-specific gene and probably for several other genes as well. Genome blot hybridizations show that both factors are encoded by single-copy genes. Maternal mRNAs for both factors are present at less than 10(3) molecules per egg, which places them in the rare mRNA class. During development to the mesenchyme blastula stage, the amount of P3A1 mRNA (per embryo) increases severalfold while that of P3A2 remains approximately constant. Specification of the aboral ectoderm founder cells and of their initial patterns of gene expression must occur during early to mid-cleavage stage. Therefore, the regulatory proteins needed for this process must be produced by this stage. We show that the quantities of the P3A proteins that can be synthesized from the numbers of mRNA molecules present in the large blastomeres of the early embryo are sufficient to be functional, because these proteins will be accumulated in the nuclei. Thus maternal P3A1 or P3A2 proteins asre not required, nor were these detected in earlier studies. Furthermore, differential spatial (as well as temporal) distribution of both of these newly synthesized factor species could result from the unequal cleavage pattern utilized in the sea urchin egg.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D. M., Galau G. A., Britten R. J., Davidson E. H. Sequence complexity of the RNA accumulated in oocytes of Arbacia punctulata. Dev Biol. 1976 Jul 1;51(1):138–145. doi: 10.1016/0012-1606(76)90128-7. [DOI] [PubMed] [Google Scholar]
- Britten R. J., Cetta A., Davidson E. H. The single-copy DNA sequence polymorphism of the sea urchin Strongylocentrotus purpuratus. Cell. 1978 Dec;15(4):1175–1186. doi: 10.1016/0092-8674(78)90044-2. [DOI] [PubMed] [Google Scholar]
- Calzone F. J., Thézé N., Thiebaud P., Hill R. L., Britten R. J., Davidson E. H. Developmental appearance of factors that bind specifically to cis-regulatory sequences of a gene expressed in the sea urchin embryo. Genes Dev. 1988 Sep;2(9):1074–1088. doi: 10.1101/gad.2.9.1074. [DOI] [PubMed] [Google Scholar]
- Cameron R. A., Fraser S. E., Britten R. J., Davidson E. H. The oral-aboral axis of a sea urchin embryo is specified by first cleavage. Development. 1989 Aug;106(4):641–647. doi: 10.1242/dev.106.4.641. [DOI] [PubMed] [Google Scholar]
- Cameron R. A., Hough-Evans B. R., Britten R. J., Davidson E. H. Lineage and fate of each blastomere of the eight-cell sea urchin embryo. Genes Dev. 1987 Mar;1(1):75–85. doi: 10.1101/gad.1.1.75. [DOI] [PubMed] [Google Scholar]
- Cox K. H., Angerer L. M., Lee J. J., Davidson E. H., Angerer R. C. Cell lineage-specific programs of expression of multiple actin genes during sea urchin embryogenesis. J Mol Biol. 1986 Mar 20;188(2):159–172. doi: 10.1016/0022-2836(86)90301-3. [DOI] [PubMed] [Google Scholar]
- Davidson E. H. Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: a proposed mechanism. Development. 1989 Mar;105(3):421–445. doi: 10.1242/dev.105.3.421. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Galau G. A., Lipson E. D., Britten R. J., Davidson E. H. Synthesis and turnover of polysomal mRNAs in sea urchin embryos. Cell. 1977 Mar;10(3):415–432. doi: 10.1016/0092-8674(77)90029-0. [DOI] [PubMed] [Google Scholar]
- Goustin A. S., Wilt F. H. Direct measurement of histone peptide elongation rate in cleaving sea urchin embryos. Biochim Biophys Acta. 1982 Oct 29;699(1):22–27. doi: 10.1016/0167-4781(82)90167-1. [DOI] [PubMed] [Google Scholar]
- Goustin A. S., Wilt F. H. Protein synthesis, polyribosomes, and peptide elongation in early development of Strongylocentrotus purpuratus. Dev Biol. 1981 Feb;82(1):32–40. doi: 10.1016/0012-1606(81)90426-7. [DOI] [PubMed] [Google Scholar]
