Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jun 2;73(Pt 7):932–935. doi: 10.1107/S2056989017007812

Crystal structure of {N-[(6-bromo­pyridin-2-yl)(phen­yl)methyl­idene]-2,6-di­methyl­aniline-κ2 N,N′}di­chlorido­zinc di­chloro­methane hemisolvate

Bradley M Wile a,*
PMCID: PMC5499262  PMID: 28775854

The title compound consists of a bidentate α-imino­pyridine ligand and two Cl atoms bound to a zinc(II) cation. Chelate bond lengths are consistent with an unreduced ligand bound to the d 10 zinc(II) cation.

Keywords: crystal structure, imino­pyridine, redox-active ligand, coordination compound, zinc(II), pyridyl halide

Abstract

The solvated title compound, [ZnCl2(C20H17BrN2)]·0.5CH2Cl2, comprises a bidentate imino­pyridine ligand and two Cl atoms bound to a zinc2+ cation in a distorted tetra­hedral arrangement. The chelate bond lengths are consistent with localized C=N double bonds and a C—C single bond, as expected for an unreduced ligand bound to a closed-shell transition metal cation. Apart from weak nonclassical C—H⋯Cl hydrogen bonds between the complex mol­ecules and the disordered solvent mol­ecules (occupancy = 0.5), no further significant inter­molecular inter­actions are observed.

Chemical context  

Redox-active ligands bearing an α-imino­pyridine core have received much attention in the literature (Bianchini et al., 2007; Lu et al., 2008). While most α-iminopyridine ligands reported to date feature a methyl imine ‘backbone’, a small number of variants featuring more electron-withdrawing phenyl backbones have been reported (Archer et al., 2006; Tondreau et al., 2013; Yang et al., 2010). Single-crystal X-ray diffraction studies have been a critical component in the elucidation of the electronic structure of base metal complexes featuring these redox-active ligands (Bart et al., 2006; Lu et al., 2008; Tondreau et al., 2013). A comparison of the Nimine—Cimine, Cimine—Cipso, and Cipso—Npyridine bond lengths for reduced and unreduced ligands as free bases or closed-shell complexes facilitate conclusions about redox non-innocence for such ligand sets. To this end, the preparation of the titular zinc(II) complex featuring the unreduced ligand was undertaken. Inclusion of a bromine functionality in the remaining ortho position of the pyridine ring allows for the introduction of an additional donor arm that differs from the imine fragment (Zhang & Lu, 2016; He et al., 2016).

Structural commentary  

The mol­ecular structure of the titular compound is shown in Fig. 1. In this complex, the Zn2+ cation adopts a distorted tetra­hedral arrangement (Table 1), being surrounded by two Cl atoms and two N atoms. The N atoms comprise the donor atoms for an α-imino­pyridine ligand, forming a five-membered ring when bound to the Zn2+ cation (Zn1—N2—C7—C8—N15). The Zn2+ cation lies 0.3855 (3) Å above the plane defined by the chelate (N2/C7/C8/N15), in a distorted tetra­hedral arrangement (τ4 parameter = 0.8999; Yang et al., 2007). Distortions to the geometry about the metal cation and the arrangement of the pyridine and phenyl rings [dihedral angle = 66.62 (13)°] may be attributed to the steric pressure exerted by the ligand substituents, and packing constraints within the unit cell.

Figure 1.

Figure 1

The mol­ecular stucture of 3-ZnCl2, with displacement ellipsoids shown at the 30% probability level and a partial numbering scheme. H atoms have been omitted for clarity. Cocrystallized CH2Cl2 solvent (disordered) is present in the ratio 3-ZnCl2·0.5CH2Cl2.

Table 1. Selected geometric parameters (Å, °).

Zn1—N2 2.088 (2) Zn1—Cl24 2.1761 (7)
Zn1—N15 2.0778 (19) Zn1—Cl25 2.2281 (7)
       
N2—Zn1—N15 79.01 (8) N2—Zn1—Cl25 100.92 (6)
N2—Zn1—Cl24 127.60 (6) N15—Zn1—Cl25 109.18 (6)
N15—Zn1—Cl24 114.61 (6) Cl24—Zn1—Cl25 118.50 (3)

Bond lengths and angles for the α-imino­pyridine fragment (N2/C7/C8/N15) of the ligand are consistent with the depiction as localized C=N double bonds, and as a C—C single bond. A comparison of the observed bond lengths with the average bond lengths for neutral and doubly-reduced α-imino­pyridine (α-IP; Lu et al., 2008) and pyridine di­imine (PDI; Bart et al., 2006) ligands is given in Table 2.graphic file with name e-73-00932-scheme1.jpg

Table 2. Comparison of Nimine—Cimine, Cimine—Cipso, and Cipso—Npyridine bond lengths (Å).

Compound Nimine—Cimine Cimine—Cipso Cipso—Npyridine
α-IPa 1.28 1.47 1.35
α-IP2− a 1.46 1.39 1.40
PDIb 1.271 (17) 1.480 (19) 1.345 (17)
PDI2− b,c 1.363 1.443 1.332
This work 1.283 (3) 1.500 (4) 1.361 (5)

Notes: (a) survey of Lu et al. (2008); (b) Bart et al. (2006); (c) bond lengths confirmed using ab initio studies.

Supra­molecular features  

One half of a disordered mol­ecule of di­chloro­methane is present in the asymmetric unit, close to a center of inversion. While no hydrogen bonding is observed between the complex mol­ecules in this crystal, several short contacts (less than the sum of the van der Waals radii) are observed between neighbouring mol­ecules. Notably, neither dimerization nor stoichiometric binding of solvent to the metal cation is observed for this complex, in contrast to some base metal complexes of similar ligands (Dai et al., 2016; Song et al., 2011). However, a weak C—H⋯Cl inter­action binds the disordered solvent molecule to the complex (Table 3). Fig. 2 depicts the packing within the unit cell, as viewed along the a axis.

Table 3. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H41⋯Cl25i 0.95 2.75 3.666 (3) 162

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

Packing of 3-ZnCl2·0.5CH2Cl2, viewed along a.

Synthesis and crystallization  

The titular compound was prepared in good yield using the scheme described in Fig. 3. Experimental details are described below for each stage of the synthesis.

Figure 3.

Figure 3

Schematic representation of the preparation of ligand (3) and the corresponding zinc(II) complex (3-ZnCl2).

Preparation of (6-bromopyridin-2-yl)phenyl ketone, (2)  

Following the method of Kobayashi and co-workers (Ishikawa et al., 2005), to a solution of 2,6-di­bromo­pyridine (1, 10.0 g, 42.2 mmol) in diethyl ether (200 ml) at 195 K, was added n-BuLi (29 ml of a 1.6 M solution in diethyl ether, 46.4 mmol) dropwise over 5 min. The solution was stirred at 195 K for 1 h, after which benzo­nitrile (4.8 ml, 46.4 mmol) was added dropwise over 5 min. The resultant solution was allowed to warm to room temperature, at which point the yellow solution turned dark red. After 1 h, cold aqueous 3 M HCl (250 ml) was added to the solution causing the dark-red solution to turn yellow, and the organic phase was removed. To the aqueous layer, 3 M NaOH (250 ml) was added, and the mixture was extracted with diethyl ether (3 × 100 ml). The organic fractions were combined, dried over MgSO4, and concentrated under reduced pressure. The product (2) was recrystallized from ethanol, yielding a light-yellow crystalline solid (4.35 g, 16.6 mmol, 39%; m.p. 330–333 K).

