Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1963 Mar;38(2):153–156. doi: 10.1104/pp.38.2.153

Observations on Enhancement & Inhibition by Light of Triphosphopyridine Nucleotide Photoreduction in Preparations of Laurencia obtusa (Hudson) Lam 1

S A Gordon 1,2
PMCID: PMC549896  PMID: 16655765

Full text

PDF
153

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARNON D. I., WHATLEY F. R., ALLEN M. B. Photosynthesis by isolated chloroplasts. VIII. Photosynthetic phosphorylation and the generation of assimilatory power. Biochim Biophys Acta. 1959 Mar;32(1):47–57. doi: 10.1016/0006-3002(59)90551-7. [DOI] [PubMed] [Google Scholar]
  2. BLACK C. C., TURNER J. F., GIBBS M., KROGMANN D. W., GORDON S. A. Studies on photosynthetic processes. II. Action spectra and quantum requirement for triphosphopyridine nucleotide reduction and the formation of adenosine triphosphate by spinach chloroplasts. J Biol Chem. 1962 Feb;237:580–583. [PubMed] [Google Scholar]
  3. Brown J. S., French C. S. Absorption Spectra and Relative Photostability of the Different Forms of Chlorophyll in Chlorella. Plant Physiol. 1959 May;34(3):305–309. doi: 10.1104/pp.34.3.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Emerson R., Chalmers R., Cederstrand C. SOME FACTORS INFLUENCING THE LONG-WAVE LIMIT OF PHOTOSYNTHESIS. Proc Natl Acad Sci U S A. 1957 Jan 15;43(1):133–143. doi: 10.1073/pnas.43.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GORDON S. A., SURREY K. Red and far-red action on oxidative phosphorylation. Radiat Res. 1960 Apr;12:325–339. [PubMed] [Google Scholar]
  6. GOVINDJEE R., RABINOWITCH E. Studies on the second Emerson effect in the Hill reaction in algal cells. Biophys J. 1961 May;1:377–388. doi: 10.1016/s0006-3495(61)86896-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MCLEOD G. C. Variation of enhancement of photosynthesis with conditions of algal growth. Science. 1961 Jan 20;133(3447):192–193. doi: 10.1126/science.133.3447.192. [DOI] [PubMed] [Google Scholar]
  8. MYERS J., FRENCH C. S. Evidences from action spectra for a specific participation of chlorophyll b in photosynthesis. J Gen Physiol. 1960 Mar;43:723–736. doi: 10.1085/jgp.43.4.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Myers J., French C. S. Relationships Between Time Course, Chromatic Transient, and Enhancement Phenomena of Photosynthesis. Plant Physiol. 1960 Nov;35(6):963–969. doi: 10.1104/pp.35.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rieske J. S., Lumry R., Spikes J. D. The Mechanism of the Photochemical Activity of Isolated Chloroplasts. III. Dependence of Velocity on Light Intensity. Plant Physiol. 1959 May;34(3):293–300. doi: 10.1104/pp.34.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SAN PIETRO A., HENDRICKS S. B., GIOVANELLI J., STOLZENBACH F. E. Action spectrum for triphosphopyridine nucleotide reduction by illuminated chloroplasts. Science. 1958 Oct 10;128(3328):845–845. doi: 10.1126/science.128.3328.845. [DOI] [PubMed] [Google Scholar]
  12. SHIBATA K., BENSON A. A., CALVIN M. The absorption spectra of suspensions of living micro-organisms. Biochim Biophys Acta. 1954 Dec;15(4):461–470. doi: 10.1016/0006-3002(54)90002-5. [DOI] [PubMed] [Google Scholar]
  13. Surrey K., Gordon S. A. Influence of Light on Phosphate Metabolism in Lettuce Seed: Spectral Response Red, Far-Red Interaction. Plant Physiol. 1962 May;37(3):327–332. doi: 10.1104/pp.37.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. TURNER J. F., BLACK C. C., GIBBS M. Studies on photosynthetic processes. I. The effect of light intensity on triphosphopyridine nucleotide reduction, adenosine triphosphate formation, and carbon dioxide assimilation in spinach chloroplasts. J Biol Chem. 1962 Feb;237:577–579. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES