Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1989 Aug;84(2):484–492. doi: 10.1172/JCI114190

Characterization and cytoskeletal association of a major cell surface glycoprotein, GP 140, in human neutrophils.

S J Suchard 1, L A Boxer 1
PMCID: PMC548907  PMID: 2527250

Abstract

The binding of specific ligands to neutrophil cell surface receptors and the association of these receptors with the cytoskeleton may represent an essential step in activation. To identify surface proteins that are linked to the cytoskeleton during activation, neutrophil 125I-surface labeled plasma membranes were extracted with Triton X-100, and the soluble and insoluble (cytoskeleton) fractions analyzed by SDS-PAGE and autoradiography. The major cell surface proteins recruited to the cytoskeleton after activation with Con A, FMLP, zymosan-activated serum, or immune complexes possessed a relative molecular mass in the range of 80 to 13 kD. In addition to these proteins, WGA stimulates the recruitment of a 140-kD protein (GP 140) to the cytoskeletal fraction. That GP 140 is a WGA-binding protein was verified by Western blotting and WGA-Sepharose affinity chromatography. The Coomassie blue staining pattern of the WGA cytoskeletal fraction revealed major protein bands at apparent molecular weights of greater than 200 (approximately 250, 240, 235), 200, 115, 82/78 (a doublet), 56, 43, 36, and 18 kD. Labeling cells with 32PO4 before WGA treatment indicated that the cytoskeletal proteins with molecular weights of 115, 82/78, and 72 kD, and a 40-kD detergent soluble protein, are phosphorylated during activation. The 78 kD cytoskeletal phosphoprotein co-migrates with the lower subunit of erythrocyte (RBC) band 4.1 and shows strong cross-reactivity with RBC anti-band 4.1 antibody. Phosphorylation of cytoskeletal proteins like 4.1 may be involved in the regulation of interactions between GP 140 and the actin-containing cytoskeleton. Unlike the C3bi receptor, GP 140 is a major surface component of unactivated PMNs, has no stoichiometrically related 95-kD subunit, and has two isoforms with pIs in the range of 6.4 to 6.6. Under conditions that result in an increased expression of the C3bi receptor (such as treatment with the Ca2+ ionophore A23187), the amount of GP 140 on the PMN cell surface appears to be significantly reduced. The interaction of GP 140 with the cytoskeleton during activation suggests that GP 140 may play an important role in neutrophil functional responses.