Preparation of N-[(6-bromo­pyridin-2-yl)(phen­yl)methyl­idene]-2,6-di­methyl­aniline, (3)  

Following the method of Meneghetti et al. (1999), a round-bottomed flask containing 2 (3.00 g, 12.6 mmol), 2,6-di­methyl­aniline (3.15 ml, 25.2 mmol), ∼30 mg of p-toluene­sulfonic acid catalyst, and toluene (300 ml) were fitted with a Dean–Stark apparatus, and brought to reflux for 6 d. The mixture was washed with a saturated aqueous solution of NaHCO3, dried over MgSO4, and concentrated under reduced pressure. The resultant brown (crude) product was purified by column chromatography (silica 50–70 ml) with a 4:1 (v/v) hexa­nes–ethyl acetate mixture as eluant (R F = 0.62) to yield 3 as a bright-yellow solid (2.85 g, 8.4 mmol, 67%; m.p. 361–366 K).

Preparation of {N-[(6-bromo­pyridin-2-yl)(phen­yl)meth­yl­idene]-2,6-di­methyl­aniline-κ2 N,N′}dichloridozinc di­chloro­methane hemisolvate, (3-ZnCl2)  

Anhydrous zinc(II) chloride (0.068 g, 0.50 mmol) and 3 (0.237 g, 0.65 mmol) solids were added to a Schlenk flask fitted with a magnetic stirrer bar, and the flask was flushed with argon. Anhydrous tetra­hydro­furan (10 ml) was added to the flask, and the solution was allowed to stir for 16 h. The solvent and other volatiles were removed in vacuo, and the residue was rinsed with dry pentane to yield 3-ZnCl2 as a yellow solid (0.251 g, 0.50 mmol, >99%). Single crystals suitable for X-ray diffraction were obtained by diffusion of diethyl ether into a saturated solution of 3-ZnCl2 in CH2Cl2. 1H NMR (CDCl3, 400 MHz; see also supporting information) δ 8.01 (d, J = 8.0 Hz, 1H, aryl m-CH), 7.95 (t, J = 8.0 Hz, 1H, aryl p-CH), 7.60 (d, J = 7.6 Hz, 1H, aryl m-CH), 7.49 (t, J = 7.2 Hz, 1H, phenyl p-CH), 7.39 (t, J = 7.2 Hz, 2H, phenyl m-CH), 7.21 (d, J = 7.6 Hz, 2H, phenyl o-CH), 7.01–6.92 (m, 3H, pyridine CH), 5.30 (s, 0.5 × 2H, CH2Cl2), 2.30 (s, 6H, CH3). 13C{1H} NMR (CDCl3, 100 MHz, see also supporting information): δ 169.2 (C=N), 150.3 (aryl ipso-C), 144.5, 142.4, 142.2 (aryl p-CH), 133.9 (aryl m-CH), 131.8 (phenyl p-CH), 130.4 (phenyl ipso-C), 128.9 (aryl o-C), 128.8 (phenyl m-CH), 128.6 (pyridine CH), 127.8 (phenyl o-CH), 127.0 (aryl m-CH and pyridine CH), 19.2 (CH3); m.p. 529–537 K. Analysis calculated (%) for C20.5H18N2BrCl3Zn: C 45.26, H 3.33, N 5.15; found: C 45.19, H 3.40, N 5.06.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms were placed in calculated positions, and their positions were initially refined using distance and angle restraints. A disordered mol­ecule of di­chloro­methane was located close to a center of inversion. All atoms from the solvent mol­ecule were refined with a fixed occupancy of 0.5, and SAME and SIMU restraints were employed.

Table 4. Experimental details.

Crystal data
Chemical formula [ZnCl2(C20H17BrN2)]·0.5CH2Cl2
M r 544.02
Crystal system, space group Monoclinic, P21/c
Temperature (K) 110
a, b, c (Å) 13.7338 (3), 11.25476 (16), 15.2274 (3)
β (°) 114.654 (3)
V3) 2139.14 (14)
Z 4.0
Radiation type Mo Kα
μ (mm−1) 3.40
Crystal size (mm) 0.55 × 0.40 × 0.32
 
Data collection
Diffractometer Oxford Diffraction Xcalibur (Ruby, Gemini ultra)
Absorption correction Analytical (CrysAlis PRO; Oxford Diffraction, 2007)
T min, T max 0.322, 0.457
No. of measured, independent and observed [I > 2.0σ(I)] reflections 23484, 5308, 4127
R int 0.036
(sin θ/λ)max−1) 0.689
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.031, 0.080, 0.97
No. of reflections 5308
No. of parameters 263
No. of restraints 58
H-atom treatment H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 1.67, −1.68

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017007812/wm5393sup1.cif

e-73-00932-sup1.cif (164.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007812/wm5393Isup2.hkl

e-73-00932-Isup2.hkl (332.6KB, hkl)

NMR spectrum. DOI: 10.1107/S2056989017007812/wm5393sup4.pdf

e-73-00932-sup4.pdf (278.3KB, pdf)

NMR spectrum. DOI: 10.1107/S2056989017007812/wm5393sup5.pdf

e-73-00932-sup5.pdf (401.7KB, pdf)

CCDC reference: 1552501

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Funding for this work was provided by the Getty College of Arts and Sciences at Ohio Northern University, and Hamilton College. Katherine Manning (Hamilton College) conducted initial experiments to prepare the ligand. Anthony Chianese (Colgate University) assisted with the data collection and refinement of the titular compound.

supplementary crystallographic information

Crystal data

[ZnCl2(C20H17BrN2)]0.5CH2Cl2 F(000) = 1084
Mr = 544.02 Dx = 1.689 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybc Cell parameters from 12051 reflections
a = 13.7338 (3) Å θ = 3.8–29.4°
b = 11.25476 (16) Å µ = 3.40 mm1
c = 15.2274 (3) Å T = 110 K
β = 114.654 (3)° Block, colourless
V = 2139.14 (14) Å3 0.55 × 0.40 × 0.32 mm
Z = 4.0

Data collection

Xcalibur, Ruby, Gemini ultra diffractometer 5308 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4127 reflections with I > 2.0σ(I)
Graphite monochromator Rint = 0.036
Detector resolution: 10.3533 pixels mm-1 θmax = 29.3°, θmin = 3.8°
ω scans h = −18→17
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2007) k = −14→14
Tmin = 0.322, Tmax = 0.457 l = −20→20
23484 measured reflections

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full H-atom parameters not refined
R[F2 > 2σ(F2)] = 0.031 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.0P] , where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.080 (Δ/σ)max = 0.021
S = 0.97 Δρmax = 1.67 e Å3
5308 reflections Δρmin = −1.68 e Å3
263 parameters Extinction correction: Larson (1970), Equation 22
58 restraints Extinction coefficient: 50 (10)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.24497 (2) 0.66355 (2) 0.19030 (2) 0.0137
N2 0.21816 (15) 0.59443 (17) 0.05484 (14) 0.0135
C3 0.20764 (19) 0.6512 (2) −0.02501 (18) 0.0160
C4 0.1773 (2) 0.5966 (2) −0.11413 (18) 0.0208
C5 0.1573 (2) 0.4766 (2) −0.11927 (18) 0.0212
C6 0.1680 (2) 0.4147 (2) −0.03669 (18) 0.0174
C7 0.19888 (18) 0.4754 (2) 0.04920 (17) 0.0131
C8 0.22025 (19) 0.4160 (2) 0.14363 (17) 0.0125
C9 0.20005 (19) 0.2860 (2) 0.14404 (17) 0.0142
C10 0.0955 (2) 0.2442 (2) 0.09284 (18) 0.0183
C11 0.0740 (2) 0.1235 (2) 0.09313 (19) 0.0213
C12 0.1553 (2) 0.0442 (2) 0.14188 (19) 0.0223
C13 0.2597 (2) 0.0854 (2) 0.19275 (19) 0.0209
C14 0.2819 (2) 0.2055 (2) 0.19430 (18) 0.0168
N15 0.25598 (15) 0.48235 (17) 0.21897 (14) 0.0123
C16 0.29039 (19) 0.4345 (2) 0.31477 (17) 0.0129
C17 0.2158 (2) 0.4167 (2) 0.35422 (17) 0.0149
C18 0.2548 (2) 0.3766 (2) 0.44935 (19) 0.0194
C19 0.3632 (2) 0.3522 (2) 0.50168 (18) 0.0224
C20 0.4345 (2) 0.3712 (2) 0.46047 (18) 0.0211
C21 0.40003 (19) 0.4153 (2) 0.36666 (17) 0.0161
C22 0.4773 (2) 0.4419 (2) 0.32364 (18) 0.0209
C23 0.0983 (2) 0.4407 (2) 0.2971 (2) 0.0217
Cl24 0.38192 (5) 0.76686 (6) 0.28643 (5) 0.0258
Cl25 0.08112 (5) 0.72624 (5) 0.16364 (5) 0.0192
Br26 0.23574 (2) 0.81580 (2) −0.013723 (19) 0.0209
C27 0.4520 (5) 0.0542 (4) 0.4947 (5) 0.0980 0.5000
Cl28 0.5144 (3) 0.0784 (2) 0.4268 (2) 0.1155 0.5000
Cl29 0.4668 (2) −0.0462 (2) 0.5761 (2) 0.0653 0.5000
H41 0.1690 0.6395 −0.1703 0.0212*
H51 0.1381 0.4360 −0.1755 0.0243*
H61 0.1547 0.3338 −0.0417 0.0201*
H141 0.3514 0.2333 0.2278 0.0201*
H131 0.3119 0.0332 0.2240 0.0264*
H121 0.1414 −0.0357 0.1418 0.0274*
H111 0.0035 0.0963 0.0592 0.0263*
H101 0.0408 0.2963 0.0596 0.0203*
H231 0.0610 0.4295 0.3361 0.0276*
H232 0.0836 0.5196 0.2717 0.0276*
H233 0.0684 0.3865 0.2432 0.0276*
H181 0.2047 0.3684 0.4760 0.0250*
H191 0.3882 0.3236 0.5652 0.0242*
H201 0.5076 0.3558 0.4952 0.0231*
H221 0.5491 0.4250 0.3692 0.0243*
H223 0.4709 0.5244 0.3045 0.0243*
H222 0.4612 0.3942 0.2662 0.0243*
H271 0.3807 0.0434 0.4461 0.0989* 0.5000
H272 0.4780 0.1254 0.5360 0.0989* 0.5000

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.01653 (16) 0.01006 (14) 0.01384 (15) −0.00110 (11) 0.00568 (12) −0.00071 (11)
N2 0.0140 (10) 0.0133 (10) 0.0141 (10) 0.0004 (8) 0.0066 (8) 0.0013 (8)
C3 0.0145 (12) 0.0143 (12) 0.0191 (13) 0.0003 (9) 0.0070 (10) 0.0031 (10)
C4 0.0238 (14) 0.0236 (13) 0.0143 (12) −0.0008 (11) 0.0073 (11) 0.0049 (11)
C5 0.0285 (15) 0.0218 (13) 0.0115 (12) −0.0015 (11) 0.0068 (11) −0.0007 (10)
C6 0.0186 (13) 0.0163 (12) 0.0171 (13) 0.0000 (10) 0.0072 (10) 0.0002 (10)
C7 0.0121 (12) 0.0133 (11) 0.0148 (12) 0.0011 (9) 0.0064 (9) 0.0008 (9)
C8 0.0106 (11) 0.0141 (11) 0.0135 (12) 0.0015 (9) 0.0057 (9) 0.0005 (9)
C9 0.0202 (13) 0.0126 (11) 0.0124 (12) −0.0012 (10) 0.0094 (10) −0.0013 (9)
C10 0.0218 (13) 0.0160 (12) 0.0185 (13) −0.0023 (10) 0.0097 (11) −0.0019 (10)
C11 0.0249 (14) 0.0207 (13) 0.0208 (14) −0.0071 (11) 0.0119 (11) −0.0047 (11)
C12 0.0410 (17) 0.0109 (12) 0.0219 (14) −0.0064 (11) 0.0201 (12) −0.0026 (10)
C13 0.0327 (16) 0.0158 (12) 0.0168 (13) 0.0062 (11) 0.0128 (12) 0.0029 (10)
C14 0.0201 (13) 0.0171 (12) 0.0130 (12) 0.0004 (10) 0.0067 (10) −0.0012 (10)
N15 0.0120 (10) 0.0132 (10) 0.0129 (10) 0.0007 (8) 0.0062 (8) 0.0010 (8)
C16 0.0194 (13) 0.0086 (11) 0.0115 (11) −0.0007 (9) 0.0072 (10) −0.0010 (9)
C17 0.0212 (13) 0.0094 (11) 0.0170 (12) −0.0026 (9) 0.0110 (10) −0.0027 (9)
C18 0.0293 (15) 0.0152 (12) 0.0206 (13) −0.0055 (11) 0.0171 (12) −0.0021 (11)
C19 0.0336 (16) 0.0184 (13) 0.0125 (12) −0.0038 (11) 0.0069 (11) 0.0030 (10)
C20 0.0205 (14) 0.0210 (13) 0.0163 (13) −0.0005 (11) 0.0023 (11) 0.0004 (11)
C21 0.0188 (13) 0.0144 (12) 0.0145 (12) −0.0023 (10) 0.0064 (10) −0.0024 (10)
C22 0.0164 (13) 0.0271 (14) 0.0187 (13) −0.0003 (11) 0.0069 (11) 0.0009 (11)
C23 0.0193 (14) 0.0225 (14) 0.0283 (15) −0.0021 (11) 0.0149 (11) 0.0013 (11)
Cl24 0.0251 (4) 0.0216 (3) 0.0236 (3) −0.0094 (3) 0.0032 (3) −0.0017 (3)
Cl25 0.0188 (3) 0.0157 (3) 0.0221 (3) 0.0015 (2) 0.0076 (3) −0.0023 (2)
Br26 0.02633 (16) 0.01324 (14) 0.02203 (15) −0.00216 (10) 0.00906 (12) 0.00460 (10)
C27 0.058 (3) 0.062 (3) 0.133 (3) 0.017 (2) 0.000 (2) −0.027 (3)
Cl28 0.065 (2) 0.0416 (13) 0.160 (3) 0.0215 (12) −0.0322 (17) −0.0336 (16)
Cl29 0.0343 (12) 0.0717 (18) 0.0902 (17) −0.0027 (12) 0.0261 (12) −0.0279 (14)

Geometric parameters (Å, º)

Zn1—N2 2.088 (2) C14—H141 0.929
Zn1—N15 2.0778 (19) N15—C16 1.438 (3)
Zn1—Cl24 2.1761 (7) C16—C17 1.401 (3)
Zn1—Cl25 2.2281 (7) C16—C21 1.395 (3)
N2—C3 1.327 (3) C17—C18 1.393 (3)
N2—C7 1.361 (3) C17—C23 1.504 (4)
C3—C4 1.386 (4) C18—C19 1.391 (4)
C3—Br26 1.885 (2) C18—H181 0.938
C4—C5 1.374 (4) C19—C20 1.382 (4)
C4—H41 0.947 C19—H191 0.939
C5—C6 1.391 (3) C20—C21 1.395 (3)
C5—H51 0.907 C20—H201 0.936
C6—C7 1.376 (3) C21—C22 1.492 (4)
C6—H61 0.926 C22—H221 0.959
C7—C8 1.500 (3) C22—H223 0.966
C8—C9 1.490 (3) C22—H222 0.970
C8—N15 1.283 (3) C23—H231 0.941
C9—C10 1.399 (4) C23—H232 0.956
C9—C14 1.397 (3) C23—H233 0.966
C10—C11 1.390 (4) C27—Cl29i 1.849 (2)
C10—H101 0.921 C27—Cl28i 1.846 (2)
C11—C12 1.380 (4) C27—C27i 1.753 (2)
C11—H111 0.938 C27—Cl28 1.618 (2)
C12—C13 1.394 (4) C27—Cl29 1.626 (2)
C12—H121 0.919 C27—H271 0.958
C13—C14 1.384 (3) C27—H272 0.989
C13—H131 0.894
N2—Zn1—N15 79.01 (8) C16—C17—C18 117.3 (2)
N2—Zn1—Cl24 127.60 (6) C16—C17—C23 121.8 (2)
N15—Zn1—Cl24 114.61 (6) C18—C17—C23 120.9 (2)
N2—Zn1—Cl25 100.92 (6) C17—C18—C19 121.0 (2)
N15—Zn1—Cl25 109.18 (6) C17—C18—H181 116.6
Cl24—Zn1—Cl25 118.50 (3) C19—C18—H181 122.3
Zn1—N2—C3 129.22 (17) C18—C19—C20 120.0 (2)
Zn1—N2—C7 112.23 (15) C18—C19—H191 120.2
C3—N2—C7 118.2 (2) C20—C19—H191 119.8
N2—C3—C4 123.8 (2) C19—C20—C21 121.2 (2)
N2—C3—Br26 116.74 (18) C19—C20—H201 120.7
C4—C3—Br26 119.45 (19) C21—C20—H201 118.1
C3—C4—C5 117.6 (2) C20—C21—C16 117.4 (2)
C3—C4—H41 122.2 C20—C21—C22 121.4 (2)
C5—C4—H41 120.2 C16—C21—C22 121.2 (2)
C4—C5—C6 119.8 (2) C21—C22—H221 110.4
C4—C5—H51 121.5 C21—C22—H223 109.5
C6—C5—H51 118.7 H221—C22—H223 110.2
C5—C6—C7 119.0 (2) C21—C22—H222 110.4
C5—C6—H61 118.4 H221—C22—H222 108.8
C7—C6—H61 122.6 H223—C22—H222 107.5
C6—C7—N2 121.5 (2) C17—C23—H231 110.3
C6—C7—C8 123.3 (2) C17—C23—H232 113.3
N2—C7—C8 115.0 (2) H231—C23—H232 107.6
C7—C8—C9 118.7 (2) C17—C23—H233 110.6
C7—C8—N15 116.5 (2) H231—C23—H233 107.6
C9—C8—N15 124.8 (2) H232—C23—H233 107.4
C8—C9—C10 118.5 (2) Cl29i—C27—Cl28i 106.86 (4)
C8—C9—C14 122.0 (2) Cl29i—C27—C27i 53.59 (5)
C10—C9—C14 119.4 (2) Cl28i—C27—C27i 53.36 (5)
C9—C10—C11 119.8 (2) Cl29i—C27—Cl28 13.11 (5)
C9—C10—H101 120.3 Cl28i—C27—Cl28 119.62 (4)
C11—C10—H101 119.9 C27i—C27—Cl28 66.26 (4)
C10—C11—C12 120.5 (2) Cl29i—C27—Cl29 119.83 (4)
C10—C11—H111 119.3 Cl28i—C27—Cl29 13.31 (5)
C12—C11—H111 120.2 C27i—C27—Cl29 66.24 (4)
C11—C12—C13 119.9 (2) Cl28—C27—Cl29 132.35 (5)
C11—C12—H121 120.7 Cl29i—C27—H271 102.3
C13—C12—H121 119.4 Cl28i—C27—H271 107.3
C12—C13—C14 120.1 (2) C27i—C27—H271 118.0
C12—C13—H131 119.2 Cl28—C27—H271 99.8
C14—C13—H131 120.7 Cl29—C27—H271 105.3
C9—C14—C13 120.2 (2) Cl29i—C27—H272 105.3
C9—C14—H141 119.3 Cl28i—C27—H272 108.5
C13—C14—H141 120.5 C27i—C27—H272 116.6
Zn1—N15—C8 114.62 (16) Cl28—C27—H272 97.1
Zn1—N15—C16 123.06 (15) Cl29—C27—H272 100.4
C8—N15—C16 122.0 (2) H271—C27—H272 125.2
N15—C16—C17 119.9 (2) C27i—Cl28—C27 60.38 (4)
N15—C16—C21 116.9 (2) C27i—Cl29—C27 60.17 (4)
C17—C16—C21 123.0 (2)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H41···Cl25ii 0.95 2.75 3.666 (3) 162

Symmetry code: (ii) x, −y+3/2, z−1/2.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Archer, A. M., Bouwkamp, M. W., Cortez, M.-P., Lobkovsky, E. & Chirik, P. J. (2006). Organometallics, 25, 4269–4278.
  3. Bart, S. C., Chłopek, K., Bill, E., Bouwkamp, M. W., Lobkovsky, E., Neese, F., Wieghardt, K. & Chirik, P. J. (2006). J. Am. Chem. Soc. 128, 13901–13912. [DOI] [PubMed]
  4. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  5. Bianchini, C., Gatteschi, D., Giambastiani, G., Rios, I. G., Ienco, A., Laschi, F., Mealli, C., Meli, A., Sorace, L., Toti, A. & Vizza, F. (2007). Organometallics, 26, 726–739.
  6. Dai, Q., Jia, X., Yang, F., Bai, C., Hu, Y. & Zhang, X. (2016). Polymers, 8, 12–26. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. He, F., Danopoulos, A. A. & Braunstein, P. (2016). Organometallics, 35, 198–206.
  9. Ishikawa, S., Hamada, T., Manabe, K. & Kobayashi, S. (2005). Synthesis, 13, 2176–2182.
  10. Lu, C. C., Bill, E., Weyhermüller, T., Bothe, E. & Wieghardt, K. (2008). J. Am. Chem. Soc. 130, 3181–3197. [DOI] [PubMed]
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. Meneghetti, S. P., Lutz, P. J. & Kress, J. (1999). Organometallics, 18, 2734–2737.
  13. Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  14. Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035.
  15. Tondreau, A. M., Stieber, S. C. E., Milsmann, C., Lobkovsky, E., Weyhermüller, T., Semproni, S. P. & Chirik, P. J. (2013). Inorg. Chem. 52, 635–646. [DOI] [PubMed]
  16. Yang, C.-H., Peng, Y.-L., Wang, M.-H., Shih, K.-C. & Hsueh, M.-L. (2010). Acta Cryst. E66, m633. [DOI] [PMC free article] [PubMed]
  17. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
  18. Zhang, H. & Lu, Z. (2016). ACS Catal. 6, 6596–6600.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017007812/wm5393sup1.cif

e-73-00932-sup1.cif (164.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007812/wm5393Isup2.hkl

e-73-00932-Isup2.hkl (332.6KB, hkl)

NMR spectrum. DOI: 10.1107/S2056989017007812/wm5393sup4.pdf

e-73-00932-sup4.pdf (278.3KB, pdf)

NMR spectrum. DOI: 10.1107/S2056989017007812/wm5393sup5.pdf

e-73-00932-sup5.pdf (401.7KB, pdf)

CCDC reference: 1552501

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES