Skip to main content
Studies in Mycology logoLink to Studies in Mycology
. 2017 Jun 9;87:105–159. doi: 10.1016/j.simyco.2017.06.002

Didymellaceae revisited

Q Chen 1, LW Hou 1,2, WJ Duan 3, PW Crous 4,5,, L Cai 1,2,
PMCID: PMC5498420  PMID: 28706324

Abstract

The Didymellaceae is one of the most species-rich families in the fungal kingdom, and includes species that inhabit a wide range of ecosystems. The taxonomy of Didymellaceae has recently been revised on the basis of multi-locus DNA sequence data. In the present study, we investigated 108 Didymellaceae isolates newly obtained from 40 host plant species in 27 plant families, and various substrates from caves, including air, water and carbonatite, originating from Argentina, Australia, Canada, China, Hungary, Israel, Italy, Japan, South Africa, the Netherlands, the USA and former Yugoslavia. Among these, 68 isolates representing 32 new taxa are recognised based on the multi-locus phylogeny using sequences of LSU, ITS, rpb2 and tub2, and morphological differences. Within the Didymellaceae, five genera appeared to be limited to specific host families, with other genera having broader host ranges. In total 19 genera are recognised in the family, with Heracleicola being reduced to synonymy under Ascochyta. This study has significantly improved our understanding on the distribution and biodiversity of Didymellaceae, although the placement of several genera still need to be clarified.

Key words: Host-associated, Karst caves, Multi-locus phylogeny, Phoma, Taxonomy

Taxonomic novelties: New species: Allophomaoligotrophica Q. Chen, Crous & L. Cai; Ascochytaboeremae L.W. Hou, Crous & L. Cai; Calophomarosae Q. Chen, Crous & L. Cai; Didymellaaeria Q. Chen, Crous & L. Cai, D. aquatica Q. Chen, Crous & L. Cai, D. chloroguttulata Q. Chen, Crous & L. Cai, D. ellipsoidea Q. Chen, Crous & L. Cai, D. ilicicola Q. Chen, Crous & L. Cai, D. infuscatispora Q. Chen, Crous & L. Cai, D. macrophylla Q. Chen, Crous & L. Cai, D. ocimicola Q. Chen, Crous & L. Cai, D. pteridis L.W. Hou, Crous & L. Cai, D. sinensis Q. Chen, Crous & L. Cai, D. suiyangensis Q. Chen, Crous & L. Cai; Epicoccumcamelliae Q. Chen, Crous & L. Cai, E. dendrobii Q. Chen, Crous & L. Cai, E. duchesneae Q. Chen, Crous & L. Cai, E. hordei Q. Chen, Crous & L. Cai, E. italicum Q. Chen, Crous & L. Cai, E. latusicollum Q. Chen, Crous & L. Cai, E. layuense Q. Chen, Crous & L. Cai, E. poae Q. Chen, Crous & L. Cai, E. viticis Q. Chen, Crous & L. Cai; Heterophomaverbascicola Q. Chen, Crous & L. Cai; Neoascochytaargentina L.W. Hou, Crous & L. Cai, Neoa. soli Q. Chen, Crous & L. Cai, Neoa. triticicola L.W. Hou, Crous & L. Cai; Neodidymelliopsisachlydis L.W. Hou, Crous & L. Cai, Neod. longicolla L.W. Hou, Crous & L. Cai; Stagonosporopsisbomiensis Q. Chen, Crous & L. Cai, S. papillata Q. Chen, Crous & L. Cai

New variety: Boeremiaexigua var. opuli Q. Chen, Crous & L. Cai

New combinations: Ascochytapremilcurensis (Tibpromma et al.) Q. Chen, Crous & L. Cai; Didymellasegeticola (Q. Chen) Q. Chen, Crous & L. Cai

Introduction

The Didymellaceae is the largest family in the Pleosporales (Ascomycota, Pezizomycotina, Dothideomycetes), with more than 5 400 taxon names listed in MycoBank (Crous et al. 2004). The family Didymellaceae was established by de Gruyter et al. (2009) to encompass three main genera, viz. Ascochyta, Didymella and Phoma, and other allied phoma-like genera which grouped in the Didymellaceae. Aveskamp et al. (2010) circumscribed the boundaries of Didymellaceae, redefined the genera Epicoccum, Peyronellaea and Stagonosporopsis, and established the genus Boeremia. He also acknowledged two sexual genera in the family, namely Leptosphaerulina and Macroventuria. In spite of these studies, the polyphyly of Ascochyta, Didymella and Phoma remained unresolved. A revision of the Didymellaceae has recently been published, comprising 17 well-supported monophyletic clades which were treated as individual genera (Chen et al. 2015a). Moreover, the generic delimitations of Ascochyta, Didymella, Epicoccum and Phoma were further emended to reveal more natural evolutionary relationships (Chen et al. 2015a). Subsequent to this revision, several additional genera were added, namely Briansuttonomyces (Crous & Groenewald 2016), Neomicrosphaeropsis (Thambugala et al. 2017), Didymellocamarosporium (Wijayawardene et al. 2016), Heracleicola and Neodidymella (Ariyawansa et al. 2015).

Species of Didymellaceae are cosmopolitan and distributed throughout a broad range of environments. Most of the members in this family are plant pathogens of a wide range of hosts, mainly causing leaf and stem lesions; some are of quarantine significance (Aveskamp et al., 2008, Aveskamp et al., 2010, Chen et al., 2015a, Chen et al., 2015b). Several species belonging to Ascochyta and Nothophoma have been reported to be host-specific to a single plant genus or family (Aveskamp et al., 2010, Chen et al., 2015a). Nevertheless, host specificity in genera of Didymellaceae has not been specifically addressed.

Correct species identification in this family has always proven difficult, chiefly relying on morphology and plant host association (Aveskamp et al., 2010, Chen et al., 2015a). However, a robust backbone tree based on internal transcribed spacer regions and intervening 5.8S nrDNA (ITS), partial 28S large subunit nrDNA (LSU) sequences, and partial regions of RNA polymerase II second largest subunit (rpb2) and β-tubulin (tub2) genes provide a relatively robust phylogenetic backbone for taxon determination (Chen et al. 2015a).

The present study reports on a collection of 108 Didymellaceae isolates obtained from 40 host plant species in 27 plant families in China, as well as several other countries. Of these, 68 isolates representing 32 new taxa are described by employing a polyphasic approach using morphological characteristics and multi-locus phylogenetics.

Materials and methods

Sampling and isolation

The majority of Didymellaceae strains were isolated from diseased plants in seven provinces of China (Gansu, Guizhou, Inner Mongolia, Jiangxi, Qianghai, Shandong and Tibet), as well as Australia, Italy, Japan and the USA. Some strains isolated from air, soil, water and faeces were collected from the Mingyong Glacier in Yunnan Province and inside the Karst caves in Guizhou Province in China. The air, soil and water samples were collected from inside the cave following the methods used by Zhang et al. (2017). Several strains were obtained from the Herbarium BRIP (Dutton Park, Queensland, Australia), the International Collection of Microorganisms from Plants (ICMP, Landcare Research, Auckland, New Zealand), and the Westerdijk Fungal Biodiversity Institute (CBS, Utrecht, the Netherlands), as listed in Table 1.

Table 1.

Isolates used in this study and their GenBank accession numbers. New taxa and new combinations introduced in the present study and newly generated sequences are indicated in bold.