Full text

PDF
484

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. C., Schmalstieg F. C., Arnaout M. A., Kohl S., Tosi M. F., Dana N., Buffone G. J., Hughes B. J., Brinkley B. R., Dickey W. D. Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoproteins (GP138): common relationship to diminished cell adherence. J Clin Invest. 1984 Aug;74(2):536–551. doi: 10.1172/JCI111451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. A., Lovrien R. E. Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. Nature. 1984 Feb 16;307(5952):655–658. doi: 10.1038/307655a0. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. A., Marchesi V. T. Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature. 1985 Nov 21;318(6043):295–298. doi: 10.1038/318295a0. [DOI] [PubMed] [Google Scholar]
  4. Andersson T., Dahlgren C., Lew P. D., Stendahl O. Cell surface expression of fMet-Leu-Phe receptors on human neutrophils. Correlation to changes in the cytosolic free Ca2+ level and action of phorbol myristate acetate. J Clin Invest. 1987 Apr;79(4):1226–1233. doi: 10.1172/JCI112941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arnaout M. A., Pitt J., Cohen H. J., Melamed J., Rosen F. S., Colten H. R. Deficiency of a granulocyte-membrane glycoprotein (gp150) in a boy with recurrent bacterial infections. N Engl J Med. 1982 Mar 25;306(12):693–699. doi: 10.1056/NEJM198203253061201. [DOI] [PubMed] [Google Scholar]
  6. Bender J. G., Van Epps D. E., Chenoweth D. E. Independent regulation of human neutrophil chemotactic receptors after activation. J Immunol. 1987 Nov 1;139(9):3028–3033. [PubMed] [Google Scholar]
  7. Berger M., O'Shea J., Cross A. S., Folks T. M., Chused T. M., Brown E. J., Frank M. M. Human neutrophils increase expression of C3bi as well as C3b receptors upon activation. J Clin Invest. 1984 Nov;74(5):1566–1571. doi: 10.1172/JCI111572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  9. Bourguignon L. Y., Singer S. J. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5031–5035. doi: 10.1073/pnas.74.11.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bourguignon L. Y., Suchard S. J., Kalomiris E. L. Lymphoma Thy-1 glycoprotein is linked to the cytoskeleton via a 4.1-like protein. J Cell Biol. 1986 Dec;103(6 Pt 1):2529–2540. doi: 10.1083/jcb.103.6.2529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bourguignon L. Y., Suchard S. J., Nagpal M. L., Glenney J. R., Jr A T-lymphoma transmembrane glycoprotein (gp180) is linked to the cytoskeletal protein, fodrin. J Cell Biol. 1985 Aug;101(2):477–487. doi: 10.1083/jcb.101.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carson M., Weber A., Zigmond S. H. An actin-nucleating activity in polymorphonuclear leukocytes is modulated by chemotactic peptides. J Cell Biol. 1986 Dec;103(6 Pt 2):2707–2714. doi: 10.1083/jcb.103.6.2707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Christiansen N. P., Skubitz K. M. Identification of the major lectin-binding surface proteins of human neutrophils and alveolar macrophages. Blood. 1988 Jun;71(6):1624–1632. [PubMed] [Google Scholar]
  14. Clemetson K. J., Bienz D., Zahno M. L., Lüscher E. F. Distribution of platelet glycoproteins and phosphoproteins in hydrophobic and hydrophilic phases in Triton X-114 phase partition. Biochim Biophys Acta. 1984 Dec 19;778(3):463–469. doi: 10.1016/0005-2736(84)90395-x. [DOI] [PubMed] [Google Scholar]
  15. Cockcroft S. The dependence on Ca2+ of the guanine-nucleotide-activated polyphosphoinositide phosphodiesterase in neutrophil plasma membranes. Biochem J. 1986 Dec 1;240(2):503–507. doi: 10.1042/bj2400503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Coleman T. R., Harris A. S., Mische S. M., Mooseker M. S., Morrow J. S. Beta spectrin bestows protein 4.1 sensitivity on spectrin-actin interactions. J Cell Biol. 1987 Mar;104(3):519–526. doi: 10.1083/jcb.104.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Crowley C. A., Curnutte J. T., Rosin R. E., André-Schwartz J., Gallin J. I., Klempner M., Snyderman R., Southwick F. S., Stossel T. P., Babior B. M. An inherited abnormality of neutrophil adhesion. Its genetic transmission and its association with a missing protein. N Engl J Med. 1980 May 22;302(21):1163–1168. doi: 10.1056/NEJM198005223022102. [DOI] [PubMed] [Google Scholar]
  18. Curnutte J. T., Babior B. M., Karnovsky M. L. Fluoride-mediated activation of the respiratory burst in human neutrophils. A reversible process. J Clin Invest. 1979 Apr;63(4):637–647. doi: 10.1172/JCI109346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dejana E., Colella S., Languino L. R., Balconi G., Corbascio G. C., Marchisio P. C. Fibrinogen induces adhesion, spreading, and microfilament organization of human endothelial cells in vitro. J Cell Biol. 1987 May;104(5):1403–1411. doi: 10.1083/jcb.104.5.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dykman T. R., Hatch J. A., Atkinson J. P. Polymorphism of the human C3b/C4b receptor. Identification of a third allele and analysis of receptor phenotypes in families and patients with systemic lupus erythematosus. J Exp Med. 1984 Mar 1;159(3):691–703. doi: 10.1084/jem.159.3.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Eder P. S., Soong C. J., Tao M. Phosphorylation reduces the affinity of protein 4.1 for spectrin. Biochemistry. 1986 Apr 8;25(7):1764–1770. doi: 10.1021/bi00355a047. [DOI] [PubMed] [Google Scholar]
