Skip to main content
Bulletin of the World Health Organization logoLink to Bulletin of the World Health Organization
. 2016 Jul 18;95(7):517–525I. doi: 10.2471/BLT.16.182105

Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses

Analyse systématique des similarités protéiques entre le virus Zika et d'autres virus transmis par des arthropodes

Análisis sistemático de la identidad proteica entre el virus de Zika y otros virus trasmitidos por artrópodos

تحليل منهجي لتماثل البروتين بين فيروس زيكا وغيره من الفيروسات التي تحملها مفصليات الأرجل

寨卡病毒与其他节肢动物媒介病毒之间蛋白质识别的系统分析

Систематический анализ белковой идентичности между вирусом Зика и другими арбовирусами

Hsiao-Han Chang a,, Roland G Huber b, Peter J Bond b, Yonatan H Grad c, David Camerini d, Sebastian Maurer-Stroh b, Marc Lipsitch a
PMCID: PMC5487971  PMID: 28670016

Abstract

Objective

To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains.

Methods

We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k-mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins.

Findings

In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k-mers) of protein fragments on the list.

Conclusion

We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.

Introduction

Monitoring the geographic and the demographic distribution of people infected with Zika virus is important for informing decision-makers and researchers during the ongoing epidemic. Health officials also need further knowledge about the associations between Zika virus infection and its sequelae, such as microcephaly and Guillain–Barré syndrome. However, the absence of a sensitive and specific serological test for detecting prior Zika virus infection impedes research. According to the World Health Organization’s Target product profiles for better diagnostic tests for Zika virus infection,1 such a test must be able to differentiate between chikungunya, dengue and Zika viruses, since these mosquito-borne arboviruses can be co-circulating and can cause similar symptoms.2

Dengue and Zika viruses belong to the virus family Flaviviridae, while chikungunya virus belongs to the Togaviridae family. Although they belong to different virus families, Zika and chikungunya viruses share some similarities in envelope protein folding and membrane fusion mechanisms.3

Active Zika virus infections can be detected by nucleic acid-based diagnostic tools.4,5 However, developing serological diagnostic tests to detect previous Zika virus infections has been challenging, because of cross-reactivity between antibodies against different arboviruses.612 Hence, current serological assays, such as enzyme-linked immunosorbent assay (ELISA) and plaque reduction neutralization tests, may not be able to distinguish if a person has been infected with Zika virus or another flavivirus or if a person has received a previous yellow fever or Japanese encephalitis vaccination.13,14 A study has shown that neutralizing monoclonal antibodies generated against recombinant fragments of the envelope protein of dengue virus serotype 2 tend to be cross-reactive among flaviviruses, while nonneutralizing antibodies seem to be virus specific.15

We hypothesize that immunogenic protein regions with sequence dissimilarity may exist across arthropod-borne viruses (arboviruses) and that antibodies targeting these regions may be less likely to be cross-reactive. Identifying such regions could aid the development of specific microarray-based serological tests, such as a peptide microarray, to detect Zika virus and/or other related viruses. A peptide microarray is a high-throughput method for detecting interactions between peptides and antibodies and is composed of multiple spots of peptides on a solid surface.16 We also hypothesize that protein regions that are more conserved among different strains of the Zika virus are more likely to contribute to the sensitivity of the peptide microarray. Thus, to identify Zika virus conserved protein fragments that are variable among other virus species, we analysed proportions of protein sequence identity across virus species and protein polymorphism among different strains of Zika virus. We analysed the flaviviruses Zika, dengue, West Nile, Japanese encephalitis and yellow fever, and the alphavirus chikungunya.

Methods

We used publicly available proteomic sequencing data (Table 1). For the Zika virus, we used data set A from Faria et al.17 We downloaded the protein sequences of Japanese encephalitis virus, yellow fever virus and chikungunya virus from the National Center for Biotechnology Information (NCBI) protein database and the sequences for dengue virus serotypes 1–4 and West Nile virus from NCBI virus variation resource.18

Table 1. Proteomic sequencing data used to compare identity between viruses and within viruses.

Species Collection date WHO Region No. of samples
ZIKV 1947–2015 African, Americas, Western Pacific 34
DENV1 01/01/2010– 06/01/2016 African, Americas, European, South-East Asia, Western Pacific 171
DENV2 01/01/2010– 06/01/2016 Americas, Eastern Mediterranean, South-East Asia, Western Pacific 158
DENV3 01/01/2010– 06/01/2016 Americas, Eastern Mediterranean, South-East Asia, Western Pacific 62
DENV4 01/01/2010– 06/01/2016 Americas, South-East Asia, Western Pacific 58
WNV 01/01/2008–06/01/2016 Americas, European, South-East Asia, 44
JEV 1951–2012 South-East Asia, Western Pacific 19
YFV 1981–2016 African, Americas, Western Pacific 31
CHIKV 1953-2015 African, Americas, European, South-East Asia, Western Pacific 212

CHIKV: chikungunya virus; DENV1−4: dengue virus serotype 1; JEV: Japanese encephalitis virus; WHO: World Health Organization; WNV: West Nile virus; YFV; yellow fever virus; ZIKV: Zika virus.

Note: For ZIKV, we used data set A from Faria et al.17 We downloaded the protein sequences of JEV, YFV and CHIKV from the National Center of Biotechnology Information (NCBI) protein database and sequences for DENV serotypes 1–4 and WNV from NCBI virus variation resource.18

We used BLASTP19 to find regions of identity between arboviruses, applying a default Expect (E)-value threshold of 10, that is the expected number of hits of the observed similarity, by chance, is fewer than 10. The results are robust and we obtained the same results when E-value thresholds were 5 or 50. When comparing the chikungunya and the Zika viruses, we used an E-value threshold of 1000, because chikungunya does not belong to the Flaviviridae family and we could not identify any regions of similarity when using an E-value threshold of 10. For all protein fragments across the proteome, we calculated the proportion of shared amino acids between virus species and polymorphism among different Zika virus strains. We analysed protein fragments of different lengths, so called k-mers (where k is the amino acid length of the protein fragment), with k equal to 6 or ranging from 10 to 100. We used a sliding window approach, where we moved the window one amino acid at a time along the proteome to include every possible k-mer. To be conservative, we identified protein fragment identity between species by the maximum identity among all the pairs of strains for each window considered. For analysing the identity with dengue virus, we used the highest identity between the Zika virus and all four serotypes of the dengue virus for each window considered. To assess if protein identity between the Zika virus and each of the dengue serotype was significantly associated with polymorphism within each dengue virus serotype, we calculated P-values by using Pearson's correlation test.

To identify polymorphisms within viruses, we used both the average pairwise difference and the proportion of polymorphic sites. Average pairwise difference is calculated by averaging the proportions of differences in peptide sequences from all pairs of the virus strains. We chose to plot the proportion of polymorphic sites in the figures because it is less sensitive to population structure and/or sampling bias.

To identify potential protein fragments that could be used for diagnostic tests, we selected k-mers with low proportion of identity between the Zika virus and other arboviruses as well as low polymorphism between different strains of Zika virus as lead candidate protein fragments. The rationale for this approach was that fragments with low between-species identity and low within-species polymorphism are most likely to have both the required specificity and sensitivity for such tests. We chose k-mers in the bottom quintile of values of identity and polymorphism for each k-mer length.

Insights into protein structures are critical for assessing the possible antigenicity of peptides, because buried peptides are less likely to be antigenic.20 To determine if any of the fragments are exposed or buried in the two Zika virus proteins with available protein structures, the envelope protein and the non-structural (NS) protein 1, we calculated the solvent accessible surface area for each amino acid. We used the published structures of dimeric NS1 (protein data bank identification, PDB ID: 5GS6)21 and the envelope protein in the biological assembly of the mature virus (PDB ID: 5IRE).22 To calculate the solvent accessible surface area, we used the linear combinations of pairwise overlaps method23 and used 10 Å2 as the upper limit for buried residues, as this value corresponds to half the surface area of a single water molecule. The regions at the C-terminal end of the dengue virus envelope protein interact with the viral lipid membrane24 and are unlikely to be exposed. Due to the high structural similarity of the envelope proteins between dengue and Zika viruses, we assume that the region from residue 404 to the C-terminus in Zika virus envelope protein is also buried. For the lead candidate list, we excluded the k-mers without any continuous exposed peptides longer than five amino acids in the two proteins, because exposed peptides are more likely to be antigenic. The threshold of five amino acids was chosen because 99.7% of experimentally determined antigenic B-cell epitopes for flaviviruses found in Virus Pathogen Database and Analysis Resource database are longer than five amino acids.25 We obtained the list of theses epitopes through the database’s web site at http://www.viprbrc.org/.

Results

On average, Zika virus shares 55.6% amino acid sequence identity with dengue virus, 46.0% with yellow fever virus, 56.1% with Japanese encephalitis virus, 57.0% with West Nile virus and 1.3% with chikungunya virus. The identity between Zika virus and other viruses and Zika virus polymorphism for all k-mers are available from the corresponding author. As an example, Fig. 1 and Fig. 2 show the identity between Zika virus and other viruses investigated and polymorphisms within the Zika virus for all 50-mer peptides.

Fig. 1.

Zika virus polymorphism versus identity between Zika virus and other arboviruses, 50-mers across the Zika virus proteome

E: envelope; NS; non-structural; prM; precursor membrane.

Notes: 50-mers across the Zika virus proteome were analysed, using a sliding window approach. Fifty-mers containing known epitopes in non-Zika virus flaviviruses are shown in green. Polymorphic sites are the sites that vary among different strains of Zika virus.

Fig. 1

Fig. 2.

Sliding-window identity between Zika virus and other flaviviruses and within-Zika virus polymorphism

E: envelope; NS; non-structural; prM; precursor membrane.

Notes: The window size is 50 amino acids and step size is 5 amino acids. The light green shaded area (position 430–500) shows low between-species identity and low within-Zika virus polymorphism.

Fig. 2

Fig. 3 shows protein fragments mapped to the corresponding envelope or NS1 proteins. The exposed areas of the proteins show regions with both low identity with other flaviviruses and low Zika virus polymorphism.

Fig. 3.

Mapping per-site identity and polymorphism onto the structures of Zika virus envelope protein and nonstructural protein 1 dimer

NS1: nonstructural protein 1.

Notes: Sites polymorphic within Zika virus or with high identity between Zika virus and other viruses could compromise respectively sensitivity and specificity of a serological test. Thus the most useful sites are expected to be those that lack identity with other viruses and lack polymorphism within Zika virus, shown in red. Identity between a comparator virus and Zika virus is shown in yellow; polymorphism within Zika virus is shown in blue; and sites with both properties are shown in green. The side view of the envelope protein shows the two transmembrane helices on the bottom. These helices likely remain buried within the lipid bilayer envelope and hence are unavailable for interactions with antibodies. In the structures including all viruses, sites are shown as homologous if they are homologous between Zika virus and any of the flaviviruses. Homologous regions are larger for dengue virus because sites are shown as homologous if they are homologous between Zika virus and any of the four dengue virus serotypes.

Fig. 3

The lead candidate list for developing a specific and sensitive microarray-based serological test contains 294 protein fragments. These fragments have low similarity between viruses, low polymorphism within the Zika virus and continuous exposed peptides longer than five amino acids (Table 2; available at: http://www.who.int/bulletin/volumes/95/7/16-182105). The list excluded 10.9% (36/330) of k-mers containing previously identified B-cell epitopes for other flaviviruses than Zika, because they are likely to be cross-reactive. Protein fragments from all Zika virus proteins, except NS3, are present in the list. NS4A has the highest number (190 k-mers) of candidate protein fragments (Table 3).

Table 2. The lead candidate list of Zika virus protein fragments with low proportion of identity with other flaviviruses and low polymorphism.

Position in proteome, aa
Protein Average pairwise difference Polymorphic sites, % k-mera Homology with other flaviviruses, %
Peptide sequence
Start End DENV JEV YFV WNV
26 95 capsid C 0.0078 0.0429 70 0.4857 0.4857 0.2286 0.5000 PFGGLKRLPAGLLLGHGPIRMVLAILAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRII
28 97 capsid C 0.0019 0.0286 70 0.5000 0.4714 0.2286 0.5000 GGLKRLPAGLLLGHGPIRMVLAILAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINA
32 101 capsid C 0.0077 0.0429 70 0.5000 0.4714 0.2571 0.4857 RLPAGLLLGHGPIRMVLAILAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKEK
33 102 capsid C 0.0077 0.0429 70 0.4857 0.4714 0.2571 0.4857 LPAGLLLGHGPIRMVLAILAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKEKK
34 103 capsid C 0.0077 0.0429 70 0.4857 0.4857 0.2571 0.5000 PAGLLLGHGPIRMVLAILAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKEKKR
35 104 capsid C 0.0077 0.0429 70 0.4857 0.4857 0.2571 0.5000 AGLLLGHGPIRMVLAILAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKEKKRR
45 94 capsid C 0.0027 0.0400 50 0.4800 0.4600 0.2600 0.4800 RMVLAILAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRI
54 93 capsid C 0.0033 0.0500 40 0.4750 0.4000 0.2500 0.4250 LRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLR
55 94 capsid C 0.0033 0.0500 40 0.4750 0.4000 0.2500 0.4250 RFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRI
56 95 capsid C 0.0033 0.0500 40 0.4750 0.4000 0.2500 0.4250 FTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRII
57 96 capsid C 0.0033 0.0500 40 0.4750 0.4000 0.2250 0.4250 TAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIIN
58 97 capsid C 0.0033 0.0500 40 0.4750 0.3750 0.2000 0.4000 AIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINA
59 98 capsid C 0.0033 0.0500 40 0.4750 0.3750 0.2250 0.4000 IKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINAR
60 99 capsid C 0.0033 0.0500 40 0.4750 0.4000 0.2500 0.3750 KPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARK
61 100 capsid C 0.0033 0.0500 40 0.4750 0.4000 0.2250 0.3750 PSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
87 92 capsid C 0.0000 0.0000 6 0.3333 0.1667 0.1667 0.1667 DLAAML
131 136 pr 0.0000 0.0000 6 0.1667 0.1667 0.0000 0.1667 AYYMYL
132 137 pr 0.0000 0.0000 6 0.1667 0.1667 0.0000 0.1667 YYMYLD
133 138 pr 0.0000 0.0000 6 0.1667 0.1667 0.0000 0.1667 YMYLDR
231 240 membrane 0.0000 0.0000 10 0.3000 0.3000 0.2000 0.3000 SQTWLESREY
411 450 envelope 0.0044 0.0750 40 0.4500 0.4250 0.2250 0.3750 CSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIGHETDENR
412 451 envelope 0.0044 0.0750 40 0.4250 0.4250 0.2000 0.3500 SKKMTGKSIQPENLEYRIMLSVHGSQHSGMIGHETDENRA
413 452 envelope 0.0044 0.0750 40 0.4250 0.4250 0.2250 0.3750 KKMTGKSIQPENLEYRIMLSVHGSQHSGMIGHETDENRAK
414 453 envelope 0.0044 0.0750 40 0.4250 0.4250 0.2000 0.3750 KMTGKSIQPENLEYRIMLSVHGSQHSGMIGHETDENRAKV
415 454 envelope 0.0044 0.0750 40 0.4500 0.4000 0.2000 0.3500 MTGKSIQPENLEYRIMLSVHGSQHSGMIGHETDENRAKVE
419 448 envelope 0.0020 0.0333 30 0.4667 0.4000 0.2000 0.3667 SIQPENLEYRIMLSVHGSQHSGMIGHETDE
420 449 envelope 0.0020 0.0333 30 0.4667 0.4000 0.2000 0.3667 IQPENLEYRIMLSVHGSQHSGMIGHETDEN
421 450 envelope 0.0020 0.0333 30 0.4667 0.3667 0.2000 0.3333 QPENLEYRIMLSVHGSQHSGMIGHETDENR
422 451 envelope 0.0020 0.0333 30 0.4667 0.3667 0.2000 0.3000 PENLEYRIMLSVHGSQHSGMIGHETDENRA
436 445 envelope 0.0000 0.0000 10 0.4000 0.3000 0.2000 0.3000 SQHSGMIGHE
438 447 envelope 0.0000 0.0000 10 0.4000 0.3000 0.2000 0.3000 HSGMIGHETD
439 448 envelope 0.0000 0.0000 10 0.4000 0.3000 0.2000 0.3000 SGMIGHETDE
440 449 envelope 0.0000 0.0000 10 0.4000 0.2000 0.2000 0.2000 GMIGHETDEN
441 450 envelope 0.0000 0.0000 10 0.4000 0.2000 0.2000 0.2000 MIGHETDENR
442 451 envelope 0.0000 0.0000 10 0.4000 0.3000 0.2000 0.2000 IGHETDENRA
626 665 envelope 0.0029 0.0500 40 0.4000 0.4750 0.3000 0.4750 KVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELD
627 666 envelope 0.0029 0.0500 40 0.4000 0.4750 0.3000 0.4750 VPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDP
629 658 envelope 0.0020 0.0333 30 0.4333 0.4667 0.3000 0.4333 AQMAVDMQTLTPVGRLITANPVITESTENS
913 918 NS1 0.0000 0.0000 6 0.3333 0.0000 0.0000 0.0000 FVRAAK
913 922 NS1 0.0000 0.0000 10 0.4000 0.1000 0.2000 0.2000 FVRAAKTNNS
914 919 NS1 0.0000 0.0000 6 0.3333 0.0000 0.0000 0.0000 VRAAKT
915 920 NS1 0.0000 0.0000 6 0.3333 0.1667 0.1667 0.1667 RAAKTN
1294 1343 NS2A 0.0043 0.0600 50 0.3600 0.3600 0.3000 0.3200 LAILAALTPLARGTLLVAWRAGLATCGGFMLLSLKGKGSVKKNLPFVMAL
1295 1344 NS2A 0.0043 0.0600 50 0.3800 0.3600 0.2800 0.3200 AILAALTPLARGTLLVAWRAGLATCGGFMLLSLKGKGSVKKNLPFVMALG
1299 1318 NS2A 0.0000 0.0000 20 0.3500 0.3500 0.2500 0.3500 ALTPLARGTLLVAWRAGLAT
1299 1338 NS2A 0.0018 0.0250 40 0.3500 0.3250 0.2500 0.3250 ALTPLARGTLLVAWRAGLATCGGFMLLSLKGKGSVKKNLP
1299 1348 NS2A 0.0043 0.0600 50 0.3600 0.3400 0.3000 0.3000 ALTPLARGTLLVAWRAGLATCGGFMLLSLKGKGSVKKNLPFVMALGLTAV
1300 1319 NS2A 0.0000 0.0000 20 0.3500 0.3500 0.3000 0.3500 LTPLARGTLLVAWRAGLATC
1300 1339 NS2A 0.0018 0.0250 40 0.3500 0.3250 0.2500 0.3250 LTPLARGTLLVAWRAGLATCGGFMLLSLKGKGSVKKNLPF
1300 1349 NS2A 0.0043 0.0600 50 0.3600 0.3400 0.3000 0.3000 LTPLARGTLLVAWRAGLATCGGFMLLSLKGKGSVKKNLPFVMALGLTAVR
1301 1320 NS2A 0.0000 0.0000 20 0.3500 0.3500 0.2500 0.3500 TPLARGTLLVAWRAGLATCG
1301 1340 NS2A 0.0018 0.0250 40 0.3750 0.3000 0.2500 0.3000 TPLARGTLLVAWRAGLATCGGFMLLSLKGKGSVKKNLPFV
1302 1311 NS2A 0.0000 0.0000 10 0.4000 0.3000 0.2000 0.3000 PLARGTLLVA
1302 1321 NS2A 0.0000 0.0000 20 0.3500 0.3000 0.2000 0.3000 PLARGTLLVAWRAGLATCGG
1303 1322 NS2A 0.0000 0.0000 20 0.3500 0.2500 0.1500 0.2500 LARGTLLVAWRAGLATCGGF
1304 1323 NS2A 0.0000 0.0000 20 0.3500 0.2500 0.1500 0.2500 ARGTLLVAWRAGLATCGGFM
1305 1324 NS2A 0.0000 0.0000 20 0.4000 0.3000 0.1500 0.3000 RGTLLVAWRAGLATCGGFML
1309 1318 NS2A 0.0000 0.0000 10 0.4000 0.3000 0.2000 0.3000 LVAWRAGLAT
1310 1319 NS2A 0.0000 0.0000 10 0.4000 0.2000 0.2000 0.2000 VAWRAGLATC
1311 1320 NS2A 0.0000 0.0000 10 0.4000 0.3000 0.2000 0.3000 AWRAGLATCG
1312 1321 NS2A 0.0000 0.0000 10 0.3000 0.3000 0.2000 0.3000 WRAGLATCGG
1313 1322 NS2A 0.0000 0.0000 10 0.2000 0.3000 0.2000 0.3000 RAGLATCGGF
1314 1323 NS2A 0.0000 0.0000 10 0.1000 0.2000 0.2000 0.2000 AGLATCGGFM
1315 1324 NS2A 0.0000 0.0000 10 0.2000 0.3000 0.2000 0.3000 GLATCGGFML
1317 1322 NS2A 0.0000 0.0000 6 0.1667 0.1667 0.1667 0.1667 ATCGGF
1318 1323 NS2A 0.0000 0.0000 6 0.1667 0.1667 0.1667 0.1667 TCGGFM
1326 1331 NS2A 0.0000 0.0000 6 0.1667 0.1667 0.1667 0.1667 SLKGKG
1328 1333 NS2A 0.0000 0.0000 6 0.1667 0.1667 0.1667 0.1667 KGKGSV
1328 1337 NS2A 0.0000 0.0000 10 0.3000 0.3000 0.2000 0.3000 KGKGSVKKNL
1354 1363 NS2A 0.0000 0.0000 10 0.3000 0.3000 0.2000 0.3000 INVVGLLLLT
1459 1468 NS2B 0.0000 0.0000 10 0.3000 0.3000 0.2000 0.3000 GPPMREIILK
1460 1469 NS2B 0.0000 0.0000 10 0.3000 0.2000 0.2000 0.2000 PPMREIILKV
1461 1470 NS2B 0.0000 0.0000 10 0.3000 0.2000 0.2000 0.3000 PMREIILKVV
1462 1467 NS2B 0.0000 0.0000 6 0.3333 0.1667 0.1667 0.1667 MREIIL
1462 1471 NS2B 0.0000 0.0000 10 0.4000 0.1000 0.1000 0.2000 MREIILKVVL
1463 1472 NS2B 0.0000 0.0000 10 0.4000 0.1000 0.1000 0.2000 REIILKVVLM
1474 1493 NS2B 0.0000 0.0000 20 0.4000 0.2500 0.2000 0.3500 ICGMNPIAIPFAAGAWYVYV
1475 1494 NS2B 0.0000 0.0000 20 0.4000 0.3000 0.2500 0.3000 CGMNPIAIPFAAGAWYVYVK
1476 1495 NS2B 0.0000 0.0000 20 0.4000 0.3500 0.2500 0.3000 GMNPIAIPFAAGAWYVYVKT
1477 1496 NS2B 0.0000 0.0000 20 0.3500 0.3500 0.2500 0.3000 MNPIAIPFAAGAWYVYVKTG
1478 1497 NS2B 0.0000 0.0000 20 0.3500 0.4000 0.2500 0.3500 NPIAIPFAAGAWYVYVKTGK
1483 1492 NS2B 0.0000 0.0000 10 0.4000 0.2000 0.2000 0.3000 PFAAGAWYVY
1484 1493 NS2B 0.0000 0.0000 10 0.3000 0.2000 0.2000 0.2000 FAAGAWYVYV
2116 2215 NS4A 0.0091 0.0600 100 0.3900 0.3500 0.3500 0.4400 GAAFGVMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEI
2117 2216 NS4A 0.0091 0.0600 100 0.3900 0.3500 0.3400 0.4400 AAFGVMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIE
2118 2217 NS4A 0.0084 0.0500 100 0.4000 0.3500 0.3400 0.4400 AFGVMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEP
2119 2218 NS4A 0.0084 0.0500 100 0.4000 0.3400 0.3300 0.4400 FGVMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPA
2120 2179 NS4A 0.0057 0.0500 60 0.4333 0.3333 0.3500 0.3833 GVMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTV
2120 2189 NS4A 0.0049 0.0429 70 0.3857 0.3286 0.3286 0.4286 GVMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMR
2120 2199 NS4A 0.0052 0.0500 80 0.4125 0.3875 0.3375 0.4625 GVMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFG
2120 2209 NS4A 0.0046 0.0444 90 0.3889 0.3556 0.3333 0.4667 GVMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWL
2120 2219 NS4A 0.0041 0.0400 100 0.3900 0.3400 0.3300 0.4400 GVMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPAR
2121 2180 NS4A 0.0057 0.0500 60 0.4333 0.3333 0.3500 0.3833 VMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVS
2121 2190 NS4A 0.0049 0.0429 70 0.3857 0.3286 0.3286 0.4143 VMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRN
2121 2200 NS4A 0.0052 0.0500 80 0.4125 0.3875 0.3500 0.4500 VMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGM
2121 2210 NS4A 0.0046 0.0444 90 0.3889 0.3556 0.3444 0.4556 VMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLM
2121 2220 NS4A 0.0041 0.0400 100 0.4000 0.3500 0.3400 0.4400 VMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARI
2122 2181 NS4A 0.0057 0.0500 60 0.4333 0.3333 0.3500 0.4000 MEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSL
2122 2191 NS4A 0.0049 0.0429 70 0.4000 0.3429 0.3429 0.4286 MEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNK
2122 2201 NS4A 0.0052 0.0500 80 0.4125 0.3875 0.3500 0.4625 MEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMV
2122 2211 NS4A 0.0046 0.0444 90 0.4000 0.3667 0.3444 0.4667 MEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMW
2122 2221 NS4A 0.0041 0.0400 100 0.4100 0.3600 0.3400 0.4500 MEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIA
2123 2182 NS4A 0.0057 0.0500 60 0.4500 0.3500 0.3667 0.4167 EALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLG
2123 2192 NS4A 0.0049 0.0429 70 0.4143 0.3571 0.3571 0.4429 EALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKG
2123 2202 NS4A 0.0052 0.0500 80 0.4250 0.3875 0.3625 0.4750 EALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVT
2123 2212 NS4A 0.0046 0.0444 90 0.4000 0.3667 0.3556 0.4667 EALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWL
2123 2222 NS4A 0.0041 0.0400 100 0.4100 0.3600 0.3400 0.4500 EALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIAC
2124 2183 NS4A 0.0024 0.0333 60 0.4500 0.3333 0.3667 0.4000 ALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGI
2124 2193 NS4A 0.0020 0.0286 70 0.4286 0.3571 0.3714 0.4429 ALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGI
2124 2203 NS4A 0.0027 0.0375 80 0.4250 0.3875 0.3625 0.4750 ALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTL
2124 2213 NS4A 0.0024 0.0333 90 0.4000 0.3556 0.3556 0.4556 ALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLS
2124 2223 NS4A 0.0021 0.0300 100 0.4100 0.3500 0.3400 0.4400 ALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACV
2125 2184 NS4A 0.0024 0.0333 60 0.4500 0.3500 0.3667 0.4167 LGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIF
2125 2194 NS4A 0.0020 0.0286 70 0.4429 0.3714 0.3714 0.4571 LGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIG
2125 2204 NS4A 0.0027 0.0375 80 0.4250 0.3875 0.3625 0.4875 LGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLG
2125 2214 NS4A 0.0024 0.0333 90 0.4111 0.3667 0.3556 0.4667 LGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSE
2125 2224 NS4A 0.0021 0.0300 100 0.4100 0.3600 0.3400 0.4500 LGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVL
2126 2185 NS4A 0.0024 0.0333 60 0.4500 0.3333 0.3500 0.4167 GTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFF
2126 2195 NS4A 0.0020 0.0286 70 0.4571 0.3714 0.3571 0.4571 GTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGK
2126 2205 NS4A 0.0027 0.0375 80 0.4250 0.3750 0.3500 0.4875 GTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGA
2126 2215 NS4A 0.0024 0.0333 90 0.4222 0.3556 0.3444 0.4556 GTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEI
2126 2225 NS4A 0.0021 0.0300 100 0.4200 0.3500 0.3300 0.4400 GTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLI
2127 2186 NS4A 0.0024 0.0333 60 0.4333 0.3167 0.3500 0.4000 TLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFV
2127 2196 NS4A 0.0020 0.0286 70 0.4571 0.3714 0.3714 0.4429 TLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKM
2127 2206 NS4A 0.0027 0.0375 80 0.4250 0.3625 0.3500 0.4750 TLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGAS
2127 2216 NS4A 0.0024 0.0333 90 0.4222 0.3444 0.3444 0.4444 TLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIE
2127 2226 NS4A 0.0021 0.0300 100 0.4200 0.3500 0.3300 0.4300 TLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIV
2128 2187 NS4A 0.0024 0.0333 60 0.4333 0.3167 0.3500 0.4167 LPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVL
2128 2197 NS4A 0.0020 0.0286 70 0.4571 0.3857 0.3714 0.4571 LPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMG
2128 2207 NS4A 0.0027 0.0375 80 0.4250 0.3625 0.3500 0.4750 LPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASA
2128 2217 NS4A 0.0024 0.0333 90 0.4333 0.3444 0.3556 0.4444 LPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEP
2128 2227 NS4A 0.0021 0.0300 100 0.4200 0.3500 0.3300 0.4300 LPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVV
2129 2188 NS4A 0.0024 0.0333 60 0.4333 0.3333 0.3500 0.4333 PGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLM
2129 2198 NS4A 0.0020 0.0286 70 0.4429 0.3857 0.3571 0.4571 PGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGF
2129 2208 NS4A 0.0027 0.0375 80 0.4125 0.3625 0.3375 0.4750 PGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAW
2129 2218 NS4A 0.0024 0.0333 90 0.4222 0.3444 0.3444 0.4444 PGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPA
2129 2228 NS4A 0.0021 0.0300 100 0.4200 0.3500 0.3300 0.4300 PGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVF
2130 2179 NS4A 0.0029 0.0400 50 0.4600 0.3200 0.3600 0.3600 GHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTV
2130 2189 NS4A 0.0024 0.0333 60 0.4167 0.3167 0.3333 0.4167 GHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMR
2130 2199 NS4A 0.0031 0.0429 70 0.4429 0.3857 0.3429 0.4571 GHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFG
2130 2209 NS4A 0.0027 0.0375 80 0.4125 0.3500 0.3375 0.4625 GHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWL
2130 2219 NS4A 0.0024 0.0333 90 0.4111 0.3333 0.3333 0.4333 GHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPAR
2130 2229 NS4A 0.0021 0.0300 100 0.4100 0.3500 0.3200 0.4300 GHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFL
2131 2180 NS4A 0.0029 0.0400 50 0.4600 0.3200 0.3600 0.3800 HMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVS
2131 2190 NS4A 0.0024 0.0333 60 0.4167 0.3167 0.3333 0.4167 HMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRN
2131 2200 NS4A 0.0031 0.0429 70 0.4429 0.3857 0.3571 0.4571 HMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGM
2131 2210 NS4A 0.0027 0.0375 80 0.4125 0.3500 0.3500 0.4625 HMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLM
2131 2220 NS4A 0.0024 0.0333 90 0.4222 0.3444 0.3444 0.4444 HMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARI
2131 2230 NS4A 0.0021 0.0300 100 0.4200 0.3600 0.3300 0.4400 HMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLL
2132 2181 NS4A 0.0029 0.0400 50 0.4400 0.3000 0.3600 0.3800 MTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSL
2132 2191 NS4A 0.0024 0.0333 60 0.4333 0.3167 0.3500 0.4167 MTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNK
2132 2201 NS4A 0.0031 0.0429 70 0.4429 0.3714 0.3571 0.4571 MTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMV
2132 2211 NS4A 0.0027 0.0375 80 0.4250 0.3500 0.3500 0.4625 MTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMW
2132 2221 NS4A 0.0024 0.0333 90 0.4333 0.3444 0.3444 0.4444 MTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIA
2132 2231 NS4A 0.0021 0.0300 100 0.4200 0.3500 0.3300 0.4300 MTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLL
2133 2192 NS4A 0.0024 0.0333 60 0.4500 0.3333 0.3667 0.4333 TERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKG
2133 2202 NS4A 0.0031 0.0429 70 0.4571 0.3714 0.3714 0.4714 TERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVT
2133 2212 NS4A 0.0027 0.0375 80 0.4250 0.3500 0.3625 0.4625 TERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWL
2133 2222 NS4A 0.0024 0.0333 90 0.4333 0.3444 0.3444 0.4444 TERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIAC
2133 2232 NS4A 0.0021 0.0300 100 0.4300 0.3600 0.3400 0.4300 TERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLV
2134 2203 NS4A 0.0031 0.0429 70 0.4571 0.3857 0.3714 0.4857 ERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTL
2134 2213 NS4A 0.0027 0.0375 80 0.4250 0.3500 0.3625 0.4625 ERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLS
2134 2223 NS4A 0.0024 0.0333 90 0.4333 0.3444 0.3444 0.4444 ERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACV
2134 2233 NS4A 0.0021 0.0300 100 0.4300 0.3700 0.3500 0.4400 ERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVV
2135 2204 NS4A 0.0031 0.0429 70 0.4571 0.3714 0.3714 0.5000 RFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLG
2135 2214 NS4A 0.0027 0.0375 80 0.4375 0.3500 0.3625 0.4750 RFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSE
2135 2224 NS4A 0.0024 0.0333 90 0.4333 0.3444 0.3444 0.4556 RFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVL
2135 2234 NS4A 0.0021 0.0300 100 0.4400 0.3700 0.3500 0.4500 RFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVL
2136 2215 NS4A 0.0027 0.0375 80 0.4375 0.3500 0.3625 0.4750 FQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEI
2136 2225 NS4A 0.0024 0.0333 90 0.4333 0.3444 0.3444 0.4556 FQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLI
2136 2235 NS4A 0.0021 0.0300 100 0.4400 0.3800 0.3500 0.4600 FQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLI
2137 2216 NS4A 0.0027 0.0375 80 0.4375 0.3500 0.3625 0.4750 QEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIE
2137 2226 NS4A 0.0024 0.0333 90 0.4333 0.3556 0.3444 0.4556 QEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIV
2137 2236 NS4A 0.0021 0.0300 100 0.4500 0.3900 0.3600 0.4700 QEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIP
2138 2217 NS4A 0.0027 0.0375 80 0.4500 0.3500 0.3750 0.4750 EAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEP
2138 2227 NS4A 0.0024 0.0333 90 0.4333 0.3556 0.3444 0.4556 EAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVV
2138 2237 NS4A 0.0021 0.0300 100 0.4600 0.4000 0.3700 0.4800 EAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIPE
2139 2208 NS4A 0.0031 0.0429 70 0.4429 0.3571 0.3571 0.5000 AIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAW
2139 2218 NS4A 0.0027 0.0375 80 0.4500 0.3375 0.3625 0.4625 AIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPA
2139 2228 NS4A 0.0024 0.0333 90 0.4444 0.3444 0.3444 0.4444 AIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVF
2139 2238 NS4A 0.0021 0.0300 100 0.4700 0.4000 0.3700 0.4800 AIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIPEP
2140 2189 NS4A 0.0029 0.0400 50 0.4600 0.3000 0.3600 0.4400 IDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMR
2140 2199 NS4A 0.0036 0.0500 60 0.4833 0.3833 0.3667 0.4833 IDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFG
2140 2209 NS4A 0.0031 0.0429 70 0.4429 0.3429 0.3571 0.4857 IDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWL
2140 2219 NS4A 0.0027 0.0375 80 0.4375 0.3250 0.3500 0.4500 IDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPAR
2140 2229 NS4A 0.0024 0.0333 90 0.4333 0.3444 0.3333 0.4444 IDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFL
2140 2239 NS4A 0.0021 0.0300 100 0.4700 0.4000 0.3600 0.4800 IDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIPEPE
2141 2190 NS4A 0.0029 0.0400 50 0.4600 0.3000 0.3600 0.4400 DNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRN
2141 2210 NS4A 0.0031 0.0429 70 0.4429 0.3429 0.3714 0.4857 DNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLM
2141 2220 NS4A 0.0027 0.0375 80 0.4500 0.3375 0.3625 0.4625 DNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARI
2141 2230 NS4A 0.0024 0.0333 90 0.4444 0.3556 0.3444 0.4556 DNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLL
2141 2240 NS4A 0.0021 0.0300 100 0.4800 0.4100 0.3600 0.4900 DNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIPEPEK
2142 2191 NS4A 0.0029 0.0400 50 0.4600 0.3000 0.3600 0.4400 NLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNK
2142 2201 NS4A 0.0036 0.0500 60 0.4667 0.3667 0.3667 0.4833 NLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMV
2142 2211 NS4A 0.0031 0.0429 70 0.4429 0.3429 0.3571 0.4857 NLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMW
2142 2221 NS4A 0.0027 0.0375 80 0.4500 0.3375 0.3500 0.4625 NLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIA
2142 2231 NS4A 0.0024 0.0333 90 0.4333 0.3444 0.3333 0.4444 NLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLL
2142 2241 NS4A 0.0021 0.0300 100 0.4800 0.4100 0.3600 0.4900 NLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIPEPEKQ
2143 2212 NS4A 0.0031 0.0429 70 0.4286 0.3429 0.3714 0.4857 LAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWL
2143 2222 NS4A 0.0027 0.0375 80 0.4375 0.3375 0.3500 0.4625 LAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIAC
2143 2232 NS4A 0.0024 0.0333 90 0.4333 0.3556 0.3444 0.4444 LAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLV
2143 2242 NS4A 0.0021 0.0300 100 0.4800 0.4200 0.3700 0.5000 LAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIPEPEKQR
2144 2213 NS4A 0.0031 0.0429 70 0.4286 0.3429 0.3714 0.4857 AVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLS
2144 2223 NS4A 0.0027 0.0375 80 0.4375 0.3375 0.3500 0.4625 AVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACV
2144 2233 NS4A 0.0024 0.0333 90 0.4333 0.3667 0.3556 0.4556 AVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVV
2145 2214 NS4A 0.0031 0.0429 70 0.4429 0.3571 0.3714 0.5000 VLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSE
2145 2224 NS4A 0.0027 0.0375 80 0.4375 0.3500 0.3500 0.4750 VLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVL
2145 2234 NS4A 0.0024 0.0333 90 0.4444 0.3778 0.3556 0.4667 VLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVL
2146 2215 NS4A 0.0031 0.0429 70 0.4571 0.3571 0.3571 0.4857 LMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEI
2146 2225 NS4A 0.0027 0.0375 80 0.4500 0.3500 0.3375 0.4625 LMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLI
2146 2235 NS4A 0.0024 0.0333 90 0.4556 0.3889 0.3444 0.4667 LMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLI
2147 2216 NS4A 0.0031 0.0429 70 0.4429 0.3571 0.3429 0.4857 MRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIE
2147 2226 NS4A 0.0027 0.0375 80 0.4375 0.3625 0.3250 0.4625 MRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIV
2147 2236 NS4A 0.0024 0.0333 90 0.4556 0.4000 0.3556 0.4778 MRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIP
2148 2217 NS4A 0.0031 0.0429 70 0.4571 0.3571 0.3571 0.4857 RAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEP
2148 2227 NS4A 0.0027 0.0375 80 0.4375 0.3625 0.3250 0.4625 RAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVV
2148 2237 NS4A 0.0024 0.0333 90 0.4667 0.4111 0.3667 0.4889 RAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIPE
2149 2218 NS4A 0.0031 0.0429 70 0.4571 0.3571 0.3571 0.4857 AETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPA
2149 2228 NS4A 0.0027 0.0375 80 0.4500 0.3625 0.3375 0.4625 AETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVF
2149 2238 NS4A 0.0024 0.0333 90 0.4778 0.4222 0.3778 0.5000 AETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIPEP
2150 2219 NS4A 0.0031 0.0429 70 0.4571 0.3429 0.3571 0.4714 ETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPAR
2150 2229 NS4A 0.0027 0.0375 80 0.4500 0.3625 0.3375 0.4625 ETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFL
2150 2239 NS4A 0.0024 0.0333 90 0.4889 0.4222 0.3778 0.5000 ETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIPEPE
2151 2220 NS4A 0.0031 0.0429 70 0.4571 0.3429 0.3571 0.4714 TGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARI
2151 2230 NS4A 0.0027 0.0375 80 0.4500 0.3625 0.3375 0.4625 TGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLL
2151 2240 NS4A 0.0024 0.0333 90 0.4889 0.4222 0.3667 0.5000 TGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIPEPEK
2152 2221 NS4A 0.0031 0.0429 70 0.4714 0.3571 0.3571 0.4857 GSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIA
2152 2231 NS4A 0.0027 0.0375 80 0.4500 0.3625 0.3375 0.4625 GSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLL
2153 2222 NS4A 0.0031 0.0429 70 0.4571 0.3429 0.3429 0.4714 SRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIAC
2153 2232 NS4A 0.0027 0.0375 80 0.4500 0.3625 0.3375 0.4500 SRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLV
2154 2223 NS4A 0.0031 0.0429 70 0.4571 0.3429 0.3286 0.4714 RPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACV
2154 2233 NS4A 0.0027 0.0375 80 0.4500 0.3750 0.3375 0.4625 RPYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVV
2155 2224 NS4A 0.0031 0.0429 70 0.4429 0.3571 0.3143 0.4714 PYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVL
2155 2234 NS4A 0.0027 0.0375 80 0.4500 0.3875 0.3250 0.4625 PYKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVL
2156 2225 NS4A 0.0031 0.0429 70 0.4571 0.3571 0.3143 0.4714 YKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLI
2156 2235 NS4A 0.0027 0.0375 80 0.4625 0.4000 0.3375 0.4750 YKAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLI
2157 2226 NS4A 0.0031 0.0429 70 0.4429 0.3714 0.3000 0.4714 KAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIV
2157 2236 NS4A 0.0027 0.0375 80 0.4625 0.4125 0.3375 0.4875 KAAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIP
2158 2227 NS4A 0.0020 0.0286 70 0.4429 0.3714 0.3000 0.4714 AAAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVV
2159 2228 NS4A 0.0020 0.0286 70 0.4571 0.3714 0.3143 0.4714 AAAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVF
2160 2219 NS4A 0.0024 0.0333 60 0.4500 0.3500 0.3167 0.4833 AAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPAR
2160 2229 NS4A 0.0020 0.0286 70 0.4429 0.3714 0.3000 0.4714 AAQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFL
2161 2230 NS4A 0.0020 0.0286 70 0.4571 0.3857 0.3143 0.4857 AQLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLL
2162 2231 NS4A 0.0020 0.0286 70 0.4571 0.3857 0.3143 0.4857 QLPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLL
2163 2232 NS4A 0.0010 0.0143 70 0.4714 0.4000 0.3286 0.4857 LPETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLV
2164 2233 NS4A 0.0010 0.0143 70 0.4571 0.4000 0.3429 0.4857 PETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVV
2165 2234 NS4A 0.0010 0.0143 70 0.4571 0.4000 0.3286 0.4857 ETLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVL
2166 2235 NS4A 0.0010 0.0143 70 0.4571 0.4143 0.3286 0.5000 TLETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLI
2168 2227 NS4A 0.0012 0.0167 60 0.4333 0.3667 0.3000 0.4833 ETIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVV
2169 2228 NS4A 0.0012 0.0167 60 0.4333 0.3500 0.3167 0.4833 TIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVF
2170 2229 NS4A 0.0012 0.0167 60 0.4167 0.3500 0.3167 0.4833 IMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFL
2171 2230 NS4A 0.0012 0.0167 60 0.4333 0.3500 0.3333 0.4833 MLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLL
2172 2231 NS4A 0.0012 0.0167 60 0.4167 0.3500 0.3167 0.4833 LLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLL
2173 2232 NS4A 0.0012 0.0167 60 0.4167 0.3500 0.3167 0.4667 LGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLV
2174 2233 NS4A 0.0012 0.0167 60 0.4167 0.3667 0.3333 0.4833 GLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVV
2177 2226 NS4A 0.0014 0.0200 50 0.4000 0.3600 0.3000 0.4800 GTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIV
2178 2227 NS4A 0.0014 0.0200 50 0.3800 0.3600 0.2800 0.4800 TVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVV
2179 2228 NS4A 0.0014 0.0200 50 0.4000 0.3600 0.3000 0.4800 VSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVF
2182 2231 NS4A 0.0014 0.0200 50 0.4200 0.4000 0.3200 0.4800 GIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLL
2183 2232 NS4A 0.0014 0.0200 50 0.4200 0.4000 0.3200 0.4600 IFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLV
2184 2233 NS4A 0.0014 0.0200 50 0.4000 0.4200 0.3400 0.4800 FFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVV
2185 2234 NS4A 0.0014 0.0200 50 0.4000 0.4200 0.3400 0.4800 FVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVL
2186 2235 NS4A 0.0014 0.0200 50 0.4200 0.4400 0.3600 0.4800 VLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLI
2188 2227 NS4A 0.0018 0.0250 40 0.4000 0.4000 0.3250 0.4500 MRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVV
2189 2228 NS4A 0.0018 0.0250 40 0.4000 0.3750 0.3250 0.4250 RNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVF
2190 2229 NS4A 0.0018 0.0250 40 0.4000 0.4000 0.3250 0.4500 NKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFL
2192 2231 NS4A 0.0018 0.0250 40 0.4000 0.4000 0.3250 0.4500 GIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLL
2193 2232 NS4A 0.0018 0.0250 40 0.4000 0.4000 0.3250 0.4250 IGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLV
2203 2222 NS4A 0.0000 0.0000 20 0.4000 0.2500 0.3000 0.3500 LGASAWLMWLSEIEPARIAC
2207 2226 NS4A 0.0000 0.0000 20 0.4000 0.3000 0.3000 0.2500 AWLMWLSEIEPARIACVLIV
2208 2227 NS4A 0.0000 0.0000 20 0.4000 0.3000 0.3000 0.2500 WLMWLSEIEPARIACVLIVV
2210 2229 NS4A 0.0000 0.0000 20 0.4000 0.3500 0.3000 0.3000 MWLSEIEPARIACVLIVVFL
2212 2231 NS4A 0.0000 0.0000 20 0.4000 0.3500 0.3000 0.3000 LSEIEPARIACVLIVVFLLL
2316 2335 NS4B 0.0000 0.0000 20 0.4000 0.3500 0.3000 0.4000 TPAVQHAVTTSYNNYSLMAM
2317 2326 NS4B 0.0000 0.0000 10 0.3000 0.3000 0.2000 0.3000 PAVQHAVTTS
2318 2323 NS4B 0.0000 0.0000 6 0.1667 0.1667 0.1667 0.1667 AVQHAV
2318 2327 NS4B 0.0000 0.0000 10 0.2000 0.3000 0.2000 0.3000 AVQHAVTTSY
2318 2337 NS4B 0.0000 0.0000 20 0.3500 0.2500 0.3000 0.3000 AVQHAVTTSYNNYSLMAMAT
2319 2328 NS4B 0.0000 0.0000 10 0.2000 0.3000 0.2000 0.3000 VQHAVTTSYN
2319 2338 NS4B 0.0000 0.0000 20 0.4000 0.3000 0.3000 0.3500 VQHAVTTSYNNYSLMAMATQ
2418 2427 NS4B 0.0000 0.0000 10 0.3000 0.3000 0.2000 0.3000 VVTDIDTMTI
2419 2428 NS4B 0.0000 0.0000 10 0.3000 0.2000 0.2000 0.2000 VTDIDTMTID
2422 2427 NS4B 0.0000 0.0000 6 0.1667 0.0000 0.1667 0.0000 IDTMTI
2423 2428 NS4B 0.0000 0.0000 6 0.3333 0.0000 0.0000 0.0000 DTMTID
2453 2458 NS4B 0.0000 0.0000 6 0.3333 0.0000 0.1667 0.0000 TAWGWG
2453 2462 NS4B 0.0000 0.0000 10 0.4000 0.3000 0.2000 0.3000 TAWGWGEAGA
2454 2459 NS4B 0.0000 0.0000 6 0.3333 0.1667 0.1667 0.1667 AWGWGE
2703 2708 NS5 0.0000 0.0000 6 0.3333 0.1667 0.1667 0.1667 YTSTMM
2704 2709 NS5 0.0000 0.0000 6 0.3333 0.1667 0.1667 0.1667 TSTMME
2705 2710 NS5 0.0000 0.0000 6 0.3333 0.1667 0.1667 0.1667 STMMET
3403 3412 NS5 0.0000 0.0000 10 0.3000 0.0000 0.2000 0.0000 STQVRYLGEE
3404 3413 NS5 0.0000 0.0000 10 0.3000 0.0000 0.2000 0.0000 TQVRYLGEEG
3405 3414 NS5 0.0000 0.0000 10 0.4000 0.0000 0.2000 0.0000 QVRYLGEEGS
3408 3413 NS5 0.0000 0.0000 6 0.3333 0.0000 0.1667 0.0000 YLGEEG

aa: amino acid; DENV: dengue virus; JEV: Japanese encephalitis virus; NS: non-structural; pr: precursor; WNV: West Nile virus; YFV: yellow fever virus.

a K-mer is the protein fragment’s length in amino acids.

Note: None of the peptides had any homology with chikungunya virus.

Table 3. The number of Zika virus protein fragments selected as lead candidates for developing a serological test.

Protein No. of protein fragments
6-mer 10-mer 20-mer 30-mer 40-mer 50-mer 60-mer 70-mer 80-mer 90-mer 100-mer Total
Capsid C 1 0 0 0 8 1 0 6 0 0 0 16
prM 3 1 0 0 0 0 0 0 0 0 0 4
E 0 6 0 5 7 0 0 0 0 0 0 18
NS1 3 1 0 0 0 0 0 0 0 0 0 4
NS2A 4 10 7 0 3 4 0 0 0 0 0 28
NS2B 1 7 5 0 0 0 0 0 0 0 0 13
NS3 0 0 0 0 0 0 0 0 0 0 0 0
NS4A 0 0 5 0 5 14 24 44 38 32 28 190
NS4B 5 6 3 0 0 0 0 0 0 0 0 14
NS5 4 3 0 0 0 0 0 0 0 0 0 7
Total 21 34 20 5 23 19 24 50 38 32 28 294

E: envelope; NS; non-structural; prM; precursor membrane.

Note: mer refers to the amino acids length of the protein fragment. Candidate proteins were selected based on identity between Zika virus and other viruses, within-Zika virus polymorphism, and protein structure.

As Zika virus infection is associated with birth defects that are not seen in other flavivirus infections, we compared identity and polymorphism of proteins between flaviviruses. Overall, the level of identity between Zika virus and other flaviviruses is similar to the level of identity seen when comparing other flaviviruses with each other (available from the corresponding author). In contrast, one region (amino acid positions 430–500 in the proteome) in the envelope protein shows both low identity between Zika virus and other flaviviruses and low polymorphism within Zika virus (Fig. 2) and the relative polymorphism of NS2A and NS2B is on average 53.6% and 69.5% lower in Zika virus than in other flaviviruses, respectively (Fig. 4).

Fig. 4.

Normalized within-species polymorphism for each gene of each virus

E: envelope; NS; non-structural; prM; precursor membrane.

Notes: The proportion of polymorphic sites of each gene is normalized by the highest proportion of polymorphic sites for each virus.

Fig. 4

Protein identity between dengue and Zika viruses is negatively associated with polymorphism within the dengue virus proteins (P-values < 0.01 for all dengue serotypes; Fig. 5). This result can be explained by so-called negative selection, i.e. protein regions under stronger selective constraints tend to be more conserved and have higher identity between species and lower polymorphism within species.26 We did not observe a similar association for within-Zika virus polymorphism, which might be due to fewer strains analysed and/or smaller effective size of the global Zika virus population from which sequences were sampled, resulting in lower selection efficiency.

Fig. 5.

Dengue virus polymorphism versus identity with Zika virus

E: envelope; NS; non-structural; prM; precursor membrane.

Notes: 50-mers across the Dengue virus proteome were analysed, using a sliding window approach. Dengue virus polymorphism is negatively associated with the identity between dengue virus and Zika virus.

Fig. 5

Discussion

Here we identified regions within the Zika virus proteome that have low identity with other viruses and low within-species polymorphism. These regions may be used to develop new serological diagnostic tests to detect Zika virus infection. However, for some of the identified regions, their antigenic properties are unknown and, therefore, these regions would first need to be evaluated for such properties. The regions identified as antigenic could then be used for developing a peptide microarray, where a collection of identified peptides are displayed on a surface. Antibodies generated during a previous Zika virus infection will then be able to bind to these displayed peptides. The read-out of the microarray is the fluorescent signal generated by fluorescence-coupled secondary antibodies that have bound to the serum antibody–peptide complexes. An advantage of assessing multiple peptides simultaneously in one test is that individual peptides do not need to generate a strong signal, since the intensities of signals of all different antibody–peptide complexes can be incorporated into a composite signal. Through statistical modelling the signal generated can be used to distinguish Zika virus infection and other infections.16 Microarrays also have a greater potential to identify prior virus infections than neutralization-based assays, because microarrays can detect a broader range of antibodies than only antibodies that neutralize the virus and protect against infections. Peptide microarrays have been used to differentiate between serological responses to closely related bacterial pathogens16 and to detect previous viral infections.27

The computational selection strategy used here represents a targeted approach, which reduces the number of potential candidate peptides. These peptides could be used for creating a peptide–antibody signature for a given viral infection. Once the signature is identified, a diagnostic test employing only the most important peptides contributing to that signature can be designed and produced. While our computational analysis of k-mers focused on linear epitopes, specific and sensitive linear epitopes together may be sufficient to distinguish different arboviruses. Moreover, depending on how a serological diagnostic test is produced, some of the longer k-mers might fold with sufficient similarity to their native folding to present conformational epitopes.

Our analysis showed that NS1 protein polymorphism is low. Therefore, using peptides from the NS1 protein for diagnostic test might result in a high-sensitivity test for detecting antibodies against Zika virus from different geographical locations. On the contrary, the identity of NS1 protein across flaviviruses is not particularly low compared to other proteins (third highest among 10 proteins), suggesting that NS1 is not the top candidate protein for low cross-reactivity. Recently, Euroimmun AG (Lübeck, Germany) developed a Zika virus ELISA for immunoglobulins (Ig)M and IgG, based on the NS1 protein. Preliminary results show that the test is Zika virus specific.28,29 However, the small sample size, the fact that the samples were not from regions with endemic dengue and the lack of samples from patients with different stages of infection weaken the conclusion.28,29 Moreover, because each diagnostic test has its advantages and disadvantages, having multiple approaches available is helpful for providing an accurate diagnosis. A sensitive and specific diagnostic test detecting several arbovirus infections simultaneously would be valuable,1 so that only one assay is required to diagnose active and previous flavivirus infection(s). While we designed the sequence analysis for specificity and sensitivity of detection of Zika virus infection, the same type of analysis could be used for identifying specific and sensitive markers for each arbovirus. By including specific and sensitive markers from all arboviruses in the same peptide microarray, the microarray has the potential to detect several arbovirus infections simultaneously.

To further dissect the molecular mechanism leading to the Zika virus sequelae not seen with other flaviviruses, the protein fragments presented in the candidate list may be useful. The low polymorphisms in NS2A and NS2B proteins might be good candidates to start investigating the possible molecular link between Zika virus and microcephaly and Guillain–Barré syndrome.

Peptide-sequence identity is unlikely to fully predict cross-reactivity due to other factors, such as glycosylation. Nonetheless, this analysis based on publicly available sequences provides a step towards the development of a serological test that can distinguish previous Zika virus and co-circulating arbovirus infections.1

Acknowledgements

We thank Xiaowu Liang and Taj Azarian. David Camerini is also affiliated with the Center for Virus Research, University of California, Irvine, USA.

Funding:

This study was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number U54GM088558 and MOE2012-T3-1-008, 15/1/82/27/001, H16/99/b0/013 for the Singapore side.

Competing interests:

HC, YHG, RGH, PJB and SMS declare no conflict of interest. DC has dual employment at UC Irvine and Antigen Discovery Inc. ML has received consulting fees from Pfizer and Affinivax and Antigen Discovery and grants through Harvard TH Chan School of Public Health from Pfizer and PATH Vaccine Solutions.

References

  • 1.Target product profiles for better diagnostic tests for Zika virus infection. Geneva: World Health Organization; 2016. Available from: http://www.who.int/csr/research-and-development/zika-tpp.pdfhttp://[cited 2017 Feb 7].
  • 2.Ioos S, Mallet HP, Leparc Goffart I, Gauthier V, Cardoso T, Herida M. Current Zika virus epidemiology and recent epidemics. Med Mal Infect. 2014. July;44(7):302–7. 10.1016/j.medmal.2014.04.008 [DOI] [PubMed] [Google Scholar]
  • 3.Strauss JH, Strauss EG. Virus evolution: how does an enveloped virus make a regular structure? Cell. 2001. April 6;105(1):5–8. 10.1016/S0092-8674(01)00291-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell. 2016. May 19;165(5):1255–66. 10.1016/j.cell.2016.04.059 [DOI] [PubMed] [Google Scholar]
  • 5.Charrel RN, Leparc-Goffart I, Pas S, de Lamballerie X, Koopmans M, Reusken C. Background review for diagnostic test development for Zika virus infection. Bull World Health Organ. 2016. August 1;94(8):574–584D. 10.2471/BLT.16.171207 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Allwinn R, Doerr HW, Emmerich P, Schmitz H, Preiser W. Cross-reactivity in flavivirus serology: new implications of an old finding? Med Microbiol Immunol. 2002. March;190(4):199–202. 10.1007/s00430-001-0107-9 [DOI] [PubMed] [Google Scholar]
  • 7.Koraka P, Zeller H, Niedrig M, Osterhaus AD, Groen J. Reactivity of serum samples from patients with a flavivirus infection measured by immunofluorescence assay and ELISA. Microbes Infect. 2002. October;4(12):1209–15. 10.1016/S1286-4579(02)01647-7 [DOI] [PubMed] [Google Scholar]
  • 8.Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008. August;14(8):1232–9. 10.3201/eid1408.080287 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Tappe D, Rissland J, Gabriel M, Emmerich P, Gunther S, Held G, et al. First case of laboratory-confirmed Zika virus infection imported into Europe, November 2013. Euro Surveill. 2014. January 30;19(4):20685. 10.2807/1560-7917.ES2014.19.4.20685 [DOI] [PubMed] [Google Scholar]
  • 10.Vorou R. Letter to the editor: diagnostic challenges to be considered regarding Zika virus in the context of the presence of the vector Aedes albopictus in Europe. Euro Surveill. 2016;21(10):30161. 10.2807/1560-7917.ES.2016.21.10.30161 [DOI] [PubMed] [Google Scholar]
  • 11.Zammarchi L, Stella G, Mantella A, Bartolozzi D, Tappe D, Günther S, et al. Zika virus infections imported to Italy: clinical, immunological and virological findings, and public health implications. J Clin Virol. 2015. February;63:32–5. 10.1016/j.jcv.2014.12.005 [DOI] [PubMed] [Google Scholar]
  • 12.Barba-Spaeth G, Dejnirattisai W, Rouvinski A, Vaney MC, Medits I, Sharma A, et al. Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature. 2016. August 4;536(7614):48–53. 10.1038/nature18938 [DOI] [PubMed] [Google Scholar]
  • 13.Revised diagnostic testing for Zika, chikungunya, and dengue viruses in US public health laboratories. Atlanta: Centers for Disease Control and Prevention; 2016. Available from: https://www.cdc.gov/zika/pdfs/denvchikvzikv-testing-algorithm.pdf [cited 2016 Jun 21].
  • 14.Haug CJ, Kieny MP, Murgue B. The Zika challenge. N Engl J Med. 2016. May 12;374(19):1801–3. 10.1056/NEJMp1603734 [DOI] [PubMed] [Google Scholar]
  • 15.Megret F, Hugnot JP, Falconar A, Gentry MK, Morens DM, Murray JM, et al. Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the dengue virus envelope glycoprotein. Virology. 1992. April;187(2):480–91. 10.1016/0042-6822(92)90450-4 [DOI] [PubMed] [Google Scholar]
  • 16.Felgner PL, Kayala MA, Vigil A, Burk C, Nakajima-Sasaki R, Pablo J, et al. A Burkholderia pseudomallei protein microarray reveals serodiagnostic and cross-reactive antigens. Proc Natl Acad Sci U S A. 2009. August 11;106(32):13499–504. 10.1073/pnas.0812080106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Faria NR, Azevedo RdoS, Kraemer MU, Souza R, Cunha MS, Hill SC, et al. Zika virus in the Americas: Early epidemiological and genetic findings. Science. 2016. April 15;352(6283):345–9. 10.1126/science.aaf5036 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Brister JR, Bao Y, Zhdanov SA, Ostapchuck Y, Chetvernin V, Kiryutin B, et al. Virus Variation Resource–recent updates and future directions. Nucleic Acids Res. 2014. January;42(Database issue):D660–5. 10.1093/nar/gkt1268 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009. December 15;10(1):421. 10.1186/1471-2105-10-421 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Van Regenmortel MH, Pellequer JL. Predicting antigenic determinants in proteins: looking for unidimensional solutions to a three-dimensional problem? Pept Res. 1994. Jul-Aug;7(4):224–8. [PubMed] [Google Scholar]
  • 21.Xu X, Song H, Qi J, Liu Y, Wang H, Su C, et al. Contribution of intertwined loop to membrane association revealed by Zika virus full-length NS1 structure. EMBO J. 2016. October 17;35(20):2170–8. 10.15252/embj.201695290 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Sirohi D, Chen Z, Sun L, Klose T, Pierson TC, Rossmann MG, et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science. 2016. April 22;352(6284):467–70. 10.1126/science.aaf5316 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Weiser J, Shenkin PS, Still WC. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem. 1999. 20(2):217–30. [DOI] [Google Scholar]
  • 24.Marzinek JK, Holdbrook DA, Huber RG, Verma C, Bond PJ. Pushing the envelope: dengue viral membrane coaxed into shape by molecular simulations. Structure. 2016. August 2;24(8):1410–20. 10.1016/j.str.2016.05.014 [DOI] [PubMed] [Google Scholar]
  • 25.Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V, et al. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 2012. January;40(Database issue):D593–8. 10.1093/nar/gkr859 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Liu J, Zhang Y, Lei X, Zhang Z. Natural selection of protein structural and functional properties: a single nucleotide polymorphism perspective. Genome Biol. 2008. April 8;9(4):R69. 10.1186/gb-2008-9-4-r69 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Xu GJ, Kula T, Xu Q, Li MZ, Vernon SD, Ndung’u T, et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science. 2015. June 5;348(6239):aaa0698. 10.1126/science.aaa0698 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Press release. Lübeck: EUROIMMUN; 2016. Available from: https://www.euroimmun.com/index.php?eID=dumpFile&t=f&f=3013&token=6cc0bb2eb7c10f484ae50ad91e69cd6424088529 [cited 2017 Mar 17].
  • 29.Huzly D, Hanselmann I, Schmidt-Chanasit J, Panning M. High specificity of a novel Zika virus ELISA in European patients after exposure to different flaviviruses. Euro Surveill. 2016. April 21;21(16):30203. 10.2807/1560-7917.ES.2016.21.16.30203 [DOI] [PubMed] [Google Scholar]

Articles from Bulletin of the World Health Organization are provided here courtesy of World Health Organization

RESOURCES