Species Strain number1 Status2 Host, substrate Host family Country GenBank accession numbers3
LSU ITS RPB2 TUB
Allophoma labilis CBS 124.93; PD 87/269 Lycopersicon esculentum Solanaceae Netherlands GU238091 GU237765 KT389552 GU237619
Al. minor CBS 325.82 T Syzygium aromaticum Myrtaceae Indonesia GU238107 GU237831 KT389553 GU237632
Al. nicaraguensis CBS 506.91; PD 91/876; IMI 215229 T Coffea arabica Rubiaceae Nicaragua GU238058 GU237876 KT389551 GU237596
Al. oligotrophica CGMCC 3.18114; LC 6245 T Air China KY742194 KY742040 KY742128 KY742282
CGMCC 3.18115; LC 6246 Air China KY742195 KY742041 KY742129 KY742283
CGMCC 3.18116; LC 6247 Air China KY742196 KY742042 KY742130 KY742284
Al. piperis CBS 268.93; CBS 108.93; PD 88/720 T Peperomia pereskiifolia Piperaceae Netherlands GU238129 GU237816 KT389554 GU237644
CBS 108.93; PD 90/2011 Peperomia sp. Piperaceae Netherlands GU238130 GU237921 KT389555 GU237645
Al. tropica CBS 436.75; DSM 63365 T Saintpaulia ionantha Gesneriaceae Germany GU238149 GU237864 KT389556 GU237663
Al. zantedeschiae CBS 131.93; PD 69/140 Calla sp. Araceae Netherlands GU238159 FJ427084 KT389557 FJ427188
CBS 229.32 Cicer arietinum Fabeceae Romania KT389690 KT389473 KT389558 KT389767
ICMP 16850 Lycopersicon esculentum Solanaceae Hungary KY742197 KY742043 KY742131 KY742285
Ascochyta boeremae CBS 372.84; PD 80/1246 T Pisum sativum Fabeceae Australia KT389697 KT389480 KT389774
As. boeremae CBS 373.84; PD 80/1247 Pisum sativum Fabeceae Australia KT389698 KT389481 KT389560 KT389775
As. fabae CBS 524.77 Phaseolus vulgaris Fabeceae Belgium GU237963 GU237880 GU237526
CBS 649.71 Vicia faba Fabeceae Netherlands GU237964 GU237902 GU237527
PD 83/492 Phaseolus vulgaris Fabeceae Netherlands GU237965 GU237917 GU237528
As. herbicola CBS 629.97; PD 76/1017 R Water USA GU238083 GU237898 KP330421 GU237614
As. lentis CBS 370.84; PD 81/783 Lens culinaris Fabeceae KT389691 KT389474 KT389768
As. medicaginicola var. macrospora BRIP 45051; LC 5258 Medicago sativa Fabeceae Australia KY742198 KY742044 KY742132 KY742286
CBS 112.53 T Medicago sativa Fabeceae USA GU238101 GU237749 GU237628
CBS 404.65; IMI 116999 R Medicago sativa Fabeceae Canada GU238102 GU237859 KP330423 GU237629
As. medicaginicola var. medicaginicola CBS 316.90 Medicago sativa Fabeceae Czech Republic GU238103 GU237828 GU237630
As. nigripycnidia CBS 116.96; PD 95/7930 T Vicia cracca Fabeceae Russia GU238118 GU237756 GU237637
As. phacae CBS 184.55 T Phaca alpina Fabeceae Switzerland KT389692 KT389475 KT389769
As. pisi CBS 122750; ATCC 201619 Pisum sativum Fabeceae USA KT389694 KT389477 KT389771
CBS 122751; ATCC 201620 Pisum sativum Fabeceae Canada KP330444 KP330432 EU874867 KP330388
CBS 122785; PD 78/517 T Pisum sativum Fabeceae Netherlands GU237969 GU237763 GU237532
CBS 126.54 Pisum sativum Fabeceae Netherlands EU754137 GU237772 DQ677967 GU237531
CBS 108.49 Juglans regia Juglandaceae Netherlands KT389693 KT389476 KT389770
As. premilcurensis MFLUCC 14-0518 T Heracleum sphondylium Apiaceae Italy KT326695 KT326694
As. rabiei CBS 206.30 KT389695 KT389478 KT389559 KT389772
CBS 237.37 T Cicer arietinum Fabeceae Bulgaria KT389696 KT389479 KT389773
CBS 534.65 Cicer arietinum Fabeceae India GU237970 GU237886 KP330405 GU237533
As. syringae CBS 545.72 Syringa vulgaris Oleaceae Netherlands KT389700 KT389483 KT389777
As. versabilis CBS 876.97; PD 82/1008 R Silene sp. Caryophyllaceae Netherlands GU238152 GU237909 KT389561 GU237664
As. viciae CBS 451.68 Vicia sepium Fabeceae Netherlands KT389701 KT389484 KT389562 KT389778
As. viciae-pannonicae CBS 254.92 Vicia pannonica Fabeceae Czech Republic KT389702 KT389485 KT389779
Boeremia crinicola CBS 109.79; PD 77/747 R Crinum powellii Amaryllidaceae Netherlands GU237927 GU237737 KT389563 GU237489
B. diversispora CBS 102.80; IMI 331907; PD 79/61 Phaseolus vulgaris Fabeceae Kenya GU237930 GU237725 KT389565 GU237492
CBS 101194; PD 79/687; IMI 373349 Phaseolus vulgaris Fabeceae Netherlands GU237929 GU237716 KT389564 GU237491
B. exigua var. coffeae CBS 119730 Coffea arabica Rubiaceae Brazil GU237942 GU237759 KT389567 GU237504
CBS 109183; PD 2000/10506; IMI 300060 R Coffea arabica Rubiaceae Cameroon GU237943 GU237748 KT389566 GU237505
CBS 431.74; PD 74/2447 R Solanum tuberosum Solanaceae Netherlands EU754183 FJ427001 KT389569 FJ427112
B. exigua var. forsythiae CBS 101197; PD 95/721 Forsythia sp. Oleaceae Netherlands GU237931 GU237718 KT389570 GU237493
CBS 101213; PD 92/959 R Forsythia sp. Oleaceae Netherlands GU237932 GU237723 KT389571 GU237494
B. exigua var. gilvescens CBS 101150; PD 79/118 Cichorium intybus Asteraceae Netherlands EU754182 GU237715 KT389568 GU237495
B. exigua var. heteromorpha CBS 443.94 T Nerium oleander Apocynaceae Italy GU237935 GU237866 KT389573 GU237497
CBS 101196; PD 79/176 Nerium oleander Apocynaceae France GU237934 GU237717 KT389572 GU237496
B. exigua var. linicola CBS 114.28 Linum usitatissimum Linaceae Netherlands GU237937 GU237752 GU237499
CBS 116.76; ATCC 32332; IMI 197074; PD 75/544 R Linum usitatissimum Linaceae Netherlands GU237938 GU237754 KT389574 GU237500
CBS 248.38 Nemophila insignis Hydrophyllaceae Netherlands KT389703 KT389486 KT389575 KT389780
B. exigua var. opuli CGMCC 3.18354; LC 8117 T Viburnum opulus Caprifoliaceae USA KY742199 KY742045 KY742133 KY742287
LC 8118 Viburnum opulus Caprifoliaceae USA KY742200 KY742046 KY742134 KY742288
B. exigua var. populi CBS 100167; PD 93/217 T Populus (×) euramericana Salicaceae Netherlands GU237939 GU237707 GU237501
B. exigua var. pseudolilacis CBS 423.67 Lathyrus sp. Fabeceae Netherlands KT389704 KT389487 KT389576 KT389781
CBS 462.67 Lamium maculatum Lamiaceae Netherlands KT389705 KT389488 KT389782
CBS 101207; PD 94/614 T Syringa vulgaris Oleaceae Netherlands GU237941 GU237721 GU237503
B. exigua var. viburni CBS 100354; PD 83/448 R Viburnum opulus Caprifoliaceae Netherlands GU237944 GU237711 KT389577 GU237506
B. foveata CBS 109176; PD 94/1394 R Solanum tuberosum Solanaceae Bulgaria GU237946 GU237742 KT389578 GU237508
B. hedericola CBS 367.91; PD 87/229 R Hedera helix Araliaceae Netherlands GU237949 GU237842 KT389579 GU237511
B. lilacis CBS 569.79; PD 72/741; IMI 331909 R Syringa vulgaris Oleaceae Netherlands GU237936 GU237892 GU237498
CBS 588.67 Philadelphus sp. Saxifragaceae Netherlands KT389709 KT389492 KT389786
LC 5178 Lonicera japonica Caprifoliaceae China KY742201 KY742047 KY742289
LC 8116 Ocimum sp. Lamiaceae China KY742202 KY742048 KY742290
B. lycopersici CBS 378.67; PD 67/276 R Lycopersicon esculentum Solanaceae Netherlands GU237950 GU237848 KT389580 GU237512
B. noackiana CBS 100353; PD 87/718 R Phaseolus vulgaris Fabeceae Guatemala GU237952 GU237710 GU237514
CBS 101203; PD 79/1114 Phaseolus vulgaris Fabeceae Colombia GU237953 GU237720 KT389581 GU237515
B. sambuci-nigrae CBS 629.68; CECT 20048; IMI 331913; PD 67/753 T Sambucus nigra Caprifoliaceae Netherlands GU237955 GU237897 GU237517
B. strasseri CBS 126.93; PD 73/642 Mentha sp. Lamiaceae Netherlands GU237956 GU237773 KT389584 GU237518
B. telephii CBS 760.73; PD 71/1616 R Sedum telephium Crassulaceae Netherlands GU237959 GU237905 GU237521
CBS 109175; PD 79/524 R Sedum telephium Crassulaceae Netherlands GU237958 GU237741 KT389585 GU237520
B. trachelospermi CGMCC 3.18222; LC 8105 T Trachelospermum jasminoides Apocynaceae USA KY064032 KY064028 KY064033 KY064051
Briansuttonomyces eucalypti CBS 114879; CPC 362 T Eucalyptus sp. Myrtaceae South Africa KU728519 KU728479 KU728595
CBS 114887; CPC 363 Eucalyptus sp. Myrtaceae South Africa KU728520 KU728480 KU728596
Calophoma aquilegiicola CBS 107.31 Aquilegia sp. Ranunculaceae KT389710 KT389493 KT389787
C. aquilegiicola CBS 107.96; PD 73/598 R Aconitum pyramidale Ranunculaceae Netherlands GU238041 GU237735 KT389586 GU237581
CBS 108.96; PD 79/611 R Aquilegia sp. Ranunculaceae Netherlands GU238042 GU237736 GU237582
CBS 109.96; PD 83/832 Aquilegia sp. Ranunculaceae Netherlands KT389711 KT389494 KT389788
CBS 116402 Thalictrum dipterocarpum Ranunculaceae New Zealand KT389712 KT389495 KT389789
C. clematidina CBS 102.66 Clematis sp. Ranunculaceae UK FJ515630 FJ426988 KT389587 FJ427099
CBS 108.79; PD 78/522 T Clematis sp. Ranunculaceae Netherlands FJ515632 FJ426989 KT389588 FJ427100
C. clematidis-rectae CBS 507.63; PD 07/03486747; MUCL 9574 Clematis sp. Ranunculaceae Netherlands FJ515647 FJ515606 KT389589 FJ515624
C. complanata CBS 268.92; PD 75/3 Angelica sylvestris Umbelliferae Netherlands EU754180 FJ515608 GU371778 FJ515626
CBS 100311 Heracleum sphondylium Umbelliferae Netherlands EU754181 GU237709 KT389590 GU237594
C. glaucii CBS 112.96; PD 79/765 Dicentra sp. Papaveraceae Netherlands GU238077 GU237750 GU237610
CBS 114.96; PD 94/888 Chelidonium majus Papaveraceae Netherlands FJ515649 FJ515609 FJ515627
C. rosae CGMCC 3.18347; LC 5169 T Rosa sp. Rosaceae China KY742203 KY742049 KY742135 KY742291
LC 8119 Rosa sp. Rosaceae China KY742204 KY742050 KY742136 KY742292
C. vodakii CBS 173.53 T Hepatica triloba Ranunculaceae Switzerland KT389714 KT389497 KT389791
Didymella acetosellae CBS 179.97 Rumex hydrolapathum Polygonaceae Netherlands GU238034 GU237793 KP330415 GU237575
D. aeria CGMCC 3.18353; LC 7441 T Air China KY742205 KY742051 KY742137 KY742293
LC 8120 Air China KY742206 KY742052 KY742138 KY742294
D. aliena CBS 379.93; PD 82/945 Berberis sp. Berberidaceae Netherlands GU238037 GU237851 KP330416 GU237578
LC 8121 Pyrus calleryana Rosaceae Italy KY742207 KY742053 KY742295
D. americana CBS 185.85; PD 80/1191 R Zea mays Poaceae USA GU237990 FJ426972 KT389594 FJ427088
CBS 568.97; ATCC 44494; PD 94/1544 Glycine max Fabeceae USA GU237991 FJ426974 FJ427090
LC 5157 Sorghum bicolor Poaceae China KY742208 KY742054 KY742139 KY742296
D. anserina CBS 253.80 Germany KT389715 KT389498 KT389595 KT389795
CBS 285.29 Calluna sp. Ericaceae UK KT389716 KT389499 KT389796
CBS 360.84 R Potato flour Netherlands GU237993 GU237839 KT389596 GU237551
CBS 397.65 Plastic Germany KT389717 KT389500 KT389597 KT389797
D. aquatica CGMCC 3.18349; LC 5556 T Water China KY742209 KY742055 KY742140 KY742297
LC 5555 Water China KY742210 KY742056 KY742141 KY742298
D. arachidicola CBS 333.75; ATCC 28333; IMI 386092; PREM 44889 T Arachis hypogaea Fabeceae South Africa GU237996 GU237833 KT389598 GU237554
D. aurea CBS 269.93; PD 78/1087 T Medicago polymorpha Fabeceae New Zealand GU237999 GU237818 KT389599 GU237557
D. bellidis CBS 714.85; PD 74/265 R Bellis perennis Asteraceae Netherlands GU238046 GU237904 KP330417 GU237586
PD 94/886 Bellis sp. Asteraceae Netherlands GU238047 GU237923 GU237587
D. boeremae CBS 109942; PD 84/402 T Medicago littoralis cv. Harbinger Fabeceae Australia GU238048 FJ426982 KT389600 FJ427097
D. calidophila CBS 448.83 T Soil Egypt GU238052 FJ427059 FJ427168
PD 84/109 Cucumis sativus Cucurbitaceae Netherlands GU238053 FJ427060 FJ427169
D. chenopodii CBS 128.93; PD 79/140 R Chenopodium quinoa cv. Sajana Chenopodiaceae Peru GU238055 GU237775 KT389602 GU237591
D. chloroguttulata CGMCC 3.18351; LC 7435 T Air China KY742211 KY742057 KY742142 KY742299
LC 8122 Air China KY742212 KY742058 KY742143 KY742300
D. coffeae-arabicae CBS 123380; PD 84/1013 T Coffea arabica Rubiaceae Ethiopia GU238005 FJ426993 KT389603 FJ427104
LC 8975 Lagerstroemia indica Lythraceae Italy KY742213 KY742059 KY742144 KY742301
D. curtisii CBS 251.92; PD 86/1145 R Nerine sp. Amaryllidaceae Netherlands GU238013 FJ427038 FJ427148
PD 92/1460 Sprekelia sp. Amaryllidaceae Netherlands GU238012 FJ427041 KT389604 FJ427151
D. dactylidis CBS 124513; PD 73/1414 T Dactylis glomerata Poaceae USA GU238061 GU237766 GU237599
D. dimorpha CBS 346.82 T Opuntia sp Cactaceae Spain GU238068 GU237835 GU237606
D. ellipsoidea CGMCC 3.18350; LC 7434 T Air China KY742214 KY742060 KY742145 KY742302
LC 8123 Air China KY742215 KY742061 KY742146 KY742303
D. eucalyptica CBS 377.91; PD 79/210 R Eucalyptus sp. Myrtaceae Australia GU238007 GU237846 KT389605 GU237562
D. exigua CBS 183.55 T Rumex arifolius Polygonaceae France EU754155 GU237794 EU874850 GU237525
D. gardeniae CBS 626.68; IMI 108771 T Gardenia jasminoides Rubiaceae India GQ387595 FJ427003 KT389606 FJ427114
D. glomerata CBS 133.72 Fresco in church Romania KT389718 FJ427004 FJ427115
CBS 528.66; PD 63/590 R Chrysanthemum sp. Asteraceae Netherlands EU754184 FJ427013 GU371781 FJ427124
LC 4963 Leymus chinensis Poaceae China KY742216 KY742062 KY742147 KY742304
LC 8124 Faeces China KY742217 KY742063 KY742148 KY742305
D. heteroderae CBS 109.92; PD 73/1405 T Undefined food material Netherlands GU238002 FJ426983 KT389601 FJ427098
LC 8125 Hydrangea macrophylla Saxifragaceae China KY742218 KY742064 KY742149 KY742306
D. ilicicola CGMCC 3.18355; LC 8126; LC 8127 T Ilex chinensis Aquifoliaceae Italy KY742219 KY742065 KY742150 KY742307
LC 8127 Ilex chinensis Aquifoliaceae Italy KY742220 KY742066 KY742151 KY742308
D. infuscatispora CGMCC 3.18356; LC 8128 T Chrysanthemum indicum Asteraceae China KY742221 KY742067 KY742152 KY742309
LC 8129 Chrysanthemum indicum Asteraceae China KY742222 KY742068 KY742310
D. lethalis CBS 103.25 GU238010 GU237729 KT389607 GU237564
LC 8130 Liquidambar styraciflua Hamamelidaceae Italy KY742223 KY742069 KY742153 KY742311
D. longicolla CBS 124514; PD 80/1189 T Opuntia sp. Cactaceae Spain GU238095 GU237767 GU237622
D. macrophylla CGMCC 3.18357; LC 8131 T Hydrangea macrophylla Saxifragaceae Italy KY742224 KY742070 KY742154 KY742312
LC 8132 Hydrangea macrophylla Saxifragaceae Italy KY742225 KY742071 KY742155 KY742313
D. mascrostoma CBS 223.69 R Acer pseudoplatanus Aceraceae Switzerland GU238096 GU237801 KT389608 GU237623
CBS 247.38 Pinus nigra var. astriaca Pinaceae KT389719 KT389501 KT389798
CBS 482.95 Larix decidua Pinaceae Germany GU238099 GU237869 KT389609 GU237626
CBS 529.66; PD 66/521 R Malus sylvestris Rosaceae Netherlands GU238098 GU237885 GU237625
LC 5203 Soil China KY742226 KY742072 KY742156 KY742314
D. maydis CBS 588.69 T Zea mays Poaceae USA EU754192 FJ427086 GU371782 FJ427190
D. microchlamydospora CBS 105.95 T Eucalyptus sp. Myrtaceae UK GU238104 FJ427028 KP330424 FJ427138
D. molleriana CBS 229.79; LEV 7660 R Digitalis purpurea Scrophulariaceae New Zealand GU238067 GU237802 KP330418 GU237605
CBS 109179; PD 90/835-1 Digitalis sp. Scrophulariaceae Netherlands GU238066 GU237744 GU237604
D. musae CBS 463.69 R Mangifera indica Anacardiaceae India GU238011 FJ427026 FJ427136
D. negriana CBS 358.71 R Vitis vinifera Vitaceae Germany GU238116 GU237838 KT389610 GU237635
ICMP 10845; LC 5249 Vitis vinifera Vitaceae former Yugoslavia KY742227 KY742073 KY742315
D. nigricans CBS 444.81; PDDCC 6546 T Actinidia chinensis Actinidiaceae New Zealand GU238000 GU237867 GU237558
LC 8133 Robinia pseudoacacia f. decaisneana Fabeceae Italy KY742228 KY742074 KY742157 KY742316
LC 8134 Acer palmatum Aceraceae Japan KY742229 KY742075 KY742158 KY742317
LC 8135 Acer palmatum Aceraceae Japan KY742230 KY742076 KY742159 KY742318
LC 8136 Acer palmatum Aceraceae Japan KY742231 KY742077 KY742160 KY742319
PD 77/919 Actinidia chinensis Actinidiaceae New Zealand GU238001 GU237915 KT389611 GU237559
D. ocimicola CGMCC 3.18358; LC 8137 T Ocimum sp. Lamiaceae China KY742232 KY742078 KY742320
LC 8138 Ocimum sp. Lamiaceae China KY742233 KY742079 KY742321
D. pedeiae CBS 124517; PD 92/612A T Schefflera elegantissima Araliaceae Netherlands GU238127 GU237770 KT389612 GU237642
D. pinodella CBS 318.90; PD 81/729 Pisum sativum Fabeceae Netherlands GU238016 FJ427051 FJ427161
CBS 531.66 Trifolium pretense Fabeceae USA GU238017 FJ427052 KT389613 FJ427162
LC 8139 Acer palmatum Aceraceae Japan KY742234 KY742080 KY742161 KY742322
D. pinodes CBS 525.77 T Pisum sativum Fabeceae Belgium GU238023 GU237883 KT389614 GU237572
D. pomorum CBS 285.76; ATCC 26241; IMI 176742; VKM F-1843 Heracleum dissectum Umbelliferae Russia GU238025 FJ427053 KT389615 FJ427163
CBS 354.52 Triticum spelta Poaceae Switzerland KT389720 KT389502 KT389616 KT389799
CBS 388.80 Triticum sp. Poaceae South Africa GU238027 FJ427055 KT389617 FJ427165
CBS 539.66; ATCC 16791; IMI 122266; PD 64/914 R Polygonum tataricum Polygonaceae Netherlands GU238028 FJ427056 KT389618 FJ427166
LC 5185 Gentiana straminea Gentianaceae China KY742235 KY742081 KY742162 KY742323
LC 8140 Dendrobium fimbriatum Orchidaceae China KY742236 KY742082 KY742324
D. protuberans CBS 132.96; PD 93/853 Rhinanthus major Scrophulariaceae Netherlands GU237989 GU237778 GU237550
CBS 377.93; PD 80/976 Daucus carota Umbelliferae Netherlands GU238014 GU237847 KT389619 GU237565
CBS 381.96; PD 71/706 T Lycium halifolium Solanaceae Netherlands GU238029 GU237853 KT389620 GU237574
CBS 391.93; PD 80/87 Spinacia oleracea Chenopodiaceae Netherlands GU238015 GU237858 KT389621 GU237566
D. pteridis CBS 379.96 T Pteris sp. Pteridaceae Netherlands KT389722 KT389504 KT389624 KT389801
D. rhei BRIP 5562; LC 5251 Rheum rhaponticum Polygonaceae Australia KY742237 KY742083 KY742163 KY742325
CBS 109177; LEV 15165; PD 2000/9941 R Rheum rhaponticum Polygonaceae New Zealand GU238139 GU237743 KP330428 GU237653
D. rumicicola CBS 683.79; LEV 15094 T Rumex obtusifolius Polygonaceae New Zealand KT389721 KT389503 KT389622 KT389800
D. sancta CBS 281.83 T Ailanthus altissima Simaroubaceae South Africa GU238030 FJ427063 KT389623 FJ427170
D. segeticola CGMCC 3.17489; LC 1636 T Cirsium segetum Asteraceae China KP330455 KP330443 KP330414 KP330399
CGMCC 3.17498; LC 1635 Cirsium segetum Asteraceae China KP330454 KP330442 KP330413 KP330398
LC 1633 Cirsium segetum Asteraceae China KP330452 KP330440 KP330411 KP330396
LC 1634 Cirsium segetum Asteraceae China KP330453 KP330441 KP330412 KP330397
LC 8141 Camellia sasanqua Theaceae Japan KY742238 KY742084 KY742164 KY742326
D. senecionicola CBS 160.78; LEV 11451 R Senecio jacobaea Asteraceae New Zealand GU238143 GU237787 GU237657
D. sinensis CGMCC 3.18348; LC 5210 T Cerasus pseudocerasus Rosaceae China KY742239 KY742085 KY742327
LC 5246 Urticaceae Urticaceae China KY742240 KY742086 KY742165 KY742328
LC 8142 Dendrobium officinale Orchidaceae China KY742241 KY742087 KY742166 KY742329
LC 8143 Dendrobium officinale Orchidaceae China KY742242 KY742088 KY742167 KY742330
D. subglomerata CBS 110.92; PD 76/1010 R Triticum sp. Poaceae USA GU238032 FJ427080 KT389626 FJ427186
D. subherbarum CBS 249.92; PD 78/1088 Solanum sp. Solanaceae Peru GU238144 GU237808 GU237658
CBS 250.92; DAOM 171914; PD 92/371 T Zea mays Poaceae Canada GU238145 GU237809 GU237659
D. suiyangensis CGMCC 3.18352; LC 7439 T Air China KY742243 KY742089 KY742168 KY742330
LC 8144 Air China KY742244 KY742090 KY742169 KY742332
D. viburnicola CBS 523.73; PD 69/800 R Viburnum cassioides Caprifoliaceae Netherlands GU238155 GU237879 KP330430 GU237667
Didymellocamarosporium tamaricis MFLUCC 14-0241 T Tamarix sp. Tamaricaceae Italy KU848183
Endocoryneum festucae MFLUCC 14-0461 T Festuca sp. Poaceae Italy KU848203
Epicoccum brasiliense CBS 120105 T Amaranthus sp. Amaranthaceae Brazil GU238049 GU237760 KT389627 GU237588
E. camelliae CGMCC 3.18343; LC 4858 T Camellia sinensis Theaceae China KY742245 KY742091 KY742170 KY742333
LC 4862 Camellia sinensis Theaceae China KY742246 KY742092 KY742171 KY742334
E. dendrobii CGMCC 3.18359; LC 8145 T Dendrobium fimbriatum Orchidaceae China KY742247 KY742093 KY742335
LC 8146 Dendrobium fimbriatum Orchidaceae China KY742248 KY74209 KY742336
E. draconis CBS 186.83; PD 82/47 R Dracaena sp. Agavaceae Rwanda GU238070 GU237795 KT389628 GU237607
E. duchesneae CGMCC 3.18345; LC 5139 T Duchesnea indica Rosaceae China KY742249 KY742095 KY742337
LC 8147 Duchesnea indica Rosaceae China KY742250 KY742096 KY742338
E. henningsii CBS 104.80; PD 74/1017 R Acacia mearnsii Fabeceae Kenya GU238081 GU237731 KT389629 GU237612
E. hordei CGMCC 3.18360; LC 8148 T Hordeum vulgare Poaceae Australia KY742251 KY742097 KY742339
LC 8149 Hordeum vulgare Poaceae Australia KY742252 KY742098 KY742340
E. huancayense CBS 105.80; PD 75/908 T Solanum sp. Solanaceae Peru GU238084 GU237732 KT389630 GU237615
E. italicum CGMCC 3.18361; LC 8150 T Acca sellowiana Myrtaceae Italy KY742253 KY742099 KY742172 KY742341
LC 8151 Acca sellowiana Myrtaceae Italy KY74225 KY742100 KY742173 KY742342
E. latusicollum CGMCC 3.18346; LC 5158 T Sorghum bicolor Poaceae China KY742255 KY742101 KY742174 KY742343
LC 4859 Camellia sinensis Theaceae China KY742256 KY742102 KY742175 KY742344
LC 5124 Vitex negundo Verbenaceae China KY742257 KY742103 KY742345
LC 8152 Podocarpus macrophyllus Podocarpaceae Japan KY742258 KY742104 KY742176 KY742346
LC 8153 Podocarpus macrophyllus Podocarpaceae Japan KY742259 KY742105 KY742177 KY742347
LC 8154 Acer palmatum Aceraceae Japan KY742260 KY742106 KY742348
E. layuense CGMCC 3.18362; LC 8155 T Perilla sp. Lamiaceae China KY742261 KY742107 KY742349
LC 8156 Perilla sp. Lamiaceae China KY742262 KY742108 KY742350
E. nigrum CBS 125.82; IMI 331914; CECT 20044 Human toenail Netherlands GU237974 FJ426995 KT389631 FJ427106
CBS 173.73; ATCC 24428; IMI 164070 T Dactylis glomerata Poaceae USA GU237975 FJ426996 KT389632 FJ427107
LC 5180 Lonicera japonica Caprifoliaceae China KY742263 KY742109 KY742178 KY742351
LC 8157 Ocimum sp. Lamiaceae China KY742264 KY742110 KY742179 KY742352
LC 8158 Poa annua Poaceae USA KY742265 KY742111 KY742180 KY742353
LC 8159 Poa annua Poaceae USA KY742266 KY742112 KY742181 KY742354
E. pimprinum CBS 246.60; ATCC 22237; ATCC 16652; IMI 81601 T Soil India GU237976 FJ427049 FJ427159
PD 77/1028 Soil India GU237977 FJ427050 KT389633 FJ427160
E. plurivorum CBS 558.81; PDDCC 6873 T Setaria sp. Poaceae New Zealand GU238132 GU237888 KT389634 GU237647
E. poae CGMCC 3.18363; LC 8160 T Poa annua Poaceae USA KY742267 KY742113 KY742182 KY742355
LC 8161 Poa annua Poaceae USA KY742268 KY742114 KY742183 KY742356
LC 8162 Poa annua Poaceae USA KY742269 KY742115 KY742184 KY742357
E. sorghinum CBS 179.80; PD 76/1018 Sorghum vulgare Poaceae Puerto Rico GU237978 FJ427067 KT389635 FJ427173
CBS 627.68; PD 66/926 Citrus sp. Rutaceae France GU237979 FJ427072 KT389636 FJ427178
LC 4860 Camellia sinensis Theaceae China KY742270 KY742116 KY742185 KY742358
E. viticis BRIP 29294; LC 5257 Andropogon gayanus Poaceae Australia KY742271 KY742117 KY742359
CGMCC 3.18344; LC 5126 T Vitex negundo Verbenaceae China KY742272 KY742118 KY742186 KY742360
Heterophoma adonidis CBS 114309; UPSC 2982 Adonis vernalis Ranunculaceae Sweden KT389724 KT389506 KT389637 KT389803
H. dictamnicola CBS 507.91; PD 74/148 Dictamnus albus Rutaceae Netherlands GU238065 GU237877 KT389638 GU237603
H. novae-verbascicola CBS 127.93; PD 92/347 Verbascum densiflorum Scrophulariaceae Netherlands GU238120 GU237774 GU237639
H. poolensis CBS 113.20; PD 92/774 GU238119 GU237751 GU237638
CBS 116.93; PD 71/884 Antirrhinum majus Scrophulariaceae Netherlands GU238134 GU237755 GU237649
H. sylvatica CBS 874.97; PD 93/764 Melampyrum pratense Scrophulariaceae Netherlands GU238148 GU237907 GU237662
H. verbascicola CGMCC 3.18364; LC 8163 T Verbascum thapsus Scrophulariaceae China KY742273 KY742119 KY742187 KY742361
LC 8164 Verbascum thapsus Scrophulariaceae China KY742274 KY742120 KY742188 KY742362
Leptosphaeria conoidea CBS 616.75; ATCC 32813; IMI 199777; PD 74/56 Lunaria annua Cruciferae Netherlands JF740279 JF740201 KT389639 KT389804
Leptosphaeria doliolum CBS 505.75 T Urtica dioica Urticaceae Netherlands GQ387576 JF740205 KT389640 JF740144
Leptosphaerulina americana CBS 213.55 Trifolium pratense Fabeceae USA GU237981 GU237799 KT389641 GU237539
L. arachidicola CBS 275.59; ATCC 13446 Arachis hypogaea Fabeceae Taiwan, China GU237983 GU237820 GU237543
L. australis CBS 317.83 Eugenia aromatica Myrtaceae Indonesia EU754166 GU237829 GU371790 GU237540
L. trifolii CBS 235.58 Trifolium sp. Fabeceae Netherlands GU237982 GU237806 GU237542
Macroventuria anomochaeta CBS 502.72 Medicago sativa Fabeceae South Africa GU237985 GU237873 GU237545
CBS 525.71 T Decayed canvas South Africa GU237984 GU237881 GU456346 GU237544
M. wentii CBS 526.71 T Plant litter USA GU237986 GU237884 KT389642 GU237546
Neoascochyta argentina CBS 112524 T Triticum aestivum Poaceae Argentina KT389742 KT389524 KT389822
Neoa. desmazieri CBS 247.79 Poaceae Poaceae Austria KT389725 KT389507 KT389805
CBS 297.69 T Lolium perenne Poaceae Germany KT389726 KT389508 KT389644 KT389806
CBS 758.97 Hay Norway KT389727 KT389509 KT389807
Neoa. europaea CBS 819.84 Hordeum vulgare Poaceae Germany KT389728 KT389510 KT389645 KT389808
CBS 820.84 T Hordeum vulgare Poaceae Germany KT389729 KT389511 KT389646 KT389809
Neoa. exitialis CBS 118.40 KT389732 KT389514 KT389647 KT389812
CBS 389.86 Triticum aestivum Poaceae Switzerland KT389733 KT389515 KT389648 KT389813
CBS 811.84 Secale cereale Poaceae Germany KT389734 KT389516 KT389814
CBS 812.84 Hordeum vulgare Poaceae Germany KT389735 KT389517 KT389815
CBS 110124 Triticum sp. Poaceae Netherlands KT389730 KT389512 KT389810
CBS 113693; UPSC 1929 Allium sp. Liliaceae Sweden KT389731 KT389513 KT389811
Neoa. graminicola CBS 301.69 Lolium multiflorum Poaceae Germany KT389737 KT389519 KT389650 KT389817
CBS 447.82 Triticum aestivum Poaceae Germany KT389738 KT389520 KT389818
CBS 586.79 Hordeum vulgare Poaceae Belgium KT389739 KT389521 KT389819
CBS 815.84 Hordeum vulgare Poaceae Germany KT389740 KT389522 KT389820
CBS 816.84 Hordeum vulgare Poaceae Germany KT389741 KT389523 KT389651 KT389821
CBS 102789 R Lolium perenne Poaceae New Zealand KT389736 KT389518 KT389649 KT389816
Neoa. paspali CBS 560.81; PD 92/1569 T Paspalum dilatatum Poaceae New Zealand GU238124 FJ427048 KP330426 FJ427158
Neoa. soli CGMCC 3.18365; LC 8165 T Soil China KY742275 KY742121 KY742363
LC 8166 Soil China KY742276 KY742122 KY742364
Neoa. triticicola CBS 544.74 T Triticum aestivum Poaceae South Africa EU754134 GU237887 KT389652 GU237488
Neodidymelliopsis achlydis CBS 256.77 T Achlys triphylla Berberidaceae Canada KT389749 KT389531 KT389829
Neod. cannabis CBS 121.75; ATCC 32164; IMI 194767; PD 73/584 T Urtica dioica Urticaceae Netherlands GU237972 GU237761 GU237535
CBS 234.37 Cannabis sativa Moraceae GU237961 GU237804 KP330403 GU237523
CBS 591.67 Urtica dioica Urticaceae Netherlands KT389746 KT389528 KT389826
CBS 629.76 Packing material Netherlands KT389747 KT389529 KT389827
Neod. longicolla CBS 382.96 T Soil in desert Israel KT389750 KT389532 KT389830
Neod. polemonii CBS 375.67 Polemonium caeruleum Polemoniaceae Netherlands KT389748 KT389530 KT389828
CBS 109181; PD 83/757 T Polemonium caeruleum Polemoniaceae Netherlands GU238133 GU237746 KP330427 GU237648
Neod. xanthina CBS 168.70 Delphinium sp. Ranunculaceae Netherlands KT389751 KT389533 KT389831
CBS 383.68 T Delphinium sp. Ranunculaceae Netherlands GU238157 GU237855 KP330431 GU237668
Neomicrosphaeropsis italica MFLUCC 15-0485; ICMP 21253 T Tamarix sp. Tamaricaceae Italy KU729854 KU900318 KU674820
MFLUCC 15-0484 Tamarix sp. Tamaricaceae Italy KU729853 KU900319 KU695539 KX453298
MFLUCC 16-0284 Tamarix sp. Tamaricaceae Italy KU900296 KU900321 KU714604 KX453299
Neom. novorossica MFLUCC 14-0578; ICMP 20751 T Tamarix ramosissima Tamaricaceae Russia KX198710 KX198709
Neom. rossica MFLUCC 14-0586; ICMP 20753 T Tamarix ramosissima Tamaricaceae Russia KU729855 KU752192
Neom. tamaricicola MFLUCC 14-0443; ICMP 20708 Tamarix gallica Tamaricaceae Italy KU729851 KU900322
MFLUCC 14-0439; ICMP 20743 Tamarix gallica Tamaricaceae Italy KU729858 KU900323
Nothophoma anigozanthi CBS 381.91; PD 79/1110 T Anigozanthus maugleisii Haemodoraceae Netherlands GU238039 GU237852 KT389655 GU237580
No. arachidis-hypogaeae CBS 125.93; PD 77/1029 R Arachis hypogaea Fabeceae India GU238043 GU237771 KT389656 GU237583
No. gossypiicola CBS 377.67 Gossypium sp. Malvaceae USA GU238079 GU237845 KT389658 GU237611
No. infossa CBS 123395 T Fraxinus pennsylvanica Oleaceae Argentina GU238089 FJ427025 KT389659 FJ427135
No. quercina CBS 633.92; ATCC 36786; VKM MF-325 Microsphaera alphitoides from Quercus sp. Ukraine EU754127 GU237900 KT389657 GU237609
Paraboeremia adianticola CBS 187.83; PD 82/128 Polystichum adiantiforme Dryopteridaceae USA GU238035 GU237796 KP330401 GU237576
CBS 260.92; PD 86/1103 Pteris ensiformis Pteridaceae KT389752 KT389534 KT389832
Pa. camellae CGMCC 3.18106; LC 4852 T Camellia sp. Theaceae China KX829042 KX829034 KX829050 KX829058
CGMCC 3.18107; LC 6253 Camellia sp. Theaceae China KX829043 KX829035 KX829051 KX829059
CGMCC 3.18108; LC 6254 Camellia sp. Theaceae China KX829044 KX829036 KX829052 KX829060
Pa. litseae CGMCC 3.18109; LC 5028 T Litsea sp. Lauraceae China KX829037 KX829029 KX829045 KX829053
CGMCC 3.18110; LC 5030 Litsea sp. Lauraceae China KX829038 KX829030 KX829046 KX829054
Pa. oligotrophica CGMCC 3.18111; LC 6250 T Carbonatite China KX829039 KX829031 KX829047 KX829055
CGMCC 3.18112; LC 6251 Carbonatite China KX829040 KX829032 KX829048 KX829056
CGMCC 3.18113; LC 6252 Carbonatite China KX829041 KX829033 KX829049 KX829057
Pa. putaminum CBS 130.69; CECT 20054; IMI 331916 R Malus sylvestris Rosaceae Denmark GU238138 GU237777 GU237652
CBS 372.91; PD 75/960 R Ulmus sp. Ulmaceae Netherlands GU238137 GU237843 GU237651
Pa. selaginellae CBS 122.93; PD 77/1049 T Selaginella sp. Selaginellaceae Netherlands GU238142 GU237762 GU237656
Phoma herbarum CBS 134.96; PD 84/676 Delphinium sp. Ranunculaceae Netherlands KT389753 KT389535 KT389661 KT389834
CBS 274.37 Picea excelsa Pinaceae UK KT389754 KT389537 KT389662 KT389835
CBS 304.51 Achillea millefolium Asteraceae Switzerland KT389755 KT389538 KT389836
CBS 377.92; IMI 213845 Human leg Netherlands KT389756 KT389536 KT389663 KT389837
CBS 502.91; PD 82/276 Nerium sp. Apocynaceae Netherlands GU238082 GU237874 KP330419 GU237613
CBS 615.75; PD 73/665; IMI 199779 R Rosa multiflora cv. Cathayensis Rosaceae Netherlands EU754186 FJ427022 KP330420 FJ427133
CBS 127589; UAMH 10909 Polytrichum juniperinum Polytrichaceae USA KT389757 KT389539 KT389664 KT389838
Phomatodes aubrietiae CBS 383.67; PD 65/223 R Aubrietia hybrida cv. Superbissima Cruciferae Netherlands GU238044 GU237854 GU237584
Phomat. aubrietiae CBS 627.97; PD 70/714 T Aubrietia sp. Cruciferae Netherlands GU238045 GU237895 KT389665 GU237585
Phomat. nebulosa CBS 117.93; PD 83/90 Mercurialis perennis Euphorbiaceae Netherlands GU238114 GU237757 KP330425 GU237633
CBS 740.96 Armoracia rusticana Cruciferae Netherlands KT389758 KT389540 KT389667 KT389839
CBS 100191 Thlaspi arvense Cruciferae Poland KP330446 KP330434 KT389666 KP330390
Pseudohendersonia galiorum MFLUCC 14–0452 T Galium sp. Rubiaceae Italy KU848207
Stagonosporopsis actaeae CBS 106.96; PD 94/1318 T Actaea spicata Ranunculaceae Netherlands GU238166 GU237734 KT389672 GU237671
CBS 114303; UPSC 2962 Actaea spicata Ranunculaceae Sweden KT389760 KT389544 KT389847
S. ajacis CBS 177.93; PD 90/115 T Delphinium sp. Ranunculaceae Kenya GU238168 GU237791 KT389673 GU237673
S. andigena CBS 101.80; PD 75/909; IMI 386090 R Solanum sp. Solanaceae Peru GU238169 GU237714 GU237674
CBS 269.80; PD 75/914 Solanum sp. Solanaceae Peru GU238170 GU237817 GU237675
S. artemisiicola CBS 102636; PD 73/1409 R Artemisia dracunculus Asteraceae France GU238171 GU237728 KT389674 GU237676
S. astragali CBS 178.25; MUCL 9915 R Astragalus sp. Fabeceae GU238172 GU237792 GU237677
S. bomiensis CGMCC 3.18366; LC 8167 T Boraginaceae Boraginaceae China KY742277 KY742123 KY742189 KY742365
LC 8168 Boraginaceae Boraginaceae China KY742278 KY742124 KY742190 KY742366
S. caricae CBS 248.90 Carica papaya Caricaceae Chile GU238175 GU237807 GU237680
CBS 282.76 Brassica sp. Cruciferae Indonesia GU238177 GU237821 GU237682
S. chrysanthemi CBS 500.63; MUCL 8090 R Chrysanthemum indicum Asteraceae Germany GU238190 GU237871 GU237695
CBS 137.96; PD 84/75 R Chrysanthemum indicum Asteraceae Netherlands GU238191 GU237783 GU237696
S. crystalliniformis CBS 713.85; ATCC 76027; PD 83/826 T Lycopersicon esculentum Solanaceae Colombia GU238178 GU237903 KT389675 GU237683
S. cucurbitacearum CBS 133.96; PD 79/127 Cucumis sp. Cucurbitaceae New Zealand GU238181 GU237780 KT389676 GU237686
S. dennisii CBS 631.68; PD 68/147 T Solidago floribunda Asteraceae Netherlands GU238182 GU237899 KT389677 GU237687
S. dorenboschii CBS 426.90; IMI 386093; PD 86/551 T Physostegia virginiana Lamiaceaee Netherlands GU238185 GU237862 KT389678 GU237690
S. helianthi CBS 200.87 T Helianthus annuus Asteraceae Italy KT389761 KT389545 KT389683 KT389848
S. heliopsidis CBS 109182; PD 74/231 R Heliopsis patula Asteraceae Netherlands GU238186 GU237747 KT389679 GU237691
S. hortensis CBS 104.42 R Netherlands GU238198 GU237730 KT389680 GU237703
CBS 572.85; PD 79/269 R Phaseolus vulgaris Fabeceae Netherlands GU238199 GU237893 KT389681 GU237704
S. inoxydabilis CBS 425.90; PD 81/520 T Chrysanthemum parthenii Asteraceae Netherlands GU238188 GU237861 KT389682 GU237693
S. loticola CBS 562.81; PDDCC 6884 T Lotus pedunculatus Fabeceae New Zealand GU238192 GU237890 KT389684 GU237697
S. lupini CBS 101494; PD 98/5247 T Lupinus albus Fabeceae UK GU238194 GU237724 KT389685 GU237699
S. oculo-hominis CBS 634.92; IMI 193307 T Human corneal ulcer USA GU238196 GU237901 KT389686 GU237701
S. papillatus CGMCC 3.18367; LC 8169 T Rumex nepalensis Polygonaceae China KY742279 KY742125 KY742191 KY742367
LC 8170 Rumex nepalensis Polygonaceae China KY742280 KY742126 KY742192 KY742368
LC 8171 Boraginaceae Boraginaceae China KY742281 KY742127 KY742193 KY742369
S. rudbeckiae CBS 109180; PD 79/175 R Rudbeckia bicolor Asteraceae Netherlands GU238197 GU237745 GU237702
S. tanaceti CBS 131484 T Tanacetum cinerariifolium Asteraceae Australia JQ897461 NR_111724 JQ897496
S. trachelii CBS 379.91; PD 77/675 R Campanula isophylla Campanulaceae Netherlands GU238173 GU237850 KT389687 GU237678
CBS 384.68 R Campanula isophylla Campanulaceae Sweden GU238174 GU237856 GU237679
S. valerianellae CBS 273.92; PD 82/43 Valerianella locusta Caprifoliaceae Netherlands GU238200 GU237819 GU237705
CBS 329.67; PD 66/302 T Valerianella locusta var. oleracea Caprifoliaceae Netherlands GU238201 GU237832 GU237706
Xenodidymella applanata CBS 195.36 T Rubus idaeus Rosaceae Netherlands KT389764 KT389548 KT389852
X. applanata CBS 205.63 Rubus idaeus Rosaceae Netherlands GU237998 GU237798 KP330402 GU237556
CBS 115577 Rubus idaeus Rosaceae Sweden KT389762 KT389546 KT389688 KT389850
CBS 115578 Rubus arcticus nothossp. stellarcticus Rosaceae Sweden KT389763 KT389547 KT389851
X. asphodeli CBS 375.62 T Asphodelus albus Asphodelaceae France KT389765 KT389549 KT389689
CBS 499.72 Asphodelus ramosus Asphodelaceae Italy KT389766 KT389550 KT389853
X. catariae CBS 102635; PD 77/1131 Nepeta cataria Lamiaceaee Netherlands GU237962 GU237727 KP330404 GU237524
X. humicola CBS 220.85; PD 71/1030 R Franseria sp. Asteraceae USA GU238086 GU237800 KP330422 GU237617
1