  22. Fechheimer M., Zigmond S. H. Changes in cytoskeletal proteins of polymorphonuclear leukocytes induced by chemotactic peptides. Cell Motil. 1983;3(4):349–361. doi: 10.1002/cm.970030406. [DOI] [PubMed] [Google Scholar]
  23. Fox J. E., Boyles J. K., Reynolds C. C., Phillips D. R. Actin filament content and organization in unstimulated platelets. J Cell Biol. 1984 Jun;98(6):1985–1991. doi: 10.1083/jcb.98.6.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  25. Gardner J. P., Melnick D. A., Malech H. L. Characterization of the formyl peptide chemotactic receptor appearing at the phagocytic cell surface after exposure to phorbol myristate acetate. J Immunol. 1986 Feb 15;136(4):1400–1405. [PubMed] [Google Scholar]
  26. Glenney J. R., Jr, Glenney P. Fodrin is the general spectrin-like protein found in most cells whereas spectrin and the TW protein have a restricted distribution. Cell. 1983 Sep;34(2):503–512. doi: 10.1016/0092-8674(83)90383-5. [DOI] [PubMed] [Google Scholar]
  27. Granger B. L., Lazarides E. Membrane skeletal protein 4.1 of avian erythrocytes is composed of multiple variants that exhibit tissue-specific expression. Cell. 1984 Jun;37(2):595–607. doi: 10.1016/0092-8674(84)90390-8. [DOI] [PubMed] [Google Scholar]
  28. Horwitz A., Duggan K., Buck C., Beckerle M. C., Burridge K. Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage. Nature. 1986 Apr 10;320(6062):531–533. doi: 10.1038/320531a0. [DOI] [PubMed] [Google Scholar]
  29. Howard T. H., Oresajo C. O. The kinetics of chemotactic peptide-induced change in F-actin content, F-actin distribution, and the shape of neutrophils. J Cell Biol. 1985 Sep;101(3):1078–1085. doi: 10.1083/jcb.101.3.1078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hubbard A. L., Cohn Z. A. The enzymatic iodination of the red cell membrane. J Cell Biol. 1972 Nov;55(2):390–405. doi: 10.1083/jcb.55.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Jack R. M., Ezzell R. M., Hartwig J., Fearon D. T. Differential interaction of the C3b/C4b receptor and MHC class I with the cytoskeleton of human neutrophils. J Immunol. 1986 Dec 15;137(12):3996–4003. [PubMed] [Google Scholar]
  32. Jack R. M., Fearon D. T. Altered surface distribution of both C3b receptors and Fc receptors on neutrophils induced by anti-C3b receptor or aggregated IgG. J Immunol. 1984 Jun;132(6):3028–3033. [PubMed] [Google Scholar]
  33. Jesaitis A. J., Naemura J. R., Painter R. G., Sklar L. A., Cochrane C. G. Intracellular localization of N-formyl chemotactic receptor and Mg2+ dependent ATPase in human granulocytes. Biochim Biophys Acta. 1982 Dec 17;719(3):556–568. doi: 10.1016/0304-4165(82)90246-x. [DOI] [PubMed] [Google Scholar]
  34. Jesaitis A. J., Naemura J. R., Painter R. G., Sklar L. A., Cochrane C. G. The fate of an N-formylated chemotactic peptide in stimulated human granulocytes. Subcellular fractionation studies. J Biol Chem. 1983 Feb 10;258(3):1968–1977. [PubMed] [Google Scholar]
  35. Jesaitis A. J., Naemura J. R., Sklar L. A., Cochrane C. G., Painter R. G. Rapid modulation of N-formyl chemotactic peptide receptors on the surface of human granulocytes: formation of high-affinity ligand-receptor complexes in transient association with cytoskeleton. J Cell Biol. 1984 Apr;98(4):1378–1387. doi: 10.1083/jcb.98.4.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  37. Landreth G. E., Williams L. K., McCutchen C. Wheat germ agglutinin blocks the biological effects of nerve growth factor. J Cell Biol. 1985 Nov;101(5 Pt 1):1690–1694. doi: 10.1083/jcb.101.5.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mollinedo F. Isolation of human neutrophil plasma membranes employing neutrophil cytoplasts and changes in the cell-surface proteins upon cell activation. Biochim Biophys Acta. 1986 Sep 25;861(1):33–43. doi: 10.1016/0005-2736(86)90368-8. [DOI] [PubMed] [Google Scholar]
  39. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  40. O'Shea J. J., Brown E. J., Gaither T. A., Takahashi T., Frank M. M. Tumor-promoting phorbol esters induce rapid internalization of the C3b receptor via a cytoskeleton-dependent mechanism. J Immunol. 1985 Aug;135(2):1325–1330. [PubMed] [Google Scholar]
  41. Ohanian V., Wolfe L. C., John K. M., Pinder J. C., Lux S. E., Gratzer W. B. Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin, and 4.1. Biochemistry. 1984 Sep 11;23(19):4416–4420. doi: 10.1021/bi00314a027. [DOI] [PubMed] [Google Scholar]
  42. Oliver J. M., Berlin R. D. Surface and cytoskeletal events regulating leukocyte membrane topography. Semin Hematol. 1983 Oct;20(4):282–304. [PubMed] [Google Scholar]
  43. Oliver J. M., Lalchandani R., Becker E. L. Actin redistribution during Concanavalin A cap formation in rabbit neutrophils. J Reticuloendothel Soc. 1977 May;21(5):359–364. [PubMed] [Google Scholar]