- Hickey R. J., Boshar M. F., Crain W. R., Jr Transcription of three actin genes and a repeated sequence in isolated nuclei of sea urchin embryos. Dev Biol. 1987 Nov;124(1):215–227. doi: 10.1016/0012-1606(87)90473-8. [DOI] [PubMed] [Google Scholar]
- Hough-Evans B. R., Wold B. J., Ernst S. G., Britten R. J., Davidson E. H. Appearance and persistence of maternal RNA sequences in sea urchin development. Dev Biol. 1977 Oct 1;60(1):258–277. doi: 10.1016/0012-1606(77)90123-3. [DOI] [PubMed] [Google Scholar]
- Lee J. J., Calzone F. J., Britten R. J., Angerer R. C., Davidson E. H. Activation of sea urchin actin genes during embryogenesis. Measurement of transcript accumulation from five different genes in Strongylocentrotus purpuratus. J Mol Biol. 1986 Mar 20;188(2):173–183. doi: 10.1016/0022-2836(86)90302-5. [DOI] [PubMed] [Google Scholar]
- Lee J. J., Costlow N. A. A molecular titration assay to measure transcript prevalence levels. Methods Enzymol. 1987;152:633–648. doi: 10.1016/0076-6879(87)52070-5. [DOI] [PubMed] [Google Scholar]
- Lee J. J., Shott R. J., Rose S. J., 3rd, Thomas T. L., Britten R. J., Davidson E. H. Sea urchin actin gene subtypes. Gene number, linkage and evolution. J Mol Biol. 1984 Jan 15;172(2):149–176. doi: 10.1016/s0022-2836(84)80035-2. [DOI] [PubMed] [Google Scholar]
- Livant D. L., Cutting A. E., Britten R. J., Davidson E. H. An in vivo titration of regulatory factors required for expression of a fusion gene in transgenic sea urchin embryos. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7607–7611. doi: 10.1073/pnas.85.20.7607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minor J. E., Lee J. J., Akhurst R. J., Leahy P. S., Britten R. J., Davidson E. H. Sea urchin actin gene linkages determined by genetic segregation. Dev Biol. 1987 Jul;122(1):291–295. doi: 10.1016/0012-1606(87)90354-x. [DOI] [PubMed] [Google Scholar]
- Parisi E., Filosa S., De Petrocellis B., Monroy A. The pattern of cell division in the early development of the sea urchin. Paracentrotus lividus. Dev Biol. 1978 Jul;65(1):38–49. doi: 10.1016/0012-1606(78)90177-x. [DOI] [PubMed] [Google Scholar]
- Posakony J. W., Flytzanis C. N., Britten R. J., Davidson E. H. Interspersed sequence organization and developmental representation of cloned poly(A) RNAs from sea urchin eggs. J Mol Biol. 1983 Jun 25;167(2):361–389. doi: 10.1016/s0022-2836(83)80340-4. [DOI] [PubMed] [Google Scholar]
- Sucov H. M., Benson S., Robinson J. J., Britten R. J., Wilt F., Davidson E. H. A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. II. Structure of the gene and derived sequence of the protein. Dev Biol. 1987 Apr;120(2):507–519. doi: 10.1016/0012-1606(87)90254-5. [DOI] [PubMed] [Google Scholar]
- Sucov H. M., Hough-Evans B. R., Franks R. R., Britten R. J., Davidson E. H. A regulatory domain that directs lineage-specific expression of a skeletal matrix protein gene in the sea urchin embryo. Genes Dev. 1988 Oct;2(10):1238–1250. doi: 10.1101/gad.2.10.1238. [DOI] [PubMed] [Google Scholar]
- Thézé N., Calzone F. J., Thiebaud P., Hill R. L., Britten R. J., Davidson E. H. Sequences of the CyIIIa actin gene regulatory domain bound specifically by sea urchin embryo nuclear proteins. Mol Reprod Dev. 1990 Feb;25(2):110–122. doi: 10.1002/mrd.1080250203. [DOI] [PubMed] [Google Scholar]
- Vinson C. R., LaMarco K. L., Johnson P. F., Landschulz W. H., McKnight S. L. In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Dev. 1988 Jul;2(7):801–806. doi: 10.1101/gad.2.7.801. [DOI] [PubMed] [Google Scholar]