ATCC: American Type Culture Collection, Virginia, U.S.A.; BRIP: Plant Pathology Herbarium, Department of Employment, Economic, Development and Innovation, Queensland, Australia; CBS: Westerdijk Fungal Biodiversity Institute (formerly CBS-KNAW), Utrecht, The Netherlands; CECT: Colección Española de Cultivos Tipo, Valencia University, Spain; CGMCC: China General Microbiological Culture Collection, Beijing, China; CPC: Culture collection of Pedro Crous, housed at CBS; DAOM: Canadian Collection of Fungal Cultures, Ottawa, Canada; DSM: Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany; FMR, Facultat de Medicina, Universitat Rovira i Virgili, Reus, Spain; ICMP: International Collection of Microorganisms from Plants, Auckland, New Zealand; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; LC: Corresponding author's personal collection deposited in laboratory, housed at CAS, China; LEV: Plant Health and Diagnostic Station, Auckland, New Zealand; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; MUCL: Mycotheque de l'Universite catholique de Louvain, Louvain-la-Neuve, Belgium; PD: Plant Protection Service, Wageningen, the Netherlands; PDDCC: Plant Diseases Division Culture Collection, Auckland, New Zealand; PREM: National Collection of Fungi: Culture Collection, Pretoria, South Africa; UAMH: University of Albert Microfungus Colletion and Herbarium, Canada; UPSC: Uppsala University Culture Collection, Sweden; UTHSC, Fungus Testing Laboratory at the University of Texas Health Science Center, San Antonio, Texas, USA; VKM: All-Russian Collection of Microorganisms, Pushchino, Russia.

2

T: ex-type strain; R: representative strain.

3

ITS: internal transcibed spacer regions 1 & 2 including 5.8S nrDNA gene; LSU: 28S large subunit of the nrRNA gene; RPB2: RNA polymerase II second subunit; TUB: ß-tubulin.

Plant-associated isolates were obtained from symptomatic tissue with sporocarps using the single spore isolation protocols of Choi et al. (1999) and Zhang et al. (2013), and from tissue according to the techniques outlined by Cai et al. (2009). Isolates from other substrates were obtained following the methods described by Zhang et al. (2017) and further screened with carbon-free silica gel medium to select the oligotrophic strains (Wainwright & Al-Talhi 1999). All the Didymellaceae isolates were primarily identified based on morphology and ITS sequence data, which distinguished them from other groups of fungi. Type specimens of new species in this study were deposited in the Mycological Herbarium of Institute of Microbiology, Chinese Academy of Sciences, Beijing, China (HMAS), with the ex-type living cultures deposited in China General Microbiological Culture Collection Center (CGMCC), or the other Biological Resource Centres cited above.

Morphology

Isolates were incubated on oatmeal agar (OA), malt extract agar (MEA) and potato dextrose agar (PDA) (Crous et al. 2009) at 25 °C, and under near-ultraviolet (UV) light (12 h light/12 h dark) or on pine needle agar (PNA) (Smith et al. 1996) to induce sporulation. Colony diameters were measured after 7 d of incubation, and the culture characters were determined after 14 d (Boerema et al. 2004). Colony colours were rated according to the colour charts of Rayner (1970). Preparations were mounted in distilled water to study the micromorphological structures of mature ascomata/conidiomata, ascospores/conidia and conidiogenous cells from OA cultures (Aveskamp et al., 2010, Chen et al., 2015a, Chen et al., 2015b). Observations were conducted with a Leica M125 dissecting microscope and a Nikon Eclipse 80i compound microscope under differential interference contrast (DIC) illumination. To study the pseudothecial/pycnidial wall, sections of mature pseudothecia/pycnidia were made by a Leica CM1950 freezing microtome (Aveskamp et al., 2010, Chen et al., 2015a, Chen et al., 2015b). The NaOH spot test was carried out by a drop of 1N NaOH to determine the secretion of metabolite E on MEA cultures (Boerema et al. 2004).

DNA isolation, amplification and phylogenetic analyses

Total genomic DNA was extracted from fresh mycelia using the MP Fastprep-24 sample preparation system, according to the protocol described by Cubero et al. (1999). The primers V9G (de Hoog & Gerrits van den Ende 1998) and ITS4 (White et al. 1990) were used to amplify part of the nuclear rDNA operon (ITS) spanning the 3′ end of the 18S rRNA gene, the first internal transcribed spacer (ITS1), the 5.8S rRNA gene, the second ITS region (ITS2), and the first 100 bp of the 5′ end of the 28S rRNA gene (LSU); the primers LR0R (Rehner & Samuels 1994), LR7 and LR5 (Vilgalys & Hester 1990) were used for LSU amplification; Btub2Fd and Btub4Rd (Woudenberg et al. 2009) for the partial β-tubulin (tub2) gene region, and RPB2-5F2 (Sung et al. 2007) and fRPB2-7cR (Liu et al. 1999) for the RNA polymerase II second largest subunit (rpb2). Amplicons for each locus were generated following the protocols listed in Chen et al. (2015a).

Sequencing was conducted in both directions with the same primer pair used for amplification at the Omega Genetics Company (Beijing, China). Consensus sequences were assembled in MEGA v. 6.0 (Tamura et al. 2013) and additional reference sequences were obtained from GenBank (Table 1). Subsequent alignments for each locus were generated with MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/index.html; Katoh & Standley 2013), and manually corrected when necessary. The concatenated aligned dataset and each locus were analysed separately using Maximum Likelihood (ML) and Bayesian Inference (BI). The best-fit models of evolution for the four loci tested (SYM+I+G for ITS and GTR+I+G for LSU, rpb2 and tub2) were estimated by MrModeltest v. 2.3 (Nylander 2004).

The ML analyses were conducted with RAxML v. 7.2.6 (Stamatakis & Alachiotis 2010) using a GTRGAMMA substitution model with 1 000 bootstrap replicates. The robustness of the analyses was evaluated by bootstrap support (MLBS). Bayesian (BI) analyses were performed on MrBayes v. 3.2.1 (Ronquist et al. 2012) based on the models selected by the MrModeltest. The Markov Chain Monte Carlo (MCMC) algorithm of four chains was initiated in parallel from a random tree topology. The analyses lasted until the average standard deviation of split frequencies was below 0.01 with trees saved each 1 000 generations. The first 25 % of trees were removed as burn-in phase and the remaining trees were used to calculate posterior probabilities. Posterior probabilities values of the BI analyses (BPP) over 0.95 were considered significant. Leptosphaeria conoidea (CBS 616.75) and L. doliolum (CBS 505.75) were selected as outgroup. Sequences generated in this study were deposited in GenBank (Table 1), the final matrices and trees in TreeBASE (www.treebase.org; accession number: S20724), and novel taxonomic descriptions and nomenclature in MycoBank (www.MycoBank.org; Crous et al. 2004).

Unique fixed nucleotide positions are used to describe a sterile species (see Taxonomy below), and the closest phylogenetic neighbour was selected and subjected to single nucleotide polymorphism (SNP) analyses using MEGA v. 6.0 (Tamura et al. 2013).

Statistical analysis

A heatmap showing the host distribution of each genus of Didymellaceae was generated with R v. 3.3.1 heatmap.2 (https://www.r-project.org/).

Results

Phylogeny

A multi-locus phylogeny, based on four loci, was used to infer the relationships among species in Didymellaceae (Fig. 1). The resulting concatenated aligned dataset comprised 360 ingroup isolates belonging to 194 taxa and consisted of 2 460 characters (964 for LSU, 531 for ITS, 599 for rpb2 and 354 for tub2, including alignment gaps), of which 265 are conserved and 901 are phylogenetically informative (173 for LSU, 230 for ITS, 310 for rpb2 and 188 for tub2). The trees generated from ML and Bayesian analyses of the individual loci (data not shown) and the combined dataset showed essentially congruent topologies. The ML tree based on the combined dataset was presented, with bootstrap support values (MLBS) and Bayesian posterior probabilities (BPP) indicated for well-supported clades in Fig. 1. The LSU sequences were the least successful in resolving species with only 59 out of 194 taxa resolved (30 %), followed by ITS with 104 out of 194 taxa (54 %), and tub2 (90 %) and rpb2 (92 %) which proved to be more suitable for the resolution of species.

Fig. 1.

Fig. 1

Fig. 1

Fig. 1

Fig. 1

Fig. 1

Fig. 1

Phylogenetic tree inferred from a Maximum likelihood analysis based on a concatenated alignment of LSU, ITS, rpb2 and tub2 sequences of 360 strains representing species in Didymellaceae. The RAxML bootstrap support values (MLBS) and Bayesian posterior probabilities (BPP) are given at the nodes (BPP/MLBS). Some branches were shortened to fit them to the page – these are indicated by two diagonal lines with the number of times a branch was shortened indicated next to the lines. New taxa and new combination introduced in this study are formatted in bold. Ex-type strains are marked by an asterisk (*). The tree was rooted to Leptosphaeria conoidea (CBS 616.75) and L. doliolum (CBS 505.75).

A total of 194 ingroup taxa formed a clade (BPP = 1; MLBS = 100 %) representing the Didymellaceae, which include 19 monophyletic generic clades. Seventeen genera previously recognised, namely Allophoma (BPP = 1; MLBS = 100 %), Ascochyta (BPP = 1; MLBS = 87 %), Boeremia (BPP = 1; MLBS = 100 %), Calophoma (BPP = 1; MLBS = 90 %), Didymella (BPP = 0.97; MLBS = 60 %), Epicoccum (BPP = 1; MLBS = 99 %), Heterophoma (BPP = 1; MLBS = 99 %), Leptosphaerulina (BPP = 1; MLBS = 100 %), Macroventuria (BPP = 1; MLBS = 100 %), Neoascochyta (BPP = 1; MLBS = 80 %), Neodidymelliopsis (BPP = 1; MLBS = 100 %), Nothophoma (BPP = 1; MLBS = 76 %), Paraboeremia (BPP = 1; MLBS = 77 %), Phoma (BPP = 1; MLBS = 100 %), Phomatodes (BPP = 1; MLBS = 100 %), Stagonosporopsis (BPP = 1; MLBS = 93 %) and Xenodidymella (BPP = 1; MLBS = 96 %), and two genera recently added in this family, namely Briansuttonomyces (BPP = 1; MLBS = 100 %) and Neomicrosphaeropsis (BPP = 1; MLBS = 97 %) were highly supported as independent groups.

Host specificity analysis

The heatmap was plotted to reveal the distribution of Didymellaceae species in various host families. The colour-coding columns indicate the number of species in each fungal genus that are associated with a particular host family. A darker colour indicates more fungal species related to the host family. In the present study, all the plant-associated species are linked to 70 different host families in total, of which Asteraceae, Fabaceae, Poaceae, Ranunculaceae, Rosaceae and Solanaceae are the most common hosts for Didymellaceae. Most of the Didymellaceae genera have a wide host range, while Ascochyta, Neoascochyta and Neomicrosphaeropsis showed relatively high host specificity within Fabaceae, Poaceae and Tamaricaceae, respectively (Fig. 2).

Fig. 2.

Fig. 2

Heatmap of relative abundances of different host plant families in each genus of Didymellaceae. The colour-coding for columns indicate the number of species in each fungal genus that are associated with a particular host family.

Taxonomy

As a result of morphological comparisons and multi-locus sequence analysis of 360 strains, including 108 strains studied in the present paper and 252 reference strains, 194 taxa are recognised in 19 different genera of Didymellaceae. Recognised clades of novel taxa are described and illustrated, and two new combinations are proposed below. One species proved to be sterile in culture, and therefore is described based on DNA sequence data, following the approach of Gomes et al. (2013) and Lombard et al. (2016). Novel taxa are arranged in alphabetical order by genus and species.

Allophoma Q. Chen & L. Cai, Stud. Mycol. 82: 162. 2015.

Allophoma oligotrophica Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818956. Fig. 3.

Fig. 3.

Fig. 3

Allophoma oligotrophica (CGMCC 3.18114). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia producing on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K. Conidiogenous cells. L. Conidia. Scale bars: G = 100 μm; H–I = 50 μm; J, L = 10 μm; K = 5 μm.

Etymology: Oligotrophica, referring to the oligotrophic substrate of the fungus.

Conidiomata pycnidial, solitary, globose to subglobose, brown, glabrous, semi-immersed or immersed, 150–440(–590) × 145–420 μm. Ostioles single, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 3–5 layers, 11–19.5 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 4.5–7 × 3.5–6.5 μm. Conidia oblong to cylindrical, smooth- and thin-walled, hyaline, aseptate, 3–4.5 × 1.5–2.5 μm, with 2 distinct pale green polar guttules. Conidia matrix whitish.

Culture characteristics: Colonies on OA, 45–50 mm diam after 7 d, margin regular, covered by white floccose aerial mycelia, white to pale olivaceous; reverse buff, with pale olivaceous concentric rings near the centre. Colonies on MEA 50–55 mm diam after 7 d, margin regular, aerial mycelia sparse, olivaceous, white near the centre; reverse olivaceous. Colonies on PDA, 50–55 mm diam after 7 d, margin regular, covered by dense white felty aerial mycelia, white, olivaceous near the centre; reverse buff, olivaceous near the centre. NaOH test negative.

Specimens examined: China, Guizhou, Shuanghe Cave National Geopark, from air, 8 May 2015, Z.F. Zhang (holotype HMAS 247035, dried culture, ex-holotype living culture CGMCC 3.18114 = LC 6245); ibid. CGMCC 3.18115 = LC 6246; ibid. CGMCC 3.18116 = LC 6247.

Notes: Species of Allophoma were hitherto all known as plant pathogens, while Al. oligotrophica is the first species which was isolated from air using carbon-free silica gel medium (Jiang et al. 2017). Allophoma oligotrophica is closely related to Al. nicaraguensis (1 bp difference in ITS, 14 in rpb2 and 3 in tub2) and Al. tropica (1 bp difference in ITS, 15 in rpb2 and 2 in tub2) (Fig. 1). Morphologically, Al. oligotrophica produces larger pycnidia (150–440 × 145–420 μm vs. 30–150 × 28–120 μm) and longer conidiogenous cells (4.5–7 × 3.5–6.5 μm vs. 3–4.5 × 3.5–4.5 μm) than Al. nicaraguensis (Chen et al. 2015a), and differs from Al. tropica in its slightly larger conidiogenous cells (4.5–7 × 3.5–6.5 μm vs. 2–6 × 3–6 μm) and oblong to cylindrical conidia (de Gruyter & Noordeloos 1992).

Ascochyta Lib. emend. Q. Chen & L. Cai. Stud. Mycol. 82: 185. 2015.

Synonym: Heracleicola Tibpromma et al., Fungal Divers. 75: 58. 2015.

Ascochyta boeremae L.W. Hou, Crous & L. Cai, sp. nov. MycoBank MB820000. Fig. 4.

Fig. 4.

Fig. 4

Ascochyta boeremae (CBS 372.84). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K–L. Conidiogenous cells. M–N. Conidia. Scale bars: G = 300 μm; H–I = 50 μm; J–N = 10 μm.

Etymology: Named after Gerhard H. Boerema, who collected the holotype of this species.

Conidiomata pycnidial, mostly solitary, sometimes confluent, (sub-)globose or flask-shaped, glabrous, semi-immersed in or superficial on the agar, ostiolate, 170–550(–650) × 140–400(–650) μm. Ostiole single, slightly papillate, sometimes elongated as a short neck. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 3–6-layers, with outer 2–3-layers pigmented, 25–50 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform or doliiform, 9.5–14.5 × 8.5–13 μm. Conidia greatly variable in shape and size, large conidia mostly oblong to bacilliform, or fusiform, mainly aseptate but sometimes uniseptate; small conidia ellipsoidal to oval, broadly ovoid, smooth- and thin-walled, hyaline, aseptate, (14–)16.5–26(–32) × 4.5–7.5(–8.5) μm, eguttulate or sometimes with 1–2 guttules per cell. Conidial matrix whitish cream.

Culture characteristics: Colonies on OA, 25–30 mm diam after 7 d, margin regular, covered by sparsely flat aerial mycelia, yellowish olivaceous; reverse concolourous. Colonies on MEA 20–25 mm diam after 7 d, margin regular, covered with floccose aerial mycelia, white, grey near the centre; reverse sienna to pale brown. Colonies on PDA, 15–20 mm diam after 7 d, margin regular, covered by woolly aerial mycelia, greenish olivaceous, buff near the margin; reverse concolourous. NaOH spot test: a dark reddish brown discolouration on MEA.

Specimens examined: Australia, from a leaf of Pisum sativum, deposited in CBS Sep. 1984, G.H. Boerema (holotype CBS H-23017, dried culture, ex-holotype living culture CBS 372.84 = PD 80/1246); from a leaf of Pisum sativum, deposited in CBS Sep. 1984, G.H. Boerema, CBS H-9078, culture CBS 373.84 = PD 80/1247.

Notes: CBS 372.84 and CBS 373.84 were originally deposited as “Ascochyta fabae”, but are distinct from the authentic cultures of As. fabae (CBS 524.77, CBS 649.71 and PD 83/492) in the phylogenetic tree. Morphologically, these two strains produce aseptate conidia differing from the uniseptate conidia of As. fabae (Saccardo 1902). Therefore, we describe it as a new species, As. boeremae. Ascochyta boeremae is genetically closely related to As. nigripycnidia (Fig. 1), but differs morphologically from the latter by producing larger conidia (14–32 × 4.5–8.5 μm vs. 5.5–15 × 1.5–4 μm; Boerema et al. 2004).

Ascochyta premilcurensis (Tibpromma et al.) Q. Chen, Crous & L. Cai, comb. nov. MycoBank MB820001.

Basionym: Heracleicola premilcurensis Tibpromma et al., Fungal Divers. 75: 59. 2015.

Description: Ariyawansa et al. (2015).

Specimen examined: Italy, Premilcuore, Province of Forli-Cesena, Valbura, on dead stem of Heracleum sphondylium, 6 Jun. 2014, E. Camporesi (holotype MFLU 14-0725, ex-holotype living culture MFLUCC 14-0518).

Notes: The genus Heracleicola was introduced by Ariyawansa et al. (2015) to accommodate a single species Heracleicola premilcurensis, which is located in the genus Ascochyta based on combined LSU and ITS analysis (Supplementary Fig. S1) in the present study. Heracleicola is therefore synonymised under Ascochyta, and a new combination in Ascochyta proposed.

Boeremia Aveskamp et al., Stud. Mycol. 65: 36. 2010.

Boeremia exigua var. opuli Q. Chen, Crous & L. Cai, var. nov. MycoBank MB818957. Fig. 5.

Fig. 5.

Fig. 5

Boeremia exigua var. opuli (CGMCC 3.18354). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Section of pycnidial wall. I–J. Conidiogenous cells. K. Conidia. Scale bars: G = 400 μm; H–J = 5 μm; K = 10 μm.

Etymology: Named after the host species from which the holotype was collected, Viburmum opulus.

Conidiomata pycnidial, solitary or aggregated, globose to subglobose, brown, covered with hyphae, produced on the agar surface or (semi-)immersed, 245–360 × 200–305 μm. Ostiole single, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 4–5 layers, 20–37.5 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 4–9(–10) × 4–7.5 μm. Conidia oblong to cylindrical, obovoid, incidentally slightly curved, or reniform, smooth- and thin-walled, hyaline, aseptate, 5.5–9.5 × 2.5–4 μm, with 2 or several minute guttules. Conidia matrix cream.

Culture characteristics: Colonies on OA, 70–76 mm diam after 7 d, margin regular, covered by white floccose aerial mycelia, white with a pale green concentric ring, pale olivaceous near the centre; reverse reddish brown, grey near the centre. Colonies on MEA 70–75 mm diam after 7 d, margin regular, aerial mycelia white, velvety, olivaceous; reverse concolourous. Colonies on PDA, 65–80 mm diam after 7 d, margin regular, aerial mycelia white, felty, in some sectors covered by a low mat of floccose white to grey aerial mycelia, olivaceous near the centre; reverse olivaceous, with a buff margin. Application of NaOH results in a pale green discolouration of the agar.

Specimens examined: USA, from seedlings of Viburmum opulus, 2014, W.J. Duan (holotype HMAS 247147, dried culture, ex-holotype living culture CGMCC 3.18354 = LC 8117); ibid. LC 8118.

Notes: Boeremia exigua var. opuli is phylogenetically closely related to B. exigua var. exigua, B. exigua var. forsythiae, B. exigua var. glivescens and B. exigua var. viburni (Fig. 1). Although similar in conidial dimensions, pycnidia of B. exigua var. opuli (245–360 × 200–305 μm) are much larger than those of the other four varieties (75–200 μm; van der Aa et al. 2000). Boeremia exigua var. opuli also differs from those four varieties in seven positions in the rpb2 locus. Varieties of B. exigua are morphologically very similar and phylogenetically closely related to each other. Boeremia exigua var. exigua and var. forsythia have a wide host range, while other varieties appear host specific to a certain group of plants, such as var. coffeae to Coffea arabica (Rubiaceae), var. forsythia to Forsythia hybrids (Oleaceae), var. heteromorpha to Nerium oleander and Vinca spp. (Apocynaceae), var. linicola to Linum usitatissimum (Linaceae), var. populi to Populus and Salix (Salicaceae), and var. viburni to Viburnum spp. and occasionally Lonicera sp. (Caprifoliaceae) (Boerema et al. 2004). Besides, B. exigua var. pseudolilacis has been found only on Syringa vulgaris (Oleaceae; Aveskamp et al. 2010) and var. opuli only on Viburnum opulus. A host-range determination of B. exigua var. rhapontica indicates that this variety also has a very narrow host range (Berner et al. 2015). Thus, the plant generic inter-relatedness is presumed to be the basis for susceptibility to Boeremia exigua varieties (Berner et al. 2015).

Calophoma Q. Chen & L. Cai, Stud. Mycol. 82: 191. 2015.

Calophoma rosae Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818976. Fig. 6A.

Fig. 6.

Fig. 6

Calophoma rosae (CGMCC 3.18347). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K. Conidiogenous cells. L. Conidia. Scale bars: G = 100 μm; H = 40 μm; I–L = 10 μm.

Etymology: Named after the host genus Rosa, from which the holotype was isolated.

Leaf spots amphigenous, circular to irregular, up to 15 mm diam, occurring on or close to the tip of the leaf, brown, surrounded by a dark purple border (Fig. 7). Conidiomata pycnidial, mostly aggregated but sometimes solitary, globose to subglobose, brown, glabrous or covered with some hyphal outgrowths, semi-immersed in or superficial on the agar, ostiolate, (110–)130–210 × (110–)130–180 μm. Ostiole single, sometimes with short necks, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 3–4 layers, 11–20 μm thick, pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 6.5–7 × 7–8.5 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, 0–1-septate, hyaline, later becoming pale brown with ageing, 6–10 × 3–4.5 μm, eguttulate or sometimes with several guttules. Conidial matrix initially buff, gradually becoming dark brown.

Fig. 7.

Fig. 7

Symptoms on diseased leaves. A.Calophoma rosae on Rosa sp. B.Didymella infuscatispora on Chrysanthemum indicum. C.Didymella ocimicola on Ocimum sp. D.Didymella sinensis on Cerasus pseudocerasus. E.Epicoccum dendrobii on Dendrobium fimbriatum. F.Epicoccum duchesneae on Duchesnea indica. G.Stagonosporopsis bomiensis on Boraginaceae. H.Epicoccum viticis on Vitex negundo. I.Epicoccum layuense on Perilla sp. J.Heterophoma verbascicola on Verbascum thapsus. K.Stagonosporopsis papillata on Rumex nepalensis.

Culture characteristics: Colonies on OA, 35–40 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, white; reverse buff. Colonies on MEA 33–35 mm diam after 7 d, margin regular, aerial mycelia sparse, flattened, white; reverse concolourous. Colonies on PDA, 30–36 mm diam after 7 d, margin regular, aerial mycelia covering the whole colony, floccose, dense, white; reverse yellowish green, with concentric rings. NaOH test negative.

Specimens examined: China, Qinghai, Xunhua, from leaves of Rosa sp., 2 Sep. 2013, Q. Chen (holotype HMAS 247148, dried culture, ex-holotype living culture CGMCC 3.18347 = LC 5169); ibid. LC 8119.

Notes: Calophoma rosae is phylogenetically closely related to C. clematidis-rectae and C. vodakii (Fig. 1). Morphologically C. rosae differs from C. clematidis-rectae in having larger conidiogenous cells (6.5–7 × 7–8.5 μm vs. 3–5 × 2.5–4.5 μm), larger conidia (6–10 × 3–4.5 μm vs. 3–8 × 2–3.5 μm) (Aveskamp et al. 2010), and from C. vodakii in having shorter and wider conidia (6.5–7 × 7–8.5 μm vs. 14–22 × 4–4.5 μm; Saccardo and Trotter, 1913, Müller, 1953).

Calophoma rosae is the first and only record thus far from the Rosaceae, while most species in this genus are associated with species of Ranunculaceae.

Didymella Sacc. ex Sacc., Syll. Fung. 1: 545. 1882, emend. Q. Chen & L. Cai, Stud. Mycol. 82: 173. 2015.

Didymella aeria Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818968. Fig. 8.

Fig. 8.

Fig. 8

Didymella aeria (CGMCC 3.18353). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K. Conidia. Scale bars: G = 200 μm; H = 30 μm; I = 20 μm; J–K = 10 μm.

Etymology: Name linked to the fact that this species was collected from air.

Conidiomata pycnidial, solitary or aggregated, globose to subglobose, later becoming irregular, brown, glabrous, superficial or semi-immersed, 155–375(–460) × 130–340(–460) μm. Ostiole single, with a short neck, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 layers, 8.5–25 μm thick, brown-pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5–7 × 4.5–6 μm. Conidia ellipsoidal, smooth- and thin-walled, hyaline, aseptate, 3–5 × 2–3 μm, with 2 large dull green polar guttules. Conidial matrix salmon.

Culture characteristics: Colonies on OA, 55–60 mm diam after 7 d, margin regular, white aerial mycelia sparse, brownish olivaceous; reverse white to reddish brown. Colonies on MEA 44–48 mm diam after 7 d, margin regular, white to olivaceous, with sparse white aerial mycelia spreading over the colony; reverse concolourous. Colonies on PDA, 15–20 mm diam after 7 d, margin irregular, fluffy to felty, white; reverse amber to saffron. NaOH spot test: a brown discolouration on MEA.

Specimens examined: China, Guizhou, Zunyi, Shuanghe Cave National Geopark, from air, 8 May 2015, Z.F. Zhang (holotype HMAS 247149, dried culture, ex-holotype living culture CGMCC 3.18353 = LC 7441); ibid. LC 8120.

Notes: The most closely related species to Didymella aeria are D. sinensis and D. pomorum (Fig. 1), but with respectively 33 bp and 55 bp differences in four sequenced loci. Didymella aeria produces hyaline conidia measuring 3–5 × 2–3 μm, while D. pomorum produces longer, brown conidia (4–8 × 1.5–3 μm; Boerema 1993). The asexual morph of D. sinensis was unfortunately not observed. Didymella aeria was trapped from air in a Karst cave in China.

Didymella aquatica Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818973. Fig. 9.

Fig. 9.

Fig. 9

Didymella aquatica (CGMCC 3.18349). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia sporulating on OA. H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K. Conidia. Scale bars: G = 100 μm; H = 50 μm; I, K = 10 μm; J = 5 μm.

Etymology: Name derived from the substrate where the holotype was collected, water.

Conidiomata pycnidial, solitary, sometimes aggregated, globose to subglobose, brown, glabrous or covered with some hyphal outgrowths, superficial, ostiolate, 105–355 × 95–315 μm. Ostioles 2–13, sometimes elongated as a short neck, up to 50.5 μm long, papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–5 layers, 14–35 μm thick, outer wall 2–3-layers pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 4–5 × 3.5–5 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 4–5.5 × 2–3 μm, with 2 distinct polar guttules. Conidial matrix cream.

Culture characteristics: Colonies on OA, 15–40 mm diam after 7 d, margin regular, covered by velvety aerial mycelia, flat, white to amber; reverse concolourous. Colonies on MEA 46–53 mm diam after 7 d, margin regular, white to pale green, with sparse aerial mycelia near the centre; reverse concolourous. Colonies on PDA, 54–56 mm diam after 7 d, margin regular, floccose to felty, white to grey, iron grey near the centre; reverse white, hazel to brown. NaOH test negative.

Specimens examined: China, Guizhou, Kuankuoshui National Geopark, water, 23 Jul. 2014, Z.F. Zhang (holotype HMAS 247150, dried culture, ex-holotype living culture CGMCC 3.18349 = LC 5556); ibid. LC 5555.

Notes: Didymella aquatica formed a distinct lineage sister to D. macrophylla, with 6 bp differences in both rpb2 and tub2 loci. Morphologically, D. aquatica is clearly differentiated from D. macrophylla in producing smaller conidiogenous cells (4–5 × 3.5–5 μm vs. 6–8 × 4.5–8 μm), longer and narrower conidia (4–5.5 × 2–3 μm vs. 1.5–2.5 × 3.5–5.5 μm), and in the number of conidiomatal ostioles (2–13 vs. 1). This is the first Didymella species known from water.

Didymella chloroguttulata Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818970. Fig. 10.

Fig. 10.

Fig. 10

Didymella chloroguttulata (CGMCC 3.18351). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Section of pycnidial wall. I. Conidia. Scale bars: G = 200 μm; H–I = 10 μm.

Etymology: Latin, chloro- = green, referring to the two green guttules of the conidia.

Conidiomata pycnidial, confluent, globose to subglobose, brown, glabrous, superficial, 145–260(–410) × 130–230(–365) μm. Ostiole single, sometimes with a short neck, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 3–4 layers, 14.5–22 μm thick, pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5.5–8 × 4–6.5 μm. Conidia oblong to cylindrical, incidentally slightly curved, smooth- and thin-walled, hyaline, aseptate, 4–6 × 2–3 μm, with 2–3 dull green polar guttules. Conidial exudates not recorded.

Culture characteristics: Colonies on OA, 54–57 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, grey; reverse black. Colonies on MEA 44–47 mm diam after 7 d, margin regular, white aerial mycelia sparse, fluffy, greenish brown; reverse concolourous. Colonies on PDA, 57–62 mm diam after 7 d, margin regular, floccose, grey to leaden-black; reverse leaden-black. NaOH spot test: a pale reddish brown discolouration on MEA.

Specimens examined: China, Guizhou, Zunyi, Shuanghe Cave National Geopark, air, 8 May 2015, Z.F. Zhang (holotype HMAS 247151, dried culture, ex-holotype living culture CGMCC 3.18351 = LC 7435); ibid. LC 8122.

Notes: Didymella chloroguttulata is characterised by having two to three dull green polar guttules in its oblong to cylindrical conidia and sometimes having conidiomata with a short neck. In the phylogenetic tree, it formed a distinct clade sister to D. dactylidis and D. rhei (Fig. 1). Didymella chloroguttulata is well distinguished from these two species in the NaOH reactions (pale reddish brown discolouration on D. chloroguttulata, slight greenish discolouration on D. dactylidis, and no effect on D. rhei) (de Gruyter et al. 2002, Aveskamp et al. 2010).

Didymella ellipsoidea Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818971. Fig. 11.

Fig. 11.

Fig. 11

Didymella ellipsoidea (CGMCC 3.18350). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia sporulating on OA. H. Pycnidia. I. Ostioles on pycnidium. J. Section of pycnidium. K. Section of pycnidial wall. L. Conidia. Scale bars: G = 100 μm; H = 50 μm; I, K–L = 10 μm; J = 20 μm.

Etymology: Name refers to its ellipsoidal conidia.

Conidiomata pycnidial, solitary, globose to subglobose, brown, glabrous or covered with some hyphal outgrowths, superficial, ostiolate, 335–400(–460) × 290–340(–440) μm. Ostioles 1–8, often developing to elongated short necks, up to 80 μm long, papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 3–5 layers, 23.5–50 μm thick, pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5.5–7.5 × 4.5–6.5 μm. Conidia ellipsoidal, smooth- and thin-walled, hyaline, aseptate, 3–4.5 × 2–3 μm, with 2 pale green guttules. Conidial matrix cream.

Culture characteristics: Colonies on OA, 56–62 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, white to pale brown; reverse white to greenish brown. Colonies on MEA 61–64 mm diam after 7 d, margin regular, white aerial mycelia sparse, fluffy, grey to olivaceous; reverse concolourous. Colonies on PDA, 52–54 mm diam after 7 d, margin regular, floccose, grey to leaden-black, with a white concentric ring near the centre; reverse concolourous. NaOH test negative.

Specimen examined: China, Guizhou, Zunyi, Shuanghe Cave National Geopark, air, 8 May 2015, Z.F. Zhang (holotype HMAS 247152, dried culture, ex-holotype living culture CGMCC 3.18350 = LC 7434); ibid. LC 8123.

Notes: This species is represented by two isolates trapped from air in a Karst cave which cluster in a distinct lineage clearly differentiated from other species in Didymella (Fig. 1). Morphologically, Didymella ellipsoidea is distinguishable from its closest neighbours, D. viburnicola, in producing wider conidia (3–4.5 × 2–3 μm vs. 3.5–5.5 × 1.5–2 μm; de Gruyter & Noordeloos 1992), from D. macrostoma in having shorter conidia (3–4.5 × 2–3 μm vs. 4–11 × 2–4 μm; de Gruyter et al. 2002), and from D. pteridis in producing larger conidiogenous cells (5.5–7.5 × 4.5–6.5 μm vs. 4–5 × 3.5–4.5 μm).

Didymella ilicicola Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818969. Fig. 12.

Fig. 12.

Fig. 12

Didymella ilicicola (CGMCC 3.18355). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K–L. Conidiogenous cells. M. Conidia. Scale bars: G = 100 μm; H = 20 μm; I–J = 10 μm; K–M = 5 μm.

Etymology: Name derived from Ilex, the plant from which the holotype was collected.

Conidiomata pycnidial, solitary or aggregated, (sub-)globose to flask-shaped, or obpyriform, brown, later becoming irregular when matured, covered with hyphal outgrowths, mostly erumpent, sometimes semi-immersed, ostiolate, (80–)150–200 × (70–)150–180 μm. Ostioles 2–3, elongated as short papillate necks. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–5 layers, 15–20 μm thick, outer wall 2–3-layers pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 4.5–8 × 3.5–5 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 3–4 × 1.5–2.5 μm, with two minute guttules. Conidial matrix cream to buff.

Culture characteristics: Colonies on OA, 43–50 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, white to pale buff, with a dull green concentric ring near the centre; reverse reddish brown to buff, with a brown concentric ring. Colonies on MEA 56–65 mm diam after 7 d, margin irregular, white, aerial mycelia sparse; reverse concolourous. Colonies on PDA, 62–65 mm diam after 7 d, margin regular, felty to floccose, dense, white to pale yellow; reverse white to buff with some pale reddish brown tings in concentric rings. NaOH test negative.

Specimens examined: Italy, from seedlings of Ilex chinensis, 2013, W.J. Duan (holotype HMAS 247153, dried culture, ex-holotype living culture CGMCC 3.18355 = LC 8126); ibid. LC 8127.

Notes: Didymella ilicicola clustered in a clade together with D. subherbarum and D. pedeiae (Fig. 1), but with 1 bp and 9 bp differences in ITS and tub2 respectively from D. subherbarum (lack of rpb2 sequence), and 26 bp and 12 bp differences in rpb2 and tub2 respectively from D. pedeiae. Morphologically, D. ilicicola differs from D. subherbarum in producing shorter conidia (3–4 × 1.5–2.5 μm vs. 4–6.5 × 1.5–2 μm; de Gruyter et al. 1993), and from D. pedeiae in producing larger conidiogenous cells (4.5–8 × 3.5–5 μm vs. 3.5–4.5 × 3–4 μm; Aveskamp et al. 2010).

Didymella infuscatispora Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818974. Fig. 13.

Fig. 13.

Fig. 13

Didymella infuscatispora (CGMCC 3.18356). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Conidia. J. Conidiogenous cell. Scale bars: G = 200 μm; H = 50 μm; I = 10 μm; J = 2.5 μm.

Etymology: Latin, infuscat- = brownish, referring to the colour of its conidia.

Leaf spots amphigenous, irregular, 3–11 mm diam, extending along leaf margin to the whole leaf, dark grey to dark brown (Fig. 7B). Conidiomata pycnidial, solitary, globose to subglobose, brown, later becoming irregular when matured, covered with some hyphal outgrowths, superficial, ostiolate, (50–)95–265 × (20–)75–165 μm. Ostiole single, sometimes elongated as short necks, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 2–3 layers, 13.5–23 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 6–8.5 × 5.5–8 μm. Conidia globose to broadly ellipsoidal, oblong, smooth- and thin-walled, hyaline, later becoming pale brown, mostly aseptate, occasionally 1-septate, 5–8.5 × 3.5–5.5 μm, with several indistinct minute guttules. Conidial matrix dark brown.

Culture characteristics: Colonies on OA, 15–20 mm diam after 7 d, margin regular, covered by felty aerial mycelia, white to buff, pale brown near the centre; reverse white to amber, hazel near the centre. Colonies on MEA 10–15 mm diam after 7 d, margin irregular, aerial mycelia sparse, white to pale green; reverse white to pale green, yellowish brown near the centre. Colonies on PDA, 14–16 mm diam after 7 d, margin regular, aerial mycelia felty, flat, white to pale brown; reverse buff to brown. NaOH test negative.

Specimens examined: China, Tibet, Lulang, on leaves of Chrysanthemum indicum, 15 Jun. 2015, Q. Chen (holotype HMAS 247154, dried culture, ex-holotype living culture CGMCC 3.18356 = LC 8128); ibid. LC 8129.

Note: This species clustered in a distinct lineage separated from other species in this genus, and is characterised by pale brown and broadly ellipsoidal conidia and a dark brown conidial matrix when mature.

Didymella macrophylla Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB819189. Fig. 14.

Fig. 14.

Fig. 14

Didymella macrophylla (CGMCC 3.18357). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Conidia. Scale bars: G = 200 μm; H–I = 10 μm.

Etymology: Named after the host species Hydrangea macrophylla, from which the holotype was collected.

Conidiomata pycnidial, mostly solitary, sometime aggregated, globose to subglobose, pale brown, glabrous, semi-immersed or immersed in agar, ostiolate, (80–)120–200 × (60–)100–150 μm. Ostiole single, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 1–2 layers, 7–15 μm thick, pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 6–8 × 4.5–8 μm. Conidia obovoid, ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 3.5–5.5 × 1.5–2.5 μm, with two polar guttules. Conidial matrix buff.

Culture characteristics: Colonies on OA, 44–46 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, white to grey, yellowish grey near the centre; reverse grey to greyish yellow. Colonies on MEA 54–60 mm diam after 7 d, margin regular, covered by white aerial mycelia, fluffy; reverse concolourous. Colonies on PDA, 59–68 mm diam after 7 d, margin regular, aerial mycelia floccose, dense, white to yellowish grey; reverse dark brown with pale olivaceous margin. NaOH test negative.

Specimens examined: Italy, Hydrangea macrophylla, 2013, W.J. Duan (holotype HMAS 247155, dried culture, ex-holotype living culture CGMCC 3.18357 = LC8131); ibid. LC 8132.

Note: Didymella macrophylla is phylogenetically most closely related to D. aquatica (Fig. 1), which is discussed under the notes of the latter species.

Didymella ocimicola Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB819127. Fig. 15.

Fig. 15.

Fig. 15

Didymella ocimicola (CGMCC 3.18358). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Section of pycnidium. I. Conidia. Scale bars: G = 100 μm; H = 50 μm; I = 10 μm.

Etymology: Name derived from Ocimum, the plant host from which the holotype was collected.

Leaf spots amphigenous, irregular, 8–15 mm diam, next to or close to the leaf margin, pale brown (Fig. 7C). Conidiomata pycnidial, solitary, sometimes aggregated, globose to flask-shaped, brownish olivaceous, covered by some hyphal outgrowths, superficial or semi-immersed, ostiolate, 100–235 × 95–180 μm. Ostiole single, with an elongated neck, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 2–5 layers, 12–35.5 μm thick, brown-pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5–5.5 × 3.5–5 μm. Conidia globose to broadly ellipsoidal, smooth- and thin-walled, hyaline, aseptate, 4–6.5 × 3–4.5 μm, with one to several distinct guttules. Conidial exudates not recorded.

Culture characteristics: Colonies on OA, 10–15 mm diam after 7 d, margin regular, aerial mycelia floccose, flat, white to buff; reverse concolourous. Colonies on MEA 9–12 mm diam after 7 d, margin irregular, aerial mycelia floccose, white, dull green; reverse white to dull green. Colonies on PDA, 10–15 mm diam after 7 d, margin regular, aerial mycelia floccose, white; reverse olivaceous with white to pale brown patches. NaOH test negative.

Specimens examined: China, Tibet, Lulang, on leaves of Ocimum sp., 15 Jun. 2015, Q. Chen (holotype HMAS 247156, dried culture, ex-holotype living culture CGMCC 3.18358 = LC 8137); ibid. LC 8138.

Notes: Didymella ocimicola grouped closely with D. chenopodii and D. senecionicola (Fig. 1), but differs from D. chenopodii in smaller conidiogenous cells (5–5.5 × 3.5–5 μm vs. 4–8 × 4–6 μm) and wider conidia (4–6.5 × 3–4.5 μm vs. 5–5.5 × 2–2.2 μm) and from D. senecionicola in wider conidia (4–6.5 × 3–4.5 μm vs. 4–6.5 × 1.5–2.5 μm) (de Gruyter et al. 1993). Didymella ocimicola has 44 bp and 30 bp differences in three loci (lack of rpb2 sequence) from D. chenopodii and D. senecionicola respectively.

Didymella pteridis L.W. Hou, Crous & L. Cai, sp. nov. MycoBank MB820002. Fig. 16.

Fig. 16.

Fig. 16

Didymella pteridis (CBS 379.96). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K. Conidiogenous cells. L. Conidia. Scale bars: G = 300 μm; H = 40 μm; I = 20 μm; J–L = 10 μm.

Etymology: Named after the host genus Pteris, from which the holotype was collected.

Conidiomata pycnidial, mainly solitary, sometimes aggregated, (sub-)globose or flask-shaped, glabrous or with some mycelial outgrowths, superficial or semi-immersed, ostiolate, 170–350(–430) × 150–330 μm. Ostiole single, papillate, sometimes elongated as a short neck, with dark colour near the ostioles. Pycnidial wall pseduoparenchymatous, composed of oblong to isodiametric cells, 3–6 layers, 9–28 μm thick, with outer 1–2-layers pigmented. Conidiogenous cell phialidic, hyaline, smooth, ampulliform to doliiform, 4–5 × 3.5–4.5 μm. Conidia ovoid to broadly oval, smooth- and thin-walled, hyaline, aseptate, (3–)4–6 × 2.5–3.5 μm, with two polar guttules. Conidial matrix pale salmon.

Culture characteristics: Colonies on OA, 58–60 mm diam after 7 d, margin regular, aerial mycelia flat, cinnamon to hazel, mycelia sparse in some furrowed zone, pycnidia abundant near the margin; reverse buff to pale olivaceous. Colonies on MEA 20–25 mm diam after 7 d, margin regular, aerial mycelia floccose, white, grey near the centre, pale salmon conidial matrix appeared near the centre; reverse yellow in outer ring, changing towards the centre from saffron, hazel, greyish brown to brown. Colonies on PDA, 65–68 mm diam after 7 d, margin regular, densely covered by floccose aerial mycelia, greenish brown, with some white mycelial pellets scattering over the colony; reverse dark brown, buff near the margin. NaOH spot test: a pale reddish brown discolouration on MEA.

Specimen examined: The Netherlands, Wageningen, Alphen aan de Rijn, from a leaf of Pteris sp., deposited in CBS Apr. 1996 (holotype CBS H-23013, dried culture, ex-holotype living culture CBS 379.96).

Notes: CBS 379.96 was originally identified as “Didymella adianticola”, which is currently a synonym of Paraboeremia adianticola. CBS 379.96 is well distinguished from Pa. adianticola both in morphology and phylogeny. Didymella pteridis produces pycnidia with a single ostiole and shorter conidiogenous cells (4–5 × 3.5–4.5 μm), different from Pa. adianticola (pycnidia with 1–3 ostioles, conidiogenous cells 5.5–7 × 3–6.5 μm; Chen et al. 2015a). Thus, we introduce CBS 379.96 as a new species, D. pteridis. Didymella pteridis is closely related to D. viburnicola in the multi-locus phylogenetic analyses (Fig. 1), but D. pteridis is differentiated from the latter by wider conidia (3–6 × 2.5–3.5 μm vs. 3.6–5.6 × 1.6–2.2 μm) and the colour of its conidial matrix (pale salmon vs. whitish) (de Gruyter & Noordeloos 1992).

Didymella segeticola (Q. Chen) Q. Chen, Crous & L. Cai, comb. nov. MycoBank MB819327.

Basionym: Phoma segeticola Q. Chen, Phytotaxa 197: 274. 2015.

Description: Chen et al. (2015b).

Specimens examined: China, Hubei, Shennongjia Forest Region, on diseased leaves of Cirsium segetum, 1 Aug. 2011, K. Zhang (holotype HMAS 245746, ex-holotype living culture CGMCC 3.17489); ibid. CGMCC 3.17498 = LC 1635; ibid. LC 1633; ibid. LC 1634.

Notes: This species was introduced as Phoma segeticola, before the comprehensive revision of Didymellaceae (Chen et al. 2015b). Under current circumstance of Didymellaceae, it belongs to Didymella. Didymella segeticola is closely related to D. bellidis, and has 12 bp differences in four loci from the latter. Morphologically, D. segeticola could be distinguished from the latter in producing wider conidia (4.5–7 × 2.5–4 μm vs. 4–6.5 × 2–2.5 μm; Chen et al. 2015b).

Didymella sinensis Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818967. Fig. 17.

Fig. 17.

Fig. 17

Didymella sinensis (CGMCC 3.18348). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Section of pseudothecial wall. H. Asci forming in ascomata. I–J. Asci. K–N. Ascospores. Scale bar: G–H = 10 μm; I–K, M = 5 μm; L, N = 2.5 μm.

Etymology: Epithet derived from the country of origin, China.

Leaf spots amphigenous, angular to irregular, 3–5 mm diam, scatter over the leaf, dark brown to black (Fig. 7D). Ascomata aggregated, globose to irregular, brown, small, up to 170 μm diam, papillate. Pseudothecial wall 18–29.5 μm thick, outer wall consisting of 2–5 layers of cells of textura angularis. Pseudoparaphyses hyaline, 1.5–2 μm diam, septate. Asci bitunicate, clavate to short cylindrical, 32–52 × 8.5–16 μm. Ascospores biseriate, ellipsoidal, straight to slightly curved, 12–18 × 4.5–7.5 μm, hyaline, smooth, apex obtuse, base broadly obtuse to subobtuse, medianly 1-septate, upper cell often wider than lower cell, slightly constricted at the septum.

Culture characteristics: Colonies on OA, 49–52 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, grey to black; reverse black. Colonies on MEA 57–60 mm diam after 7 d, margin regular, greyish brown; reverse concolourous. Colonies on PDA, 56–60 mm diam after 7 d, margin regular, pale grey, with brownish olivaceous margin; reverse dark brown. NaOH spot test: a hazel discolouration on MEA.

Specimens examined: China, Guizhou, Huangguoshu waterfall, on leaves of Cerasus pseudocerasus, 21 Jul. 2014, Q. Chen (holotype HMAS 247157, dried culture, ex-holotype living culture CGMCC 3.18348 = LC 5210); Guizhou, Kuankuoshui National Geopark, Urticaceae, 20 Jul. 2014, Q. Chen, LC 5246; Guizhou, Xingyi, on leaves of Dendrobium officinale, 4 Jul. 2015, Q. Chen, LC 8142; ibid. LC 8143.

Notes: Didymella sinensis has only been observed as a sexual morph, which is not common among species of Didymellaceae. Four isolates from diseased leaves of three host plants in different families were collected, i.e. Cerasus pseudocerasus (Rosaceae), Dendrobium officinale (Orchidaceae) and Urticaceae, indicating an opportunistic pathogen with very broad host range.

Didymella suiyangensis Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818972. Fig. 18.

Fig. 18.

Fig. 18

Didymella suiyangensis (CGMCC 3.18352). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Section of pycnidial wall. J. Conidia. Scale bars: G = 300 μm; H = 30 μm; I–J = 5 μm.

Etymology: Epithet derived from the location of origin, Suiyang County in Guizhou, China.

Conidiomata pycnidial, solitary, sometimes aggregated, globose to irregular, brown, covered by some hyphal outgrowths, superficial or semi-immersed, ostiolate, (65–)90–240 × 55–180 μm. Ostiole single, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–4 layers, 15–36.5 μm thick, outer wall 2-layers pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 4–4.5 × 3–4 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 3.5–7 × 2–3 μm, with indistinct guttules. Conidial matrix cream.

Culture characteristics: Colonies on OA, 52–55 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, sparsely, white to buff; reverse concolourous. Colonies on MEA 59–64 mm diam after 7 d, margin regular, floccose, pale grey to greenish olivaceous; reverse white to yellowish green. Colonies on PDA, 57–61 mm diam after 7 d, margin regular, floccose, white to pale greyish brown; reverse white to hazel. NaOH spot test: a reddish brown discolouration on MEA.

Specimens examined: China, Guizhou, Zunyi, Shuanghe Cave National Geopark, air, 8 May 2015, Z.F. Zhang (holotype HMAS 247158, dried culture, ex-holotype living culture CGMCC 3.18352 = LC 7439); ibid. LC 8144.

Notes: Didymella suiyangensis formed a distinct clade sister to D. bellidis and D. segeticola (Fig. 1), with respectively 18 bp and 19 bp differences in four loci from the latter two species. However, D. suiyangensis is differentiated from D. bellidis and D. segeticola in producing narrower conidiogenous cells (4–4.5 × 3–4 μm vs. 3–6 × 4–8 μm and 5–6.5 × 4–5.5 μm), and the number of ostioles (1 vs. 1–5 and 1–2, respectively). Moreover, the NaOH reactions on MEA showed a reddish brown discolouration on D. suiyangensis, but green to red on D. bellidis and negative on D. segeticola (de Gruyter et al. 1993, Chen et al. 2015b).

Epicoccum Link, Mag. Neuesten Entdeck. Gesammten Naturk. Ges. Naturf. Freunde Berlin 7: 32. 1815, emend. Q. Chen & L. Cai, Stud. Mycol. 82: 171. 2015.

Epicoccum camelliae Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818958.

Etymology: Name refers to the host genus from which the holotype was collected, Camellia.

Cultures sterile. Epicoccum camelliae differs from its closest phylogenetic neighbour E. viticis by unique fixed alleles in three loci based on alignments of the separate loci deposited in TreeBASE (S20724): LSU positions: 66(T), 398(T); tub2 positions: 30(T), 258(C); rpb2 positions: 47(C), 95(C), 197(A), 419(C), 554(A).

Specimens examined: China, Jiangxi, Ganzhou, leaves of Camellia sinensis, 7 Sep. 2013, Y. Zhang (holotype HMAS 247159, dried culture, culture ex-holotype CGMCC 3.18343 = LC 4858); ibid. LC4862.

Notes: Epicoccum camelliae is closely related to E. viticis with a high support value in the phylogenetic tree (Fig. 1), and has 10 bp differences in four loci from the latter. Two isolates of this species are both from Camellia sinensis, one as endophyte in healthy leaves and the other as pathogenic fungus from diseased leaves. Both isolates proved to be sterile on the defined media used in this study.

Epicoccum dendrobii Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818964. Fig. 19.

Fig. 19.

Fig. 19

Epicoccum dendrobii (CGMCC 3.18359). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Sporodochia. H–I. Conidia. Scale bars: G–I = 10 μm.

Etymology: Named after the host plant, Dendrobium.

Leaf spots amphigenous, subcircular, up to 10 mm diam, black (Fig. 7E). Conidiomata sporodochial, aggregated, semi-immersed or superficial, clavate, pale brown. Hyphae septate, frequently branched, 2.5–4.5 μm. Conidia globose, aseptate and smooth when young, later becoming multicellular-phragmosporous, verrucose, subglobose-pyriform, brown, with a basal cell, 11–19 μm diam.

Culture characteristics: Colonies on OA, 58–64 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, white to greyish yellow; reverse white to pale grey, with some purple dots scattered over the colony. Colonies on MEA 65–68 mm diam after 7 d, margin regular, grey, with sparse white aerial mycelia; reverse white to yellow. Colonies on PDA, 34–38 mm diam after 7 d, margin regular, aerial mycelia felty to floccose, flat, white to buff, olivaceous near the centre; reverse pale salmon, hazel to brown near the centre. NaOH test negative.

Specimens examined: China, Guizhou, Xingyi, on leaves of Dendrobium fimbriatum, 4 Jul. 2015, Q. Chen (holotype HMAS 247160, dried culture, ex-holotype living culture CGMCC 3.18359 = LC 8145); ibid. LC 8146.

Notes: Epicoccum dendrobii formed a distinct clade basal to E. nigrum, E. poae and E. layuense (Fig. 1). These species all produce typical epicoccoid conidia (multicellular-phragmosporous, verrucose), with phoma-like conidia only observed in E. nigrum. Epicoccum dendrobii differs in the length of its epicoccoid conidia (11–19 μm) from E. nigrum (15–35 μm; Punithalingam et al. 1972) and E. poae (10–23 μm), and in its NaOH reaction (negative) from E. layuense (a pale reddish brown discolouration on MEA, with a yellowish brown margin).

Epicoccum duchesneae Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818966. Fig. 20.

Fig. 20.

Fig. 20

Epicoccum duchesneae (CGMCC 3.18345). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G–H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K–M. Conidiogenous cells. N. Conidia. Scale bars: G–I = 40 μm; J, M–N = 10 μm; K–L = 5 μm.

Etymology: Name derived from Duchesnea, the plant genus from which the holotype was collected.

Leaf spots amphigenous, circular to irregular, 2–5 mm diam, yellowish brown, surrounded by a purple border (Fig. 7F). Conidiomata pycnidial, solitary, globose to subglobose, covered with hyphal outgrowths, immersed in agar, ostiolate, (150–)170–270 × (100–)150–230 μm. Ostiole single, sometimes with an elongated, pale brown neck, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 3–5 layers, 13–30 μm thick, outer wall of 2–3 pigmented layers. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 4.5–9.5 × 3.5–7 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 2.5–3.5 × 1.5–2 μm, egutullate or sometimes with 1(–3) small guttules. Conidial matrix whitish to salmon.

Culture characteristics: Colonies on OA, 62–65 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, white to grey, greyish brown near the centre; reverse white to dark brown. Colonies on MEA 24–27 mm diam after 7 d, margin regular, covered by white, sparse floccose aerial mycelia, grey to pale olivaceous; reverse concolourous. Colonies on PDA, 55–60 mm diam after 7 d, margin regular, aerial mycelia covering the whole colony, floccose, white to grey; reverse greenish olivaceous to dark brown. Application of NaOH results in a pale olivaceous discolouration of the agar.

Specimens examined: China, Jiangxi, Ganzhou, on leaves of Duchesnea indica, 12 May 2013, Q. Chen (holotype HMAS 247161, dried culture, ex-holotype living culture CGMCC 3.18345 = LC 5139); ibid. LC 8147.

Notes: Epicoccum duchesneae formed a distinct lineage close to E. huancayense (Fig. 1). Epicoccum duchesneae differs in producing smaller conidia from E. huancayense, 2.5–3.5 × 1.5–2 μm vs. (4–)5–8(–12) × 2.5–4.5 μm (de Gruyter et al. 1998).

Epicoccum hordei Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818961. Fig. 21.

Fig. 21.

Fig. 21

Epicoccum hordei (CGMCC 3.18360). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K. Chlamydospores. L. Conidiogenous cells. M. Conidia. Scale bars: G = 300 μm; H = 30 μm; I, K = 20 μm; J, M = 10 μm; L = 5 μm.

Etymology: Named after the host genus Hordeum, from which the holotype was isolated.

Conidiomata pycnidial, solitary or aggregated, globose to subglobose, glabrous, semi-immersed or on the surface of agar, ostiolate, (85–)115–190(–260) × (70–)95–180 μm. Ostiole single, non-papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 layers, 11–18.5 μm thick, pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 7–8.5 × 5.5–7.5 μm. Conidia obovoid, ellipsoidal to oblong, cylindrical, smooth- and thin-walled, hyaline, aseptate, 6.5–9 × 3–4 μm, with several minute guttules. Conidial matrix pale brown. Chlamydospores unicellular, produced on the agar, yellowish brown to dark brown, intercalary, in chains, globose to subglobose, 6–21.5 μm diam, thick-walled.

Culture characteristics: Colonies on OA, 58–62 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, white to grey, pale olivaceous near the centre; reverse white to amber. Colonies on MEA 43–46 mm diam after 7 d, margin regular, aerial mycelia white, fluffy to floccose, grey to greenish yellow; reverse concolourous. Colonies on PDA, 54–56 mm diam after 7 d, margin regular, aerial mycelia floccose, white to grey, with pale olivaceous concentric rings; reverse pale greenish brown to olivaceous, with concentric rings. Application of NaOH results in a pale brown discolouration of the agar.

Specimens examined: Australia, on seeds of Hordeum vulgare, 2014, W.J. Duan (holotype HMAS 247162, dried culture, ex-holotype living culture CGMCC 3.18360 = LC 8148); ibid. LC 8149.

Notes: Isolates of this species clustered in a lineage closely related to E. pimprinum (49 bp differences in four sequenced loci) (Fig. 1). Morphologically, E. hordei differs in the colour of its conidial matrix (pale brown) from E. pimprinum (salmon) and the absence of elongated necks of pycnidia (with pronounced necks in E. pimprinum) (Boerema 1993).

Epicoccum italicum Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818965. Fig. 22.

Fig. 22.

Fig. 22

Epicoccum italicum (CGMCC 3.18361). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G–H. Sporodochia. I. Conidia. Scale bars: G–I = 10 μm.

Etymology: Named after the country where the holotype was collected, Italy.

Conidiomata sporodochial, aggregated, semi-immersed or superficial, clavate, yellowish brown. Hyphae septate, branched, 3.5–5 μm. Conidia multicellular-phragmosporous, verrucose, subglobose-pyriform, brown, with a basal cell, 12.5–28 μm diam.

Culture characteristics: Colonies on OA, 48–50 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, white to yellow, dark iron-grey near the centre, with a pale yellow halo near the margin, and a yellow concentre ring; reverse buff to yellowish brown. Colonies on MEA 50–55 mm diam after 7 d, margin regular, grey to pale yellowish green, with sparse white aerial mycelia; reverse concolourous. Colonies on PDA, 35–39 mm diam after 7 d, margin irregular, aerial mycelia floccose, yellow with a white margin, black near the centre; reverse salmon to saffron, with a yellow margin. Application of NaOH results in a yellow discolouration of the agar.

Specimens examined: Italy, on seedlings of Acca sellowiana, 2013, W.J. Duan (holotype HMAS 247163, dried culture, ex-holotype living culture CGMCC 3.18361 = LC 8150); ibid. LC 8151.

Notes: Phylogenetically, Epicoccum italicum formed a distinct lineage closely related to E. dendrobii. Morphologically, the two species could be distinguished in the length of epicoccoid conidia (12.5–28 μm in E. italicum vs. 11–19 μm in E. dendrobii), and the results of NaOH test (a yellow discolouration in E. italicum vs. negative in E. dendrobii).

Epicoccum latusicollum Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818960. Fig. 23.

Fig. 23.

Fig. 23

Epicoccum latusicollum (CGMCC 3.18346). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K–L. Conidiogenous cells. M. Conidia. Scale bars: G = 100 μm; H = 20 μm; I–J = 10 μm; K–M = 5 μm.

Etymology: Name refers to the wide neck of pycnidia, latus = wide, collum = neck.

Conidiomata pycnidial, mostly solitary, sometime aggregated, globose to subglobose or pyriform, glabrous, produced on the agar surface, ostiolate, 110–155 × 90–130 μm. Ostioles 1–2, sometimes elongated as a short, slightly papillate neck. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 3–4 cell layers of which outer 2–3 are brown pigmented, 15–20 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5–8 × 4–5.5 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 4–6.5 × 2–3 μm, guttulate. Conidial matrix buff.

Culture characteristics: Colonies on OA, 70–72 mm diam after 7 d, margin regular, flattened, whole colony covered by floccose aerial mycelia, white, grey to smoke grey near the centre; reverse white to buff. Colonies on MEA 75–80 mm diam after 7 d, margin regular, aerial mycelia floccose, greyish dull green, forming several mycelial pellets, white or pale salmon; reverse grey, with some yellow sections. Colonies on PDA, 80–85 mm diam after 7 d, margin regular, floccose aerial mycelia covering the whole colony, dense, white to grey, forming several white mycelial pellets; reverse white to hazel. NaOH spot test: a green discolouration on MEA, later changing to three colour layers, via dark green, pale red to purple, from the centre to the outer ring.

Specimens examined: China, Jiangxi, Ganzhou, on leaves of Vitex negundo, 25 Apr. 2013, Q. Chen, LC 5124; Jiangxi, Ganzhou, endophyte of Camellia sinensis, 7 Sep. 2013, Y. Zhang, LC 4859; Shandong, Jining, on leaves of Sorghum bicolor, 3 Aug. 2013, N. Zhou (holotype HMAS 247164, dried culture, ex-holotype living culture CGMCC 3.18346 = LC 5158). Japan, Podocarpus macrophyllus, 2013, W.J. Duan, LC 8152; ibid. LC 8153; on stem of Acer palmatum, LC 8154.

Notes: Isolates of Epicoccum latusicollum clustered in a sister clade to E. camelliae, E. sorghinum and E. viticis (Fig. 1). Although the conidial dimensions are similar in these species, E. latusicollum differs in 1 bp in ITS, 14 bp in rpb2 and 5 bp in tub2 from E. camelliae; 16 bp in rpb2 and 7 bp in tub2 from E. sorghinum; and 1 bp in ITS, 1 bp in LSU, 16 bp in rpb2 and 4 bp in tub2 from E. viticis.

This is the first report of an Epicoccum species from Acer palmatum (Aceraceae), Podocarpus macrophyllus (Podocarpaceae) and Vitex negundo (Verbenaceae).

Epicoccum layuense Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818963. Fig. 24.

Fig. 24.

Fig. 24

Epicoccum layuense (CGMCC 3.18362). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Sporodochia. H–I. Conidia producing on sporodochia. J. Conidia. Scale bars: G–I = 10 μm.

Etymology: Epithet derived from the location of origin, Layue Village in Tibet, China.

Leaf spots distinct, angular to irregular, up to 12 mm diam, dark brown. Conidiomata sporodochial, aggregated, superficial, clavate, brown (Fig. 7I). Hyphae septate, branched, 2–5.5 μm. Conidia multicellular-phragmosporous, verrucose, subglobose-pyriform, with a basal cell, dark brown, 13–19.5 μm diam.

Culture characteristics: Colonies on OA, 27–37 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, yellow to greenish yellow, olivaceous; reverse yellow to saffron, with dark brown sections. Colonies on MEA 30–43 mm diam after 7 d, margin irregular, aerial mycelia white, floccose, greenish yellow to pale brown; reverse concolourous. Colonies on PDA, 47–55 mm diam after 7 d, margin irregular, aerial mycelia floccose, bright yellow; reverse yellow to pale brown, with a brown concentric ring near the centre. NaOH spot test: a pale reddish brown discolouration on MEA, with a yellowish brown margin.

Specimens examined: China, Tibet, Lulang, on leaves of Perilla sp., 15 Jun. 2015, Q. Chen (holotype HMAS 247165, dried culture, ex-holotype living culture CGMCC 3.18362 = LC 8155); ibid. LC 8156.

Notes: This species is phylogenetically closely related to E. nigrum and E. poae, but E. layuense has differences at 19 positions from E. nigrum and 14 positions from E. poae in the multi-locus sequences of their ex-type strains. Morphologically, E. layuense produces smaller epicoccoid conidia than E. nigrum (13–19.5 μm vs. 15–35 μm; Punithalingam et al. 1972), and they also differ in their NaOH reactions (a pale reddish brown discolouration on E. layuense, but pale brown on E. poae).

Epicoccum poae Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818962. Fig. 25.

Fig. 25.

Fig. 25

Epicoccum poae (CGMCC 3.18363). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Conidia producing on OA. H–I. Conidia. Scale bars: G = 100 μm; H = 20 μm; I = 10 μm.

Etymology: Name derived from Poa, the plant genus from which the holotype was collected.

Conidiomata sporodochial, aggregated, superficial, clavate, brown. Hyphae septate, branched, 2–3 μm. Conidia multicellular-phragmosporous, verrucose, subglobose-pyriform, with a basal cell, dark brown, 10–23 μm diam.

Culture characteristics: Colonies on OA, 49–51 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, yellow, reddish brown to brown near the centre, with a white margin; reverse yellow to saffron, with some brown sections. Colonies on MEA 25–27 mm diam after 7 d, margin irregular, aerial mycelia white to greenish yellow, fluffy to floccose, grey to greenish yellow; reverse white to greenish yellow. Colonies on PDA, 20–22 mm diam after 7 d, margin irregular, aerial mycelia flattened, brownish yellow, with a white margin; reverse yellow to saffron, brown towards the centre. NaOH spot test: a pale brown discolouration on MEA.

Specimens examined: USA, on seeds of Poa annua, Oct. 2014, X.M. Wang, strain isolated by Q. Chen (holotype HMAS 247166, dried culture, ex-holotype living culture CGMCC 3.18363 = LC 8160); ibid. LC 8161, LC 8162.

Notes: Epicoccum poae is phylogenetically closely related to E. nigrum (Fig. 1), but differs in producing smaller epicoccoid conidia (10–23 μm vs. 15–35 μm; Punithalingam et al. 1972). Furthermore, E. poae hasn't been observed to have phoma-like conidia, while E. nigrum readily produces short-cylindrical conidia, 3–7(–10) × 1.5–3(–3.5) μm (Punithalingam et al. 1972).

Epicoccum viticis Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818959. Fig. 26.

Fig. 26.

Fig. 26

Epicoccum viticis (CGMCC 3.18344). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I. Section of pycnidium. J. Section of pycnidial wall. K–N. Conidiogenous cells. O. Conidia. Scale bars: G–H = 40 μm; I = 20 μm; J = 10 μm; K–O = 5 μm.

Etymology: Name derived from Vitex, the plant genus from which the holotype was collected.

Leaf spots amphigenous, circular to irregular, 2–8 mm diam, close to the leaf margin, reddish brown, single lesions may coalesce to form larger lesions and become dark brown (Fig. 7H). Conidiomata pycnidial, aggregated or sometimes solitary, (sub-)globose, glabrous, produced on the agar surface, 120–200 × 100–175 μm. Ostioles 1–2, papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 cell layers, outer 1–2 layers brown pigmented, 8–16 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5.5–9 × 3–6 μm. Conidia ellipsoidal to obovoid, smooth- and thin-walled, hyaline, aseptate, 3.5–6 × 2–3 μm, with two minute polar guttules. Conidial matrix buff to cinnamon.

Culture characteristics: Colonies on OA, 48–67 mm diam after 7 d, margin regular, aerial mycelia floccose, white to grey, with a greyish olivaceous concentric ring; reverse white to pale olivaceous, with a broad greyish olivaceous concentric ring. Colonies on MEA 75–80 mm diam after 7 d, margin regular, aerial mycelia fluffy to floccose, grey to pale yellowish green; reverse concolourous. Colonies on PDA, 70–75 mm diam after 7 d, margin regular, floccose aerial mycelia covering the whole colony, grey; reverse white to buff, with some dull green dots. NaOH test negative.

Specimens examined: Australia, Darwin, Northern Territory University, Greenhouse, from Andropogon gayanus, 2002, A. Hollingsworth, BRIP 29294 = LC 5257. China, Jiangxi, Ganzhou, on leaves of Vitex negundo, 25 Apr. 2013, Q. Chen (holotype HMAS 247167, dried culture, ex-holotype living culture CGMCC 3.18344 = LC 5126).

Note: Epicoccum viticis is phylogenetically closely related to E. camelliae (Fig. 1), with 10 bp differences in four sequenced loci.

Heterophoma Q. Chen & L. Cai, Stud. Mycol. 82: 165. 2015.

Heterophoma verbascicola Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB819128. Fig. 27.

Fig. 27.

Fig. 27

Heterophoma verbascicola (CGMCC 3.18364). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidium forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K–M. Conidiogenous cells. N. Conidia. Scale bars: G–H = 40 μm; I = 20 μm; J–N = 5 μm.

Etymology: Named after the host genus from which the holotype was collected, Verbascum.

Leaf spots amphigenous, angular to irregular, 2–7 mm diam, scattered over the leaf, brown, with a pale yellow diffuse halo (Fig. 7J). Conidiomata pycnidial, aggregated or solitary, globose to subglobose or obpyriform, brown, covered with some hyphal outgrowths, semi-immersed or superficial, ostiolate, 120–300 × (100–)150–300 μm. Ostioles 2–3, elongated as short necks, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 layers, 7–20 μm thick, outer wall 1–2-layers pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5.5–6 × 3.5–5 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, incidentally produce 1-septate large conidia, 3.5–6(–8) × 1.5–3.5 μm, with 1–2 guttules. Conidial matrix cream to buff.

Culture characteristics: Colonies on OA, 40–45 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, white, with grey margin, greyish olivaceous near the centre; reverse white to pale olivaceous with a broad white concentric ring. Colonies on MEA 50–52 mm diam after 7 d, margin regular, aerial mycelia fluffy to floccose, white; reverse concolourous. Colonies on PDA, 50–53 mm diam after 7 d, margin irregular, crenate, dense, felty, white to mouse-grey; reverse white to hazel, with brown concentric rings. NaOH test negative.

Specimens examined: China, Tibet, Lulang, on leaves of Verbascum thapsus, 15 Jun. 2015, Q. Chen (holotype HMAS 247168, dried culture, ex-holotype living culture CGMCC 3.18364 = LC 8163); ibid. LC 8164.

Notes: Heterophoma verbascicola is phylogenetically closely related to H. novae-verbascicola, but is distinguishable from the latter species in its slightly narrower conidiogenous cells (5.5–6 × 3.5–5 μm vs. 2–6 × 4–6 μm; de Gruyter et al. 1993) and larger conidia (3.5–8 × 1.5–3.5 μm vs. 3.5–5.5 × 1.5–2.5 μm). Moreover, the NaOH test showed a yellowish green discolouration that became reddish in H. novae-verbascicola, but remained negative in H. verbascicola.

Neoascochyta Q. Chen & L. Cai, Stud. Mycol. 82: 198. 2015.

Neoascochyta argentina L.W. Hou, Crous & L. Cai, sp. nov. MycoBank MB820003. Fig. 28.

Fig. 28.

Fig. 28

Neoascochyta argentina (CBS 112524). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K–M. Conidiogenous cells. N. Conidia. Scale bars: G = 100 μm; H = 50 μm; I = 20 μm; J–N = 10 μm.

Etymology: Epithet derived from the country of origin, Argentina.

Conidiomata pycnidial, solitary or aggregated, (sub-)globose of flask-shaped, glabrous, semi-immersed or immersed, ostiolate, 210–390 × 140–270 μm. Ostioles 1–3, sometimes elongated as a long neck (up to 350 μm), papillate. Pycnidial wall pseduoparenchymatous, composed of oblong to isodiametric cells, 4–6 layers, with outer 3–4-layers pigmented, 14.5–52 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 7.5–14.5 × 6–13.5 μm. Conidia cylindrical, smooth- and thin-walled, hyaline, 0–1-septate, (10.5–)11.5–14.5(–16) × 3–5 μm, guttulate. Conidial matrix whitish cream.

Culture characteristics: Colonies on OA, 50–55 mm diam after 7 d, margin regular, densely covered by floccose aerial mycelia, greyish olivaceous, with some white zones near the margin; reverse greyish black. Colonies on MEA 55–60 mm diam after 7 d, margin regular, densely covered by woolly aerial mycelia, fawn, white near margin; reverse brown. Colonies on PDA, 60–65 mm diam after 7 d, margin regular, covered by pale grey aerial mycelia, floccose, dark olivaceous near the margin; reverse greyish brown. NaOH spot test: a pale reddish brown discolouration on MEA.

Specimen examined: Argentina, Tandil, from a leaf of Triticum aestivum, Oct. 2002 (holotype CBS H-23014, dried culture, ex-holotype living culture CBS 112524).

Notes: CBS 112524 was initially received as “Ascochyta hordei”. However, this isolate clustered in the Neoascochyta clade, and produces much smaller conidia (10.5–16 × 3–5 μm) than As. hordei (15–22 × 3.5–4.5 μm; Punithalingam 1979). Therefore, Neoa. argentina is introduced as a new species, based on isolate CBS 112524. Neoascochyta argentina is well distinguished from its most closely related species Neoa. triticicola by its smaller conidia (10.5–16 × 3–5 μm vs. 16.5–27 × 5–8.5 μm).

Neoascochyta triticicola L.W. Hou, Crous & L. Cai, sp. nov. MycoBank MB820004. Fig. 29.

Fig. 29.

Fig. 29

Neoascochyta triticicola (CBS 544.74). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidia. I–J. Section of pycnidia. K. Section of pycnidial wall. L–N. Conidiogenous cells. O–P. Conidia. Scale bars: G = 500 μm; H = 200 μm; I–J = 50 μm; K–L, O = 10 μm; M–N, P = 5 μm.

Etymology: Name refers to the host genus Triticum, from which the holotype was collected.

Conidiomata pycnidial, mostly confluent, flask-shaped, glabrous or sometimes with hyphal outgrows, superficial or semi-immersed on the agar, (170–)230–420(–620) × 160–430 μm; conidiomata becoming black, irregular with age, and ostiolate. Ostioles 1–3(–5), developing to conspicuously elongated necks (up to 400 μm tall), papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 4–6 layers, with outer 2–3-layers pigmented, 25–40 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 8.5–13 × (4.5–)7.5–12(–13) μm. Conidia bacilliform to fusiform, smooth- and thin-walled, hyaline, mainly uniseptate, occasionally aseptate, (16.5–)20–27 × 5–8.5 μm, guttulate. Conidial matrix whitish cream to pale salmon.

Culture characteristics: Colonies on OA, 55–65 mm diam after 7 d, margin regular, aerial mycelia floccose, greyish black, with some greyish mycelia tufts; reverse concolourous. Colonies on MEA 40–55 mm diam after 7 d, margin irregular, slightly lobate, covered by floccose mycelia, white, greyish olivaceous to greyish pink near the centre; reverse dark brown, saffron near the margin. Colonies on PDA, 55–65 mm diam after 7 d, margin irregular, slightly lobate, covered by floccose, greenish black mycelia, with erected tufts of white mycelia; reverse greyish olivaceous. NaOH spot test: a pale reddish brown discolouration on MEA.

Specimen examined: South Africa, Heilbron, from Triticum aestivum, deposited in CBS Sep. 1974, W.J. Jooste (holotype CBS H-9008, ex-holotype living culture CBS 544.74).

Notes: Isolate CBS 544.74 was originally identified as “Ascochyta hordei” but clustered in the Neoascochyta clade. Morphologically, it differs in producing larger conidia (16.5–27 × 5–8.5 μm) from Ascochyta hordei (15–22 × 3.5–4.5 μm; Punithalingam 1979). Therefore, we introduce CBS 544.74 as a new species, Neoa. triticicola. In Neoascochyta, it should be compared with Neoa. argentina, which is discussed under the notes of the latter species.

Neoascochyta soli Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818975. Fig. 30.

Fig. 30.

Fig. 30

Neoascochyta soli (CGMCC 3.18365). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Section of pycnidium. H–I. Conidiogenous cells. J. Conidia. Scale bars: G = 20 μm; H–I = 5 μm; J = 10 μm.

Etymology: Name derived from the substrate where the holotype was collected, soil.

Conidiomata pycnidial, aggregated or solitary, globose to subglobose, dark brown, glabrous, superficial, ostiolate, (135–)390–630 × (110–)340–565 μm. Ostiole single, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 3–5 layers, 18–42 μm thick, outer wall of 1–2-pigmented layers. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 6–10.5 × 5.5–9 μm. Conidia ellipsoidal to oblong, smooth- and thin-walled, hyaline, aseptate, 7–10 × 3–4 μm, with 2 to several polar guttules. Conidial exudates not recorded.

Culture characteristics: Colonies on OA, 62–64 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, white, greyish olivaceous near the centre; reverse white to iron grey. Colonies on MEA 45–47 mm diam after 7 d, margin irregular, grey, white near the centre; reverse white to olivaceous, forming concentric rings. Colonies on PDA, 50–53 mm diam after 7 d, margin regular, aerial mycelia fluffy, white to olivaceous; reverse concolourous. NaOH test negative.

Specimens examined: China, Guizhou, Kuankuoshui National Geopark, soil, 23 Jul. 2014, Z.F. Zhang (holotype HMAS 247169, dried culture, ex-holotype living culture CGMCC 3.18365 = LC 8165); ibid. LC 8166.

Notes: Neoascochyta soli clustered with Neoa. paspali in a distinct clade in this genus, but can be differentiated from the latter in producing larger conidiogenous cells (6–10.5 × 5.5–9 μm vs. 4–6 × 4–6 μm). In addition, the test of metabolite E production was negative for Neoa. soli, while a green to bluish discolouration, becoming red, appeared in Neoa. paspali (de Gruyter et al. 1998).

Neodidymelliopsis Q. Chen & L. Cai, Stud. Mycol. 82: 207. 2015.

Neodidymelliopsis achlydis L.W. Hou, Crous & L. Cai, sp. nov. MycoBank MB820005. Fig. 31.

Fig. 31.

Fig. 31

Neodidymelliopsis achlydis (CBS 256.77). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidium. I. Section of pycnidial wall. J. Section of pycnidium. K, M. Conidiogenous cells. L. Conidia. Scale bars: G = 500 μm; H, J = 50 μm; I, K–M = 10 μm.

Etymology: Named after the host genus Achlys, from which the holotype was collected.

Conidiomata pycnidial, solitary or aggregated, (sub-)globose, glabrous, semi-immersed or superficial, ostiolate, (150–)300–550(–630) × (120–)250–500(–630) μm. Ostioles 1–5, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 4–9 layers, with outer 2–4-layers pigmented, 30–80 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, (4–)6.5–10 × (3.5–)4.5–6.5 μm. Conidia oblong to cylindrical, incidentally slightly curved, smooth- and thin-walled, hyaline, aseptate, 7.5–10(–18) × 2–3.5(–5) μm, with two polar guttules. Conidial matrix whitish cream.

Culture characteristics: Colonies on OA, 45–50 mm diam after 7 d, margin regular, aerial mycelia floccose, white to pale brown; reverse pale salmon, with some pale olivaceous tinges near the centre. Colonies on MEA 40–45 mm diam after 7 d, margin regular, aerial mycelia floccose and compact, white to pale grey; reverse saffron to pale yellowish brown, yellow near margin. Colonies on PDA, 50–52 mm diam after 7 d, margin regular, densely covered by floccose, grey aerial mycelia, white near the margin; reverse pale brown to brown. NaOH spot test: a dull green discolouration with a reddish brown margin on MEA.

Specimen examined: Canada, British Columbia, from a leaf of Achlys triphylla, Jun. 1976, J. Gremmen (holotype CBS H-23015, dried culture, ex-holotype living culture CBS 256.77).

Notes: Isolate CBS 256.77 was received as “Ascochyta achlydis”, which was from the same host (Achlys triphylla) and the same location (Canada) as reported for Ascochyta achlydis (Dearness 1916). However, it produces narrower and aseptate conidia compared to the uniseptate conidia of As. achlydis (7.5–18 × 2–5 μm vs. 14–20 × 5–6.5 μm; Dearness 1916), and is obviously a different species. Phylogenetically, CBS 256.77 clustered in the Neodidymelliopsis clade, closely related to Neod. polemonii and Neod. xanthina (Fig. 1), and has differences at six positions from Neod. polemonii and 12 positions from Neod. xanthina in multi-locus sequences of their ex-type strains. We therefore introduce a new species, Neod. achlydis based on CBS 256.77. Morphologically, Neod. achlydis produces pycnidia with 1–5 ostioles, while Neod. xanthina only has pycnidia with a single ostiole (Boerema et al. 2004). Neodidymelliopsis achlydis differs from Neod. polemonii in its whitish cream conidial matrix from whitish/smoke grey of Neod. polemonii (Boerema et al. 2004). Neodidymelliopsis achlydis is also well distinguished from Neod. polemonii and Neod. xanthina in the NaOH reactions (dull green with pale reddish brown margin in Neod. achlydis, pale sienna to rust colour in Neod. polemonii, reddish brown discolouration in Neod. xanthina; Boerema et al. 2004).

Neodidymelliopsis longicolla L.W. Hou, Crous & L. Cai, sp. nov. MycoBank MB820006. Fig. 32.

Fig. 32.

Fig. 32

Neodidymelliopsis longicolla (CBS 382.96). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidia forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K. Conidiogenous cells and conidia. L. Conidia. Scale bars: G = 250 μm; H–I = 50 μm; J = 5 μm; K–L = 10 μm.

Etymology: Name refers to the elongated, long ostiolar necks.

Conidiomata pycnidial, solitary or aggregated, globose to flask-shaped, glabrous or with some hyphal outgrows, superficial or semi-immersed, ostiolate, 200–490 × 150–360 μm. Ostioles 1–3, developing into elongated necks, up to 250 μm tall, papillate. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 4–7 layers, outer 3–6-layers pigmented, 20–45 μm thick. Conidiogenous cells phialidic, hyaline, smooth, ampulliform, 4.5–6.5 × 4.5–6 μm. Conidia oblong to cylindrical, smooth- and thin-walled, initially aseptate and hyaline, later becoming 1-septated and pale brown, somewhat constricted at the septum, 12–15(–16.5) × 4–7 μm, guttulate. Conidial matrix brown.

Culture characteristics: Colonies on OA, 45–52 mm diam after 7 d, margin regular, aerial mycelia white and woolly, greenish olivaceous; reverse darker brown. Colonies on MEA 55–57 mm diam after 7 d, margin regular, covered by floccose, white aerial mycelia, black pycnidia visible; reverse brown, saffron near the margin. Colonies on PDA, 55–60 mm diam after 7 d, margin regular, densely covered by floccose aerial mycelia, grey, greenish olivaceous near the margin; reverse dark brown, pale brown near the margin. Application of NaOH results in a pale reddish brown discolouration on MEA.

Specimen examined: Israel, En Avdat, Negev desert, from soil in desert, Feb. 1996, A. van Iperen (holotype CBS H-23016, dried culture, ex-holotype living culture CBS 382.96).

Notes: CBS 382.96 was deposited as “Ascochyta scotinospora”, but differs from As. scotinospora by its larger pycnidia (200–490 × 150–360 μm vs. 140 μm diam) and forming elongated long necks (Punithalingam 1979). Phylogenetically, it clustered in the Neodidymelliopsis clade, basal to Neod. achlydis, Neod. polemonii and Neod. xanthina (Fig. 1). Hence, CBS 382.96 was described as a new species, Neod. longicolla. Neodidymelliopsis longicolla differs from Neod. achlydis in its septate conidia (mainly 1-septated vs. aseptate) and colour of its conidial matrix (brown vs. whitish cream); from Neod. polemonii in producing wider conidia (12–16.5 × 4–7 μm vs. 4.5–7.5 × 1.5–4 μm; Chen et al. 2015a); from Neod. xanthina in the number of pycnidial ostioles (1–3 vs. 1; Boerema et al. 2004).

Phoma Sacc. emend. Q. Chen & L. Cai, Stud. Mycol. 82: 194. 2015.

Phoma herbarum Westend., Bull. Acad. R. Sci. Belg., Cl. Sci. 19(3): 118. 1852, emend. Q. Chen & L. Cai, Stud. Mycol. 82: 195. 2015.

Synonyms: Phoma neerlandica Q. Chen & L. Cai, Stud. Mycol. 82: 197. 2015.

Atradidymella muscivora M.L. Davey & Currah, Amer. J. Bot. 96: 1283. 2009.

Phoma muscivora M.L. Davey & Currah, Amer. J. Bot. 96: 1283. 2009.

Phoma cruris-hominis Punith., Nova Hedwigia 31: 135. 1979.

Specimens examined: Canada, Alberta, Wolf Lake, from gametophytes of Polytrichum juniperinum, 2008, M.L. Davey, UAMH 10909 = CBS 127589. Switzerland, Kt. Graubünden, from Achillea millefolium, deposited in CBS Mar. 1951, E. Müller, CBS 304.51. The Netherlands, Emmeloord, from the stem of Rosa multiflora cv. Cathayensis, deposited in CBS Dec. 1975, G.H. Boerema, CBS 615.75 = PD 73/665 = IMI 199779; Emmeloord, from a leaf of Delphinium sp., deposited in CBS Feb. 1996, culture ex-holotype of “Phoma neerlandica” CBS 134.96 = PD 84/676; Naaldwijk, from a stem base of Nerium sp., deposited in CBS Sep. 1991, J. de Gruyter, CBS 502.91 = PD 82/276. UK, from a leg of woman, Apr. 1977, Y.M. Clayton, CBS 377.92 = IMI 213845; near Dumfries, from die-back of Picea excelsa, deposited in CBS Oct. 1937, T.R. Peace, CBS 274.37.

Notes: Phoma neerlandica was regarded distinct from P. herbarum based on its slightly longer and occasionally uniseptate conidia (Chen et al. 2015a). Similar to many other species in Didymellaceae, such an overlapping morphology often caused confusion with regards to species boundaries. Unfortunately, a sequencing error occurred in the tub2 sequence of CBS 134.96, which was not detected in the subsequent control and processing steps. Phoma neerlandica therefore became a name introduced with ambiguous data, and is therefore reduced to synonymy.

Stagonosporopsis Died. emend. Aveskamp et al., Stud. Mycol. 65: 44. 2010.

Stagonosporopsis bomiensis Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818955. Fig. 33.

Fig. 33.

Fig. 33

Stagonosporopsis bomiensis (CGMCC 3.18366). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G–H. Pycnidium forming on OA. I. Pycnidia. J. Section of pycnidium. K–N. Conidiogenous cells. O. Conidia. Scale bars: G–H = 40 μm; I–J = 20 μm; K–O = 5 μm.

Etymology: Epithet derived from its location of origin, Bomi in Tibet, China.

Leaf spots amphigenous, circular to irregular, 2–5 mm diam, scattered over the leaf, brown, surrounded by a greenish yellow border, single lesions may coalesce to form larger lesions till the whole leaf and getting dark brown (Fig. 7G). Conidiomata pycnidial, solitary, sometimes aggregated, globose to subglobose, pale brown, glabrous, superficial, ostiolate, 100–200 × 100–180 μm. Ostiole single, with an elongated neck, slightly papillate or non-papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 layers, 20–30 μm thick, outer wall 1–2-layers pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5–8 × 4.5–7 μm. Conidia ovoid to ellipsoidal, smooth- and thin-walled, hyaline, aseptate, 3.5–6.5 × 2–3.5 μm, with 1–2 distinct polar guttules. Conidial matrix buff.

Culture characteristics: Colonies on OA, 35–43 mm diam after 7 d, margin regular, covered by floccose aerial mycelia, dense, white to greyish olivaceous; reverse white to olivaceous. Colonies on MEA 45–47 mm diam after 7 d, margin irregular, olivaceous, with sparse white aerial mycelia near the centre; reverse concolourous. Colonies on PDA, 53–55 mm diam after 7 d, margin regular, aerial mycelia floccose, white to olivaceous, forming concentric rings; reverse olivaceous with pale green margin. NaOH test negative.

Specimens examined: China, Tibet, Bomi, leaves of Boraginaceae, 14 Jun. 2015, Q. Chen (holotype HMAS 247170, dried culture, ex-holotype living culture CGMCC 3.18366 = LC 8167); ibid. LC 8168.

Notes: Stagonosporopsis bomiensis is most closely related to S. papillata, another novel species collected from Tibet. However, S. bomiensis is distinguishable from S. papillata by having slightly shorter and wider conidia (3.5–6.5 × 2–3.5 μm vs. 3.5–9 × 1.5–3 μm), and based on its number of ostioles (1 vs. 2–3).

This is the first record of a Stagonosporopsis species on a member of the Boraginaceae.

Stagonosporopsis papillata Q. Chen, Crous & L. Cai, sp. nov. MycoBank MB818954. Fig. 34.

Fig. 34.

Fig. 34

Stagonosporopsis papillata (CGMCC 3.18367). A–B. Colony on OA (front and reverse). C–D. Colony on MEA (front and reverse). E–F. Colony on PDA (front and reverse). G. Pycnidium forming on OA. H. Pycnidium. I. Section of pycnidium. J. Section of pycnidial wall. K–M. Conidiogenous cells. N. Conidia. Scale bars: G = 100 μm; H = 40 μm; I–J = 10 μm; K–N = 5 μm.

Etymology: Name refers to its papillate pycnidia.

Leaf spots amphigenous, angular to irregular, 2–8 mm diam, reddish brown, indefinite border (Fig. 7K). Conidiomata pycnidial, solitary or aggregated, yellowish brown to brown, globose to subglobose or obpyriform, with hyphal outgrowths, semi-immersed in the agar, ostiolate, (130–)200–280 × (100–)150–250 μm. Ostioles 2–3, slightly papillate. Pycnidial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 layers, 10–15(–20) μm thick, outer wall 1–2-layers pigmented. Conidiogenous cells phialidic, hyaline, smooth, ampulliform to doliiform, 5–8.5 × 4–7.5 μm. Conidia ellipsoidal to oblong, incidentally slightly curved, smooth- and thin-walled, hyaline, aseptate, 3.5–6.5(–9) × 1.5–3 μm, with two large polar guttules. Conidial matrix buff.

Culture characteristics: Colonies on OA, 44–50 mm diam after 7 d, margin regular, covered by white, dense aerial mycelia, grey near the centre, with white margin; reverse olivaceous with white margin. Colonies on MEA 50–52 mm diam after 7 d, margin regular, dull green, aerial mycelia sparsely; reverse concolourous. Colonies on PDA, 55–57 mm diam after 7 d, margin regular, aerial mycelia covering the whole colony, white; reverse olivaceous with white margin. NaOH test negative.

Specimens examined: China, Tibet, Bomi, on leaves of Rumex nepalensis, 14 Jun. 2015, Q. Chen (holotype HMAS 247171, dried culture, ex-holotype living culture CGMCC 3.18367 = LC 8169); ibid. LC 8170; Bomi, on leaves of Boraginaceae, 14 Jun. 2015, Q. Chen, LC 8171.

Notes: Stagonosporopsis papillata is phylogenetically allied to S. bomiensis and S. dorenboschii (Fig. 1). Morphological differences between S. papillata and S. bomiensis are discussed under the latter species. Stagonosporopsis papillata could be differentiated from S. dorenboschii by producing slightly larger conidiogenous cells (5–8.5 × 4–7.5 μm vs. 4–6 × 3–6 μm) and conidia (3.5–9 × 1.5–3 μm vs. 3–5.5 × 1.5–2.5 μm; de Gruyter & Noordeloos 1992).

Discussion

The Didymellaceae has recently undergone extensive revision based on its phylogenetic relationships (Aveskamp et al., 2009a, Aveskamp et al., 2009b, Aveskamp et al., 2010, de Gruyter et al. 2009, Chen et al. 2015a). In this study, 32 new taxa and two new combinations are proposed in nine genera, mostly based on specimens collected from Asia.

The majority of members in Didymellaceae are plant associated fungi. So far, only a few species were reported from other substrates, such as Phoma herbarum, Didymella glomerata, D. pomorum from inorganic materials including asbestos, cement, paint, etc. (Aveskamp et al. 2008), D. eucalyptica from water, D. gardeniae from air, and Leptosphaerulina australis from soil (Aveskamp et al. 2010). In the present study, several new species, namely Allophoma oligotrophica, Didymella aeria, D. aquatica, D. chloroguttulata, D. ellipsoidea, D. suiyangensis were collected from substrates such as air, soil, water and limestone from caves in South-west China, a typical environment with relatively low temperature, low nutrition, high humidity, and absolute darkness (Zhang et al. 2017). All these species are oligotrophic fungi except D. aquatic. It is interesting that many of these new species present pale green to dull green polar guttules which are not often observed in other species, while few other recognizable morphological differences could be observed.

The 360 isolates belonging to 194 taxa investigated in this study represent a large collection of Didymellaceae, which occurred on 163 different host genera within 70 families. Our results indicated that Asteraceae, Fabaceae, Poaceae, Ranunculaceae, Rosaceae and Solanaceae were the six most common host families associated with Didymellaceae (Fig. 2). Based on currently available data, several genera exhibited a certain level of host-specificity, i.e. Ascochyta species show relatively high host specificity to Fabaceae, Neoascochyta to Poaceae and Neomicrosphaeropsis to Tamaricaceae. Heterophoma species appear somewhat specific to Scrophulariaceae, as well as Phomatodes to Brassicaceae. Other genera appear to have a rather broad range of host families. Among the five apparently host-specific genera listed above, Neoascochyta is located in the earliest divergent clade in Didymellaceae, followed by Phomatodes, Ascochyta, Neomicrosphaeropsis and Heterophoma. Surprisingly, this evolutionary direction is consistent with that of their respective host families, i.e. Poaceae as earliest, followed by Brassicaceae, Fabaceae, Tamaricaceae and Scrophulariaceae (Bremer et al. 2009). Our data suggest, therefore, a general trend of coevolution in the host-specific groups in Didymellaceae.

Nine new species belonging to Epicoccum and 10 in Didymella are proposed in this paper, which reflect the high diversity of species in these two genera. The most remarkable feature of Epicoccum species is the formation of the darkly pigmented multi-septate conidia (dictyochlamydospores) from sporodochia. Of the nine new taxa, four were only observed as typical Epicoccum conidia, while the pycnidial morphs proved to be absent. These four species could also produce yellowish pigments that diffuse into culture media. In addition, six of the new Epicoccum species showed positive reactions in the NaOH test, that detects the production of metabolite E. Epicoccum camelliae is likely an opportunistic pathogen that could asymptomatically colonise plants as a potential destructive invader, as we obtained two strains, one from a healthy leaf, and another from a diseased leaf. Among the 10 new species described in the sexual genus Didymella, D. sinensis was recorded as sexual morph in all the single ascospore isolates obtained from three different hosts, while the asexual morph was not observed, revealing the homothallic nature of this species.

In spite of the good performance on the resolution of genera and species in Didymellaceae using the combined four loci, LSU, ITS, rpb2 and tub2, there are still several taxa or species complexes that await further assessment, such as the Boeremia exigua varieties (Abeln et al., 2002, Aveskamp et al., 2009b) and the Epicoccum nigrum complex (Fávaro et al. 2011). Additional loci and more isolates are required for a future study to clarify their phylogenetic relationships as well as species boundaries.

Following the 17 genera accepted in Didymellaceae by Chen et al. (2015a), Briansuttonomyces (Crous and Groenewald 2016) and Neomicrosphaeropsis (Thambugala et al. 2017) were subsequently embedded in this family based on the multi-locus phylogenies, which were confirmed in this paper. However, the introduction of several other genera are in need of reassessment. The monotypic genus Heracleicola erected by Ariyawansa et al. (2015) is herewith reduced to synonymy with Ascochyta, according to our combined LSU and ITS sequences analysis (Supplementary Fig. S1). Another genus, Neodidymella, was established in the same paper without any sequence data provided, although a tree was presented which suggested a very close relationship to Boeremia (Ariyawansa et al. 2015). Wijayawardene et al. (2016) proposed another monotypic genus Didymellocamarosporium, typified with Didymelloc. tamaricis, for which only SSU and LSU sequences could be obtained from public sequence repositories. The tree presented in Wijayawardene et al. (2016) provided little information as most of the Didymellaceae members were ignored in their analysis. We conducted a phylogenetic analysis using LSU sequences (Supplementary Fig. S2) and Didymelloc. tamaricis was embedded within the genus Neomicrosphaeropsis that was established later in the same year (Thambugala et al. 2017). Morphologically, Didymellocamarosporium tamaricis produces large brown, muriformly septate conidia (13–21.5 × 7–9.5 μm), which is obviously different from Neomicrosphaeropsis species and other genera in Didymellaceae.

The genera Endocoryneum and Pseudohendersonia were established by Petrak (1922) and Crous & Palm (1999) respectively, with their familial placements undetermined. Recently two new species, Endocoryneum festucae and Pseudohendersonia galiorum were introduced and they were placed in Didymellaceae by Wijayawardene et al. (2016), in which however, only LSU sequences were provided. Our analysis on the basis of LSU sequences revealed that E. festucae belonged to Stagonosporopsis, and formed an unexpected very long terminal branch (Supplementary Fig. S2). The sequence of E. festucae (access number: KU848203) needs to be verified. The phylogenetic relationships of Pseudohendersonia galiorum can also not be clarified solely based on the LSU sequence provided in Wijayawardene et al. (2016). From the morphological aspect, E. festucae and P. galiorum both produce large brown conidia (30–37 × 9–12 μm, and 9–15 × 3.5–5.5 μm), with 3–4 transverse septa (Wijayawardene et al. 2016), obviously atypical for Didymellaceae. Due to the lack of sequences and the morphological divergence, their taxonomic placement remains unresolved, and these genera can thus not be accepted in Didymellaceae.

Our study, together with that of Aveskamp et al. (2010) and Chen et al. (2015a), have set the foundation for the systematics and taxonomy of Didymellaceae. Most of the genera included in this family have been well circumscribed, and useful molecular loci have been identified for species delimitation. The present study adds further indication that a large number of unknown Didymellaceae species exist in nature, especially from previously ignored ecosystems.

Acknowledgements

This study was financially supported by the Project for Fundamental Research on Science and Technology, MOST (2014FY120100) and NSFC 31600023. Jiang-Rui Jiang, Zhi-Feng Zhang, Nan Zhou and Fang Liu are thanked for help with sample collection, as well as providing cultures. Roger G. Shivas and Bevan S. Weir are acknowledged for providing fungal cultures. Da-Chuan Bao and Bing Liu are thanked for helping in identifying the various host plants. Xiao-Ling Zhang is thanked for helping with the statistical analysis. Ling-Wei Hou acknowledges CAS GJHZ1310 for supporting her visit to the Westerdijk Fungal Biodiversity Institute.

Footnotes

Peer review under responsibility of Westerdijk Fungal Biodiversity Institute.

Appendix A

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.simyco.2017.06.002.

Contributor Information

P.W. Crous, Email: p.crous@westerdijkinstitute.nl.

L. Cai, Email: cail@im.ac.cn.

Appendix A. Supplementary data

The following is the supplementary data related to this article:

Supplementary Fig. S1. Phylogenetic tree inferred from a Maximum likelihood analysis based on a concatenated alignment of LSU and ITS sequences of 363 strains. New taxa and new combinations introduced in this study are formatted in bold, of which the ex-type strains are marked by an asterisk (*). The tree was rooted to Leptosphaeria conoidea (CBS 616.75) and L. doliolum (CBS 505.75).

Supplementary Fig. S2. Phylogenetic tree inferred from a Maximum likelihood analysis based on LSU sequences of 365 strains. New taxa and new combinations introduced in this study are formatted in bold, of which the ex-type strains are marked by an asterisk (*). The tree was rooted to Leptosphaeria conoidea (CBS 616.75) and L. doliolum (CBS 505.75).

mmc1.zip (1.1MB, zip)

References

  1. Abeln E.C.A., Stax A.M., de Gruyter J. Genetic differentiation of Phoma exigua varieties by means of AFLP fingerprints. Mycological Research. 2002;106:419–427. [Google Scholar]
  2. Ariyawansa H.A., Hyde K.D., Jayasiri S.C. Fungal diversity notes 111–252–taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity. 2015;75:27–274. [Google Scholar]
  3. Aveskamp M.M., de Gruyter J., Crous P.W. Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity. 2008;31:1–18. [Google Scholar]
  4. Aveskamp M.M., de Gruyter J., Woudenberg J.H.C. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology. 2010;65:1–60. doi: 10.3114/sim.2010.65.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aveskamp M.M., Verkley G.J.M., de Gruyter J. DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia. 2009;101:363–382. doi: 10.3852/08-199. [DOI] [PubMed] [Google Scholar]
  6. Aveskamp M.M., Woudenberg J.H.C., de Gruyter J. Development of taxon-specific sequence characterized amplified region (SCAR) markers based on actin sequences and DNA amplification fingerprinting (DAF): a case study in the Phoma exigua species complex. Molecular Plant Pathology. 2009;10:403–414. doi: 10.1111/j.1364-3703.2009.00540.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berner D., Cavin C., Woudenberg J.H.C. Assessment of Boeremia exigua var. rhapontica, as a biological control agent of Russian knapweed (Rhaponticum repens) Biological Control. 2015;81:65–75. [Google Scholar]
  8. Boerema G.H. Contributions towards a monograph of Phoma (Coelomycetes) – II. Section Peyronellaea. Persoonia. 1993;15:197–221. [Google Scholar]
  9. Boerema G.H., de Gruyer J., Noordeloos M.E. CABI Publishing; Wallingford, UK.: 2004. Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. [Google Scholar]
  10. Bremer B., Bremer K., Chase M. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society. 2009;161:105–121. [Google Scholar]
  11. Cai L., Hyde K.D., Taylor P.W.J. A polyphasic approach for studying Colletotrichum. Fungal Diversity. 2009;39:183–204. [Google Scholar]
  12. Chen Q., Jiang J.R., Zhang G.Z. Resolving the Phoma enigma. Studies in Mycology. 2015;82:137–217. doi: 10.1016/j.simyco.2015.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chen Q., Zhang K., Zhang G.Z. A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China. Phytotaxa. 2015;197:267–281. [Google Scholar]
  14. Choi Y.W., Hyde K.D., Ho W.H. Single spore isolation of fungi. Fungal Diversity. 1999;3:29–38. [Google Scholar]
  15. Crous P.W., Gams W., Stalpers J.A. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology. 2004;50:19–22. [Google Scholar]
  16. Crous P.W., Groenewald J.Z. They seldom occur alone. Fungal Biology. 2016;120:1392–1415. doi: 10.1016/j.funbio.2016.05.009. [DOI] [PubMed] [Google Scholar]
  17. Crous P.W., Palm M.E. Systematics of selected foliicolous fungi associated with leaf spots of Proteaceae. Mycological Research. 1999;103:1299–1304. [Google Scholar]
  18. Crous P.W., Verkley G.J.M., Groenewald J.Z. Vol. 1. Westerdijk Fungal Biodiversity Institute; Utrecht, Netherlands: 2009. Fungal biodiversity. (CBS Laboratory Manual Series). [Google Scholar]
  19. Cubero O.F., Crespo A., Fatehi J. DNA extraction and PCR amplification method suitable for fresh, herbarium stored, lichenized, and other fungi. Plant Systematics and Evolution. 1999;216:243–249. [Google Scholar]
  20. De Gruyter J., Aveskamp M.M., Woudenberg J.H.C. Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycological Research. 2009;113:508–519. doi: 10.1016/j.mycres.2009.01.002. [DOI] [PubMed] [Google Scholar]
  21. De Gruyter J., Boerema G.H., van der Aa H.A. Contributions towards a monograph of Phoma (Coelomycetes) VI – 2. Section Phyllostictoides: Outline of its taxa. Persoonia. 2002;18:1–53. [Google Scholar]
  22. De Gruyter J., Noordeloos M.E. Contributions towards a monograph of Phoma (Coelomycetes) – I. 1. Section Phoma: taxa with very small conidia in vitro. Persoonia. 1992;15:71–92. [Google Scholar]
  23. De Gruyter J., Noordeloos M.E., Boerema G.H. Contributions towards a monograph of Phoma (Coelomycetes) – I. 2. Section Phoma: additional taxa with very small conidia and taxa with conidia up to 7 μm long. Persoonia. 1993;15:369–400. [Google Scholar]
  24. De Gruyter J., Noordeloos M.E., Boerema G.H. Contributions towards a monograph of Phoma (Coelomycetes) – I. 3. Section Phoma: taxa with conidia longer than 7 μm. Persoonia. 1998;16:471–490. [Google Scholar]
  25. De Hoog G.S., Gerrits van den Ende A.H.G. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses. 1998;41:183–189. doi: 10.1111/j.1439-0507.1998.tb00321.x. [DOI] [PubMed] [Google Scholar]
  26. Dearness J. New or noteworthy species of fungi. Mycologia. 1916;8:98–107. [Google Scholar]
  27. Fávaro L.C.dL, de Melo F.L., Aguilar-Vildoso C.I. Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLoS One. 2011;6:e14828. doi: 10.1371/journal.pone.0014828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Gomes R.R., Glienke C., Videira S.I.R. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia. 2013;31:1–41. doi: 10.3767/003158513X666844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Jiang J.R., Chen Q., Cai L. Polyphasic characterisation of three novel species of Paraboeremia. Mycological Progress. 2017;16:285–295. [Google Scholar]
  30. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013;30:772–780. doi: 10.1093/molbev/mst010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Liu Y.J., Whelen S., Hall B.D. Phylogenetic relationships among ascomycetes evidence from an RNA polymerase II subunit. Molecular Biology and Evolution. 1999;16:1799–1808. doi: 10.1093/oxfordjournals.molbev.a026092. [DOI] [PubMed] [Google Scholar]
  32. Lombard L., Houbraken J., Decock C. Generic hyper-diversity in Stachybotriaceae. Persoonia. 2016;36:156–246. doi: 10.3767/003158516X691582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Müller E. Kulturversuche mit Ascomyceten I. Sydowia. 1953;7:325–334. [Google Scholar]
  34. Nylander J.A.A. Evolutionary Biology Centre, Uppsala University; 2004. MrModeltest v2. Program distributed by the author. [Google Scholar]
  35. Petrak F. Mykologische Notizen. IV. Annales Mycologici. 1922;20:300–345. [Google Scholar]
  36. Punithalingam E. Graminicolous Ascochyta species. Mycological Papers. 1979;142:1–214. [Google Scholar]
  37. Punithalingam E., Tulloch M., Leach C.M. Phoma epicoccina sp. nov. on Dactylis glomerata. Transactions of the British Mycological Society. 1972;59:341–345. [Google Scholar]
  38. Rayner R.W. Commonwealth Mycological Institute and British Mycological Society; Kew, Surrey, UK: 1970. A mycological colour chart. [Google Scholar]
  39. Rehner S.A., Samuels G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research. 1994;98:625–634. [Google Scholar]
  40. Ronquist F., Teslenko M., van der Mark P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 2012;61:539–542. doi: 10.1093/sysbio/sys029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Saccardo P.A. Vol. 16. 1902. pp. 1–1291. (Sylloge Fungorum omnium hucusque cognitorum: Supplementum Universale, Pars V). Padova, Italy. [Google Scholar]
  42. Saccardo P.A., Trotter A. Vol. 22. 1913. pp. 1–1612. (Sylloge Fungorum omnium hucusque cognitorum: Supplementum Universale, Pars IX). Padova, Italy. [Google Scholar]
  43. Smith H., Wingfield M.J., Coutinho T.A. Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South African Journal of Botany. 1996;62:86–88. [Google Scholar]
  44. Stamatakis A., Alachiotis N. Time and memory efficient likelihood-based tree searched on phylogenomic alignments with missing data. Bioinformatics. 2010;26:i132–i139. doi: 10.1093/bioinformatics/btq205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sung G.-H., Sung J.-M., Hywel-Jones N.L. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution. 2007;44:1204–1223. doi: 10.1016/j.ympev.2007.03.011. [DOI] [PubMed] [Google Scholar]
  46. Tamura K., Stecher G., Peterson D. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolutionary. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Thambugala K.M., Daranagama D.A., Phillips A.J.L. Microfungi on Tamarix. Fungal Diversity. 2017;82:239–306. [Google Scholar]
  48. Van der Aa H.A., Boerema G.H., de Gruyer J. Contributions towards a monograph of Phoma (Coelomycetes) – VI-1. Section Phyllostictoides: characteristics and nomenclature of its type species Phoma exigua. Persoonia. 2000;17:435–456. [Google Scholar]
  49. Vilgalys R., Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology. 1990;172:4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wainwright M., Al-Talhi A. Selective isolation and oligotrophic growth of Candida on nutrient-free silica gel medium. Journal of Medical Microbiology. 1999;48 doi: 10.1099/00222615-48-12-1130. 1130–1130. [DOI] [PubMed] [Google Scholar]
  51. White T.J., Bruns T., Lee S. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: a guide to methods and applications. Academic Press; San Diego, California, USA: 1990. pp. 315–322. [Google Scholar]
  52. Wijayawardene N.N., Hyde K.D., Wanasinghe D.N. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity. 2016;77:1–316. [Google Scholar]
  53. Woudenberg J.H.C., Aveskamp M.M., de Gruyter J. Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia. 2009;22:56–62. doi: 10.3767/003158509X427808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zhang K., Su Y.Y., Cai L. An optimized protocol of single spore isolation for fungi. Cryptogamie, Mycologie. 2013;34:349–356. [Google Scholar]
  55. Zhang Z.F., Liu F., Zhou X. Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia. 2017;39:1–31. doi: 10.3767/persoonia.2017.39.01. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

mmc1.zip (1.1MB, zip)

Articles from Studies in Mycology are provided here courtesy of Westerdijk Fungal Biodiversity Institute

RESOURCES