  44. Pasternack G. R., Anderson R. A., Leto T. L., Marchesi V. T. Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton. J Biol Chem. 1985 Mar 25;260(6):3676–3683. [PubMed] [Google Scholar]
  45. Pasternack G. R., Anderson R. A., Leto T. L., Marchesi V. T. Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton. J Biol Chem. 1985 Mar 25;260(6):3676–3683. [PubMed] [Google Scholar]
  46. Perez H. D., Elfman F., Lobo E., Sklar L., Chenoweth D., Hooper C. A derivative of wheat germ agglutinin specifically inhibits formyl-peptide-induced polymorphonuclear leukocyte chemotaxis by blocking re-expression (or recycling) of receptors. J Immunol. 1986 Mar 1;136(5):1803–1812. [PubMed] [Google Scholar]
  47. Perez H. D., Ong R. R. Degranulation of polymorphonuclear leukocytes is induced by multivalent cross-linking of wheat germ agglutinin binding site(s) on cell membrane. Inflammation. 1984 Sep;8(3):277–285. doi: 10.1007/BF00916416. [DOI] [PubMed] [Google Scholar]
  48. Perez H. D., Ong R., Khanna K., Banda D., Goldstein I. M. Wheat germ agglutinin specifically inhibits formyl peptide-induced polymorphonuclear leukocyte chemotaxis. J Immunol. 1982 Dec;129(6):2718–2724. [PubMed] [Google Scholar]
  49. Pytela R., Pierschbacher M. D., Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985 Jan;40(1):191–198. doi: 10.1016/0092-8674(85)90322-8. [DOI] [PubMed] [Google Scholar]
  50. Rotrosen D., Gallin J. I. Disorders of phagocyte function. Annu Rev Immunol. 1987;5:127–150. doi: 10.1146/annurev.iy.05.040187.001015. [DOI] [PubMed] [Google Scholar]
  51. Sanchez-Madrid F., Nagy J. A., Robbins E., Simon P., Springer T. A. A human leukocyte differentiation antigen family with distinct alpha-subunits and a common beta-subunit: the lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p150,95 molecule. J Exp Med. 1983 Dec 1;158(6):1785–1803. doi: 10.1084/jem.158.6.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Scherzer H., Ward P. A. Lung injury produced by immune complexes of varying composition. J Immunol. 1978 Sep;121(3):947–952. [PubMed] [Google Scholar]
  53. Sheterline P., Hopkins C. R. Transmembrane linkage between surface glycoproteins and components of the cytoplasm in neutrophil leukocytes. J Cell Biol. 1981 Sep;90(3):743–754. doi: 10.1083/jcb.90.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sheterline P., Rickard J. E., Richards R. C. Fc receptor-directed phagocytic stimuli induce transient actin assembly at an early stage of phagocytosis in neutrophil leukocytes. Eur J Cell Biol. 1984 May;34(1):80–87. [PubMed] [Google Scholar]
  55. Shiffer K. A., Goodman S. R. Protein 4.1: its association with the human erythrocyte membrane. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4404–4408. doi: 10.1073/pnas.81.14.4404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Skubitz K. M., Zhen Y., August J. T. A human granulocyte-specific antigen characterized by use of monoclonal antibodies. Blood. 1983 Jan;61(1):19–26. [PubMed] [Google Scholar]
  57. Spiegel J. E., Beardsley D. S., Southwick F. S., Lux S. E. An analogue of the erythroid membrane skeletal protein 4.1 in nonerythroid cells. J Cell Biol. 1984 Sep;99(3):886–893. doi: 10.1083/jcb.99.3.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Stevenson K. B., Nauseef W. M., Clark R. A. The neutrophil glycoprotein Mo1 is an integral membrane protein of plasma membranes and specific granules. J Immunol. 1987 Dec 1;139(11):3759–3763. [PubMed] [Google Scholar]
  59. Todd R. F., 3rd, Arnaout M. A., Rosin R. E., Crowley C. A., Peters W. A., Babior B. M. Subcellular localization of the large subunit of Mo1 (Mo1 alpha; formerly gp 110), a surface glycoprotein associated with neutrophil adhesion. J Clin Invest. 1984 Oct;74(4):1280–1290. doi: 10.1172/JCI111538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Tuan T. L., Grinnell F. Wheat-germ-agglutinin and Ricinus communis-agglutinin-binding sites of BHK cells compared with each other and with 140 kDa fibronectin receptors. Biochem J. 1988 Apr 1;251(1):269–277. doi: 10.1042/bj2510269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Vale R. D., Shooter E. M. Alteration of binding properties and cytoskeletal attachment of nerve growth factor receptors in PC12 cells by wheat germ agglutinin. J Cell Biol. 1982 Sep;94(3):710–717. doi: 10.1083/jcb.94.3.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wilson D. L., Hall M. E., Stone G. C., Rubin R. W. Some improvements in two-dimensional gel electrophoresis of proteins. Protein mapping of eukaryotic tissue extracts. Anal Biochem. 1977 Nov;83(1):33–44. doi: 10.1016/0003-2697(77)90506-1. [DOI] [PubMed] [Google Scholar]
  64. Yoon P. S., Boxer L. A., Mayo L. A., Yang A. Y., Wicha M. S. Human neutrophil laminin receptors: activation-dependent receptor expression. J Immunol. 1987 Jan 1;138(1):259–265. [PubMed] [Google Scholar]
  65. Zigmond S. H., Tranquillo A. W. Chemotactic peptide binding by rabbit polymorphonuclear leukocytes. Presence of two compartments having similar affinities but different kinetics. J Biol Chem. 1986 Apr 25;261(12):5283–5288. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES