Mitochondrial bioenergetics and body composition in HIV infected women on antiretroviral therapy – Blood-based bioenergetic profiling is a minimally invasive tool that can be utilized to examine mitochondrial alterations associated with HIV infection, its treatment, and its consequences
Circulating cells have been reported to exhibit mitochondrial alterations related to various health conditions. For example, changes in mitochondrial DNA content, enzyme activity, and electron transport chain activity, in multiple blood cell types, have been reported in HIV, diabetes, atherosclerosis, cardiovascular disease, Parkinson's, Alzheimer's, cancer, inflammation, cognition, Huntington's, sepsis, and fibromyalgia [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. In recent years, respirometric profiling of blood cells has emerged as a robust and innovative approach for assessing mitochondrial function in a minimally invasive manner. These methodologies have helped to significantly expand translational bioenergetics research, and have been successfully implemented in a variety of human studies [15], [16], [17], [18], [19], [20], [21].
The manuscript by Willig et. al. builds upon a growing body of work demonstrating the ability of blood cells to report on differences in mitochondrial function across a wide range of human conditions. While previous studies have focused on skeletal muscle mitochondrial bioenergetics, this is the first to demonstrate that blood-based measures of mitochondrial function are related to body composition in any context. These findings are also significant based on the changes body composition associated with HIV infection, disease progression, and antiretroviral therapy (ART) [22], [23], [24], [25]. Alterations in adiposity and lean mass are accompanied by systemic metabolic consequences, which may be associated with the bioenergetic capacity of circulating cells. The results of this study may also be generalizable beyond HIV infected individuals, and extend to other conditions that are accompanied by changes in body composition. In particular, changes in the ratio of lean mass to fat mass are evident in aging, weight cycling (loss/regain) and physical inactivity (i.e. bed rest/hospitalization) [26], [27], [28], [29], [30], [31], [32], [33], [34]. Such changes in body composition are likely related to worsening metabolic health and poor physical function.
The study by Willig et al. leads to new questions regarding the potential role of mitochondria in HIV infection, its treatment, and its consequences. The relationship between body composition and systemic bioenergetic capacity remains to be defined by future studies. For example, are the bioenergetic differences among HIV-infected women related to the direct mitotoxic effects of ART? Indeed, it has been reported that peripheral blood mononuclear cells from HIV-infected patients on ART exhibit reduced mitochondrial membrane potential [35]. Future studies can address whether changes in body composition occur in parallel with mitochondrial alterations in this patient population, or if there a causal relationship. A possible interpretation of the reported results may be that systemic bioenergetic capacity, as reported by blood-based bioenergetic profiling, is responding to changes in metabolic demand that occur as a result of alterations in body composition. A major implication of this work is that these questions, and numerous others, can be addressed by using the blood-based bioenergetic profiling approach being utilized by this research group and others. Such assays are minimally invasive and therefore amenable for use in longitudinal studies. Using these approaches, it is possible to track HIV infected individuals through the course of disease progression and the treatment with ART. This current study by Willig et al., and future research stemming from this work, may also have important clinical implications. The ability to track the mitotoxic effects of ART in individual patients can support the development of more optimized treatment strategies that are able to balance the treatment of HIV infection with potential side-effects related to systemic mitochondrial toxicity.
Footnotes
Featured Article: Amanda L. Willig, Philip A. Kramer, Balu K. Chacko, Victor M. Darley-Usmar, Sonya L. Heath, E. Turner Overton, Monocyte bioenergetic function is associated with body composition in virologically suppressed HIV-infected women, Redox Biology, 12, 2017, pp. 648–656.
References
- 1.Miro O., Lopez S., Martinez E., Pedrol E., Milinkovic A., Deig E., Garrabou G., Casademont J., Gatell J.M., Cardellach F. Mitochondrial effects of HIV infection on the peripheral blood mononuclear cells of HIV-infected patients who were never treated with antiretrovirals. Clin. Infect. Dis. 2004;39(5):710–716. doi: 10.1086/423176. (CID32922)(pii) [DOI] [PubMed] [Google Scholar]
- 2.Avila C., Huang R.J., Stevens M.V., Aponte A.M., Tripodi D., Kim K.Y., Sack M.N. Platelet mitochondrial dysfunction is evident in type 2 diabetes in association with modifications of mitochondrial anti-oxidant stress proteins. Exp. Clin. Endocrinol. Diabetes. 2012;120(4):248–251. doi: 10.1055/s-0031-1285833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Japiassu A.M., Santiago A.P., d'Avila J.C., Garcia-Souza L.F., Galina A., Castro Faria-Neto H.C., Bozza F.A., Oliveira M.F. Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5'-triphosphate synthase activity. Crit. Care Med. 2011;39(5):1056–1063. doi: 10.1097/CCM.0b013e31820eda5c. [DOI] [PubMed] [Google Scholar]
- 4.Hartman M.L., Shirihai O.S., Holbrook M., Xu G., Kocherla M., Shah A., Fetterman J.L., Kluge M.A., Frame A.A., Hamburg N.M., Vita J.A. Relation of mitochondrial oxygen consumption in peripheral blood mononuclear cells to vascular function in type 2 diabetes mellitus. Vasc. Med. 2014;19(1):67–74. doi: 10.1177/1358863X14521315. (19/1/67 [pii]) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Widlansky M.E., Wang J., Shenouda S.M., Hagen T.M., Smith A.R., Kizhakekuttu T.J., Kluge M.A., Weihrauch D., Gutterman D.D., Vita J.A. Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes. Transl. Res. 2010;156(1):15–25. doi: 10.1016/j.trsl.2010.04.001. (S1931-5244(10)00075-7 (pii)) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Shi C., Guo K., Yew D.T., Yao Z., Forster E.L., Wang H., Xu J. Effects of ageing and Alzheimer's disease on mitochondrial function of human platelets. Exp. Gerontol. 2008;43(6):589–594. doi: 10.1016/j.exger.2008.02.004. (S0531-5565(08)00062-4 (pii)) [DOI] [PubMed] [Google Scholar]
- 7.Cordero M.D., de M.M., Moreno Fernandez A.M., Carmona Lopez I.M., Garrido M.J., Cotan D., Gomez I.L., Bonal P., Campa F., Bullon P., Navas P., Sanchez Alcazar J.A. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Res. Ther. 2010;12(1):R17. doi: 10.1186/ar2918. (ar2918 (pii)) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Rao M., Li L., Demello C., Guo D., Jaber B.L., Pereira B.J., Balakrishnan V.S. Mitochondrial DNA injury and mortality in hemodialysis patients. J. Am. Soc. Nephrol. 2009;20(1):189–196. doi: 10.1681/ASN.2007091031. (ASN.2007091031 (pii)) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Miro O., Lopez S., Pedrol E., Rodriguez-Santiago B., Martinez E., Soler A., Milinkovic A., Casademont J., Nunes V., Gatell J.M., Cardellach F. Mitochondrial DNA depletion and respiratory chain enzyme deficiencies are present in peripheral blood mononuclear cells of HIV-infected patients with HAART-related lipodystrophy. Antivir. Ther. 2003;8(4):333–338. [PubMed] [Google Scholar]
- 10.Thyagarajan B., Wang R., Nelson H., Barcelo H., Koh W.P., Yuan J.M. Mitochondrial DNA copy number is associated with breast cancer risk. PLoS One. 2013;8(6):e65968. doi: 10.1371/journal.pone.0065968. (PONE-D-13-03390 (pii)) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Xia P., An H.X., Dang C.X., Radpour R., Kohler C., Fokas E., Engenhart-Cabillic R., Holzgreve W., Zhong X.Y. Decreased mitochondrial DNA content in blood samples of patients with stage I breast cancer. BMC Cancer. 2009;9:454. doi: 10.1186/1471-2407-9-454. (1471-2407-9-454 (pii)) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Krige D., Carroll M.T., Cooper J.M., Marsden C.D., Schapira A.H. Platelet mitochondrial function in Parkinson's disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann. Neurol. 1992;32(6):782–788. doi: 10.1002/ana.410320612. [DOI] [PubMed] [Google Scholar]
- 13.Chen C.M., Wu Y.R., Cheng M.L., Liu J.L., Lee Y.M., Lee P.W., Soong B.W., Chiu D.T. Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington's disease patients. Biochem. Biophys. Res. Commun. 2007;359(2):335–340. doi: 10.1016/j.bbrc.2007.05.093. (S0006-291X(07)01059-5 (pii)) [DOI] [PubMed] [Google Scholar]
- 14.Schapira A.H., Gu M., Taanman J.W., Tabrizi S.J., Seaton T., Cleeter M., Cooper J.M. Mitochondria in the etiology and pathogenesis of Parkinson's disease. Ann. Neurol. 1998;44(3 Suppl 1):S89–S98. doi: 10.1002/ana.410440714. [DOI] [PubMed] [Google Scholar]
- 15.Tyrrell D.J., Bharadwaj M.S., Van Horn C.G., Marsh A.P., Nicklas B.J., Molina A.J. Blood-cell bioenergetics are associated with physical function and inflammation in overweight/obese older adults. Exp. Gerontol. 2015;70:84–91. doi: 10.1016/j.exger.2015.07.015. (S0531-5565(15)30022-X (pii)) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Tyrrell D.J., Bharadwaj M.S., Van Horn C.G., Kritchevsky S.B., Nicklas B.J., Molina A.J. Respirometric profiling of muscle mitochondria and blood cells are associated with differences in gait speed among community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2014 doi: 10.1093/gerona/glu096. (glu096 (pii)) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Kramer P.A., Chacko B.K., George D.J., Zhi D., Wei C.C., Dell'Italia L.J., Melby S.J., George J.F., Darley-Usmar V.M. Decreased Bioenergetic Health Index in monocytes isolated from the pericardial fluid and blood of post-operative cardiac surgery patients. Biosci. Rep. 2015;35(4) doi: 10.1042/BSR20150161. (BSR20150161 (pii)) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Kramer P.A., Ravi S., Chacko B., Johnson M.S., Darley-Usmar V.M. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol. 2014;2:206–210. doi: 10.1016/j.redox.2013.12.026. (S2213-2317(14)00009-3 (pii)) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Fisar Z., Hroudova J., Hansikova H., Spacilova J., Lelkova P., Wenchich L., Jirak R., Zverova M., Zeman J., Martasek P., Raboch J. Mitochondrial respiration in the platelets of patients with Alzheimer's disease. Curr. Alzheimer Res. 2016;13(8):930–941. doi: 10.2174/1567205013666160314150856. (CAR-EPUB-74360 (pii)) [DOI] [PubMed] [Google Scholar]
- 20.Zharikov S., Shiva S. Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem. Soc. Trans. 2013;41(1):118–123. doi: 10.1042/BST20120327. (BST20120327 (pii)) [DOI] [PubMed] [Google Scholar]
- 21.Ravi S., Mitchell T., Kramer P., Chacko B., Darley-Usmar V.M. Mitochondria in monocytes and macrophages-implications for translational and basic research. Int. J. Biochem. Cell Biol. 2014 doi: 10.1016/j.biocel.2014.05.019. (S1357-2725(14)00177-0 (pii)) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Schambelan M., Benson C.A., Carr A., Currier J.S., Dube M.P., Gerber J.G., Grinspoon S.K., Grunfeld C., Kotler D.P., Mulligan K., Powderly W.G., Saag M.S., International AS-USA Management of metabolic complications associated with antiretroviral therapy for HIV-1 infection: recommendations of an International AIDS Society-USA panel. J. Acquir. Immune Defic. Syndr. 2002;31(3):257–275. doi: 10.1097/00126334-200211010-00001. (PubMed PMID: 12439201) [DOI] [PubMed] [Google Scholar]
- 23.Stanley T.L., Grinspoon S.K. Body composition and metabolic changes in HIV-infected patients. J. Infect. Dis. 2012;205(Suppl 3):S383–S390. doi: 10.1093/infdis/jis205. (PubMed PMID: 22577212; PMCID: PMC3349298) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Nduka C.U., Uthman O.A., Kimani P.K., Stranges S. Body fat changes in people living with HIV on antiretroviral therapy. AIDS Rev. 2016;18(4):198–211. (PubMed PMID: 27438580) [PubMed] [Google Scholar]
- 25.White A.J. Mitochondrial toxicity and HIV therapy. Sex. Transm. Infect. 2001;77(3):158–173. doi: 10.1136/sti.77.3.158. (PubMed PMID: 11402222; PMCID: PMC1744319) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.A. Coin, G. Sergi, E.M. Inelmen, G. Enzi, Pathophysiology of body composition changes in elderly people, Cachexia and Wasting: A Modern Approach, Springer, 2006, pp. 369–375.
- 27.Kuk J.L., Saunders T.J., Davidson L.E., Ross R. Age-related changes in total and regional fat distribution. Ageing Res. Rev. 2009;8(4):339–348. doi: 10.1016/j.arr.2009.06.001. (S1568-1637(09)00041-5 (pii)) [DOI] [PubMed] [Google Scholar]
- 28.Nair K.S. Aging muscle. Am. J. Clin. Nutr. 2005;81(5):953–963. doi: 10.1093/ajcn/81.5.953. (81/5/953 (pii)) [DOI] [PubMed] [Google Scholar]
- 29.Jensen G.L. Obesity and functional decline: epidemiology and geriatric consequences. Clin. Geriatr. Med. 2005;21(4):677–687. doi: 10.1016/j.cger.2005.06.007. (S0749-0690(05)00050-9 (pii)) [DOI] [PubMed] [Google Scholar]
- 30.St-Onge M.P. Relationship between body composition changes and changes in physical function and metabolic risk factors in aging. Curr. Opin. Clin. Nutr. Metab. Care. 2005;8(5):523–528. (00075197-200509000-00005 (pii)) [PubMed] [Google Scholar]
- 31.Lee J.S., Visser M., Tylasvky F., Kritchevsky S.B., Schwartz A., Sahyoun N., Harris T., Newman A.B. Weight cycling and changes in body composition in community-dwelling older adults. FASEB J. 2007;21(5):A154–A155. [Google Scholar]
- 32.Van Ancum J.M., Scheerman K., Jonkman N.H., Smeenk H.E., Kruizinga R.C., Meskers C.G.M., Maier A.B. Change in muscle strength and muscle mass in older hospitalized patients: a systematic review and meta-analysis. Exp. Gerontol. 2017;92:34–41. doi: 10.1016/j.exger.2017.03.006. (PubMed PMID: 28286250) [DOI] [PubMed] [Google Scholar]
- 33.Coker R.H., Hays N.P., Williams R.H., Xu L., Wolfe R.R., Evans W.J. Bed rest worsens impairments in fat and glucose metabolism in older, overweight adults. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69(3):363–370. doi: 10.1093/gerona/glt100. (PubMed PMID: 23902932; PMCID: PMC3976140) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Arentson-Lantz E.J., English K.L., Paddon-Jones D., Fry C.S. Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. J. Appl. Physiol. (1985) 2016;120(8):965–975. doi: 10.1152/japplphysiol.00799.2015. (PubMed PMID: 26796754; PMCID: PMC4835912) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Sternfeld T., Schmid M., Tischleder A., Mudra S., Schlamp A., Kost B.P., Gruber R., Youle M., Bogner J.R., Goebel F.D. The influence of HIV infection and antiretroviral therapy on the mitochondrial membrane potential of peripheral mononuclear cells. Antivir. Ther. 2007;12(5):769–778. (PubMed PMID: 17713160) [PubMed] [Google Scholar]