Abstract
The organophosphorus acid hydrolases represent a distinct class of enzymes that catalyze the hydrolysis of a variety of organophosphate substrates, including many insecticides and their structural analogues. The plasmid-borne opd gene of Pseudomonas diminuta strain MG specifies an organophosphorus acid hydrolase, a phosphotriesterase, that has been well characterized and can hydrolyze a broad spectrum of insect and mammalian neurotoxins. The in situ functioning of this enzyme in the metabolism of organophosphates has been analyzed directly in insects by transferring the opd gene into embryos of Drosophila melanogaster by P element-mediated transformation. The chromosomal locations of this stably inherited transgenic locus differed from strain to strain and demonstrated various expressivity on the whole-insect basis. Transcriptional induction of opd in one of these strains under control of the Drosophila heat shock promoter, hsp70, resulted in the synthesis of stable active enzyme that accumulated to high levels with repeated induction. The heat shock-induced synthesis of organophosphorus acid hydrolases in transgenic flies conferred enhanced resistance to toxic paralysis by the organophosphate insecticide paraoxon.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. S., Durst H. D., Landis W. G. Organofluorophosphate-hydrolyzing activity in an estuarine clam, Rangia cuneata. Comp Biochem Physiol C. 1988;91(2):575–578. doi: 10.1016/0742-8413(88)90080-1. [DOI] [PubMed] [Google Scholar]
- Attaway H., Nelson J. O., Baya A. M., Voll M. J., White W. E., Grimes D. J., Colwell R. R. Bacterial detoxification of diisopropyl fluorophosphate. Appl Environ Microbiol. 1987 Jul;53(7):1685–1689. doi: 10.1128/aem.53.7.1685-1689.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Dumas D. P., Caldwell S. R., Wild J. R., Raushel F. M. Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem. 1989 Nov 25;264(33):19659–19665. [PubMed] [Google Scholar]
- Dumas D. P., Durst H. D., Landis W. G., Raushel F. M., Wild J. R. Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta. Arch Biochem Biophys. 1990 Feb 15;277(1):155–159. doi: 10.1016/0003-9861(90)90564-f. [DOI] [PubMed] [Google Scholar]
- Garabedian M. J., Hung M. C., Wensink P. C. Independent control elements that determine yolk protein gene expression in alternative Drosophila tissues. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1396–1400. doi: 10.1073/pnas.82.5.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hung M. C., Wensink P. C. The sequence of the Drosophila melanogaster gene for yolk protein 1. Nucleic Acids Res. 1981 Dec 11;9(23):6407–6419. doi: 10.1093/nar/9.23.6407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirkland K. C., Phillips J. P. Isolation and chromosomal localization of genomic DNA sequences coding for cytoplasmic superoxide dismutase from Drosophila melanogaster. Gene. 1987;61(3):415–419. doi: 10.1016/0378-1119(87)90203-4. [DOI] [PubMed] [Google Scholar]
- Lewis V. E., Donarski W. J., Wild J. R., Raushel F. M. Mechanism and stereochemical course at phosphorus of the reaction catalyzed by a bacterial phosphotriesterase. Biochemistry. 1988 Mar 8;27(5):1591–1597. doi: 10.1021/bi00405a030. [DOI] [PubMed] [Google Scholar]
- Lis J. T., Simon J. A., Sutton C. A. New heat shock puffs and beta-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. Cell. 1983 Dec;35(2 Pt 1):403–410. doi: 10.1016/0092-8674(83)90173-3. [DOI] [PubMed] [Google Scholar]
- McDaniel C. S., Harper L. L., Wild J. R. Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase. J Bacteriol. 1988 May;170(5):2306–2311. doi: 10.1128/jb.170.5.2306-2311.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
- Rubin G. M., Spradling A. C. Vectors for P element-mediated gene transfer in Drosophila. Nucleic Acids Res. 1983 Sep 24;11(18):6341–6351. doi: 10.1093/nar/11.18.6341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh R. S., Morton R. A. Selection for malathion-resistance in Drosophila melanogaster. Can J Genet Cytol. 1981;23(2):355–369. doi: 10.1139/g81-038. [DOI] [PubMed] [Google Scholar]