Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jun 2;73(Pt 7):936–940. doi: 10.1107/S2056989017007952

Crystal structure of ({(1R,2R)-N,N′-bis­[(quino­lin-2-yl)methyl]cyclo­hexane-1,2-di­amine}­chlorido­iron(III))-μ-oxido-[tri­chlorido­ferrate(III)] chloro­form monosolvate

Hannah Swift a, Molly W Carrig a, Kayode D Oshin a,*, Anastasiya I Vinokur b, John A Desper c, Christopher J Levy c
PMCID: PMC5499263  PMID: 28775855

The bimetallic title compound contains an FeIII center coordinated by one chloride ligand, four N atoms and a bridging oxo ligand in a distorted octa­hedral geometry. The bridging oxo ligand is connected to a second FeIII atom with three coordinating chloride ligands.

Keywords: crystal structure, six-coordinate iron(III) complex, bridging oxido ligand, tetra­dentate ligand, chiral ligand

Abstract

The first FeIII atom in the solvated title compound, [Fe2Cl4O(C26H28N4)]·CHCl3, adopts a distorted six-coordinate octa­hedral geometry. It is coordinated by one chloride ligand, four N atoms from the (1R,2R)-N,N′-bis­[(quinolin-2-yl)methyl]cyclo­hexane-1,2-di­amine ligand, and a bridging oxido ligand attached to the second FeIII atom, which is also bonded to three chloride ions. A very weak intra­molecular N—H⋯Cl hydrogen bond occurs. In the crystal, the coordination complexes stack in columns, and a grouping of six such columns create channels, which are populated by disordered chloro­form solvent mol­ecules. Although the Fe—Cl bond lengths for the two metal atoms are comparable to the mean Fe—Cl bond lengths as derived from the Cambridge Structural Database, the Fe—O bond lengths are notably shorter. The solvent chloro­form mol­ecule exhibits ‘flip’ disorder of the C—H moiety in a 0.544 (3):0.456 (3) ratio. The only directional inter­action noted is a weak C—H⋯Cl hydrogen bond.

Chemical context  

Developing small-mol­ecule complexes incorporating iron is an area of growing inter­est since the discovery of non-heme iron enzymes such as methane monooxygenase and Rieske di­oxy­genases to be efficient catalysts in the selective oxidation of hydro­carbons under mild reaction conditions (Company et al., 2007). Studies show that highly active non-heme iron catalysts that facilitate efficient stereo-specific alkane hy­droxy­lation using H2O2 as oxidant can be synthesized by employing tetra­dentate N4-donor ligands such as N,N′-dimethyl-N,N′-bis­(2-pyridyl­meth­yl)ethane-1,2-di­amine (BPMEN) or tris(2-pyridyl­meth­yl)amine (TPMA) (Costas et al., 2000). These catalysts have provided key insights into possible mechanisms used by enzymes to oxidize alkanes in nature (Meunier et al., 2004). In addition to the application of four-coordinate iron complexes as catalysts in hy­droxy­lation reactions, studies also show that these complexes can be utilized in epoxidation reactions of terminal and electron-deficient alkenes (Dubois et al., 2003). Iron oxido-bridging complexes are reported to play an important role in oxygen transport (hemerythrin), phosphate ester hydrolysis (purple acid phosphates), or DNA synthesis (ribonucleotide reductase) (Dutta et al., 1996). These oxido complexes exhibit redox and magnetic properties making them excellent candidates for future investigations into the mechanisms behind important biological and chemical processes (Feig & Lippard, 1994). Given the significance and application of iron complexes made from tetra­dentate ligands, herein we report on the synthesis and crystal structure of the solvated title compound [Fe2(C26H28N4)(Cl)(μ-O)Fe(Cl)3]·CHCl3 (1), incorporating (1R,2R)-N,N′-bis­[(quino­lin-2-yl)methyl]cyclo­hexane-1,2-di­amine (Fig. 1).graphic file with name e-73-00936-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of complex (1), shown with 50% probability displacement ellipsoids. All H atoms and the minor-disorder components of the solvent mol­ecule have been omitted for clarity.

Structural commentary  

There is one coordination complex and one mol­ecule of chloro­form solvent in the asymmetric unit. The coordination complex features two Fe(III) metal cations. One of the metal cations, Fe1, assumes a distorted octa­hedral coordination (Table 1). The tetradentate ligand, (1R,2R)-N,N′-bis[(quino­lin-2-yl)methyl­]cyclo­hexane-1,2-di­amine, inter­acts with the FeIII cation in the equatorial plane through the four amine groups. A chloride ion and a bridging oxido ligand, which connects the two metal cations, complete the axial coordination. The distortions from the ideal octa­hedral geometry occur both in the equatorial and the axial positions. The equatorial angles vary widely from 74.96 (9)°, as in the case of the N1—Fe1—N2 angle, to 133.98 (9)° for the untethered N1—Fe1—N4 angle. The axial ligands exhibit a bent conformation with a Cl1—Fe1—O1 angle of 166.06 (7)°. In contrast, the second Fe metal cation, Fe2, exhibits a near ideal tetra­hedral coordination geometry composed of one O atom and three Cl atoms. As expected based on the difference in the saturation of the coordination sphere, the Fe—Cl and the Fe—O distances for Fe1 are longer than that for Fe2. The single Fe—Cl distance for Fe1 is 2.3560 (8) Å, whereas the average Fe2—Cl distance of 2.232 (9) Å is more than 0.1 Å shorter, a statistically significant variation. Similarly, the Fe—O distances for Fe1 and Fe2 are also statistically significantly different at 1.808 (2) Å and 1.756 (2) Å, respectively. The bond lengths in the title compound are comparable to the mean Fe—Cl distances from the CSD for Fe complexes in an octa­hedral coordination [2.33 (7) Å] and a tetra­hedral coordination [2.23 (3) Å]. In contrast, the Fe—O distances for both the octa­hedral and tetra­hedral configurations in the title compound are shorter than the mean distances from CSD [2.01 (9) and 1.87 (13) Å, respectively]. A very weak intra­molecular N3—H3⋯Cl4 hydrogen bond (Table 2) occurs. Finally, we observe that complex (1) is present only as the M (left-handed) conformer.

Table 1. Selected bond lengths (Å).

Fe1—O1 1.808 (2) Fe1—Cl1 2.3560 (8)
Fe1—N1 2.243 (2) Fe2—O1 1.756 (2)
Fe1—N2 2.172 (3) Fe2—Cl2 2.2194 (9)
Fe1—N3 2.159 (2) Fe2—Cl3 2.2331 (10)
Fe1—N4 2.223 (2) Fe2—Cl4 2.2432 (9)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cl4 0.80 (4) 2.60 (4) 3.378 (3) 167 (3)
C27A—H27A⋯Cl2i 1.00 2.41 3.30 (2) 149

Symmetry code: (i) Inline graphic.

Supra­molecular features  

The mol­ecules in the crystal structure are related by twofold screw axes running along the a-, b-, and c-axis directions. As there are no additional symmetry elements present, the resulting space group, P212121, is chiral. The absolute structure was unequivocally established, as evidenced by a Hooft y parameter of 0.003 (6), using anomalous dispersion. Apart from a weak C—H⋯Cl bond from the chloro­form mol­ecule to one of the chloride ions bonded to Fe2 (Table 2), the mol­ecules of the coordination complexes display minimal inter­atomic inter­actions. They assemble into columns that run parallel to the a axis. A circular arrangement of six columns of coord­ination complex mol­ecules creates a channel. The channel is filled with solvent chloro­form mol­ecules that exhibit extensive positional disorder. For two of the columns that frame the chloro­form channels, the oxido-trichloride groups of the coordination complexes point into the channels, while the other four columns face the void with the (1R,2R)-N,N′-bis­[(quin­olin-2-yl)methyl­]cyclo­hexane-1,2-di­amine lig­and. The packing is illustrated in Fig. 2.

Figure 2.

Figure 2

Packing diagram for complex (1), showing the columns of the coordination complex and the channels of disordered chloro­form solvent mol­ecules stacked along the a axis.

Database survey  

In our survey of the Cambridge Structural Database (Groom et al., 2016), we found five reported structures incorporating the (1R,2R)-N,N′-bis­[(quinolin-2-yl)methyl­]cyclo­hex­ane-1,2-di­amine ligand motif. Of the five, only one structure showed coordination to iron (Dengler et al., 2011). In that structure, the distorted octa­hedral coordination of the FeIII metal atom is completed by two chloride ligands in the axial positions. The two Fe—Cl distances are comparable (2.495 and 2.509 Å) and the Cl1—Fe—N angles show a narrow distribution from 92–94°, except for Cl1—Fe—N1, which is 84°.

Synthesis and crystallization  

Synthesis of (1 R ,2 R )- N,N ′-bis­[(quinolin-2-yl)methyl]cyclo­hexane-1,2-di­amine (R-QMC): In a 50 mL round-bottom flask (1R,2R)-1,2-cyclo­hexa­nedi­amine (0.20 g, 1.8 mmol) and 2-quinoline­carboxaldehyde (0.55 g, 3.6 mmol) were refluxed in ethanol (10 mL) for 3 h. A yellow precipitate formed that was isolated by filtration, washed twice with ethanol, and dried in vacuo producing the unreduced form of the ligand (QMC), (0.63 g, 89% yield). 1H NMR (CDCl3, 400 MHz): δ 1.24 (br, 2 H, CH), 1.56 (br, 2 H, CH), 1.97 (br, 2 H, CH), 3.62 (br, 2 H, CH), 7.48 (t, 1 H, J = 8.06 Hz, CH), 7.65 (t, 1 H, J = 8.06 Hz, CH), 7.74 (d, 1 H, J = 8.06 Hz, CH), 8.03 (d, 1 H, J = 8.56 Hz, CH), 8.06 (s, 1 H, CH), and 8.52 (s, 1 H, CH). The reduced form of the ligand (R-QMC, Fig. 3) was synthesized by reacting ligand QMC (0.50 g, 1.3 mmol) with sodium borohydride (0.06 g, 1.5 mmol) in methanol at room temperature for 12 h to produce R-QMC (0.42 g, 82% yield). 1H NMR (CDCl3, 400 MHz): δ 1.24 (br, 2 H, CH), 1.56 (br, 2 H, CH), 1.97 (br, 2 H, CH), 3.62 (br, 2 H, CH), 4.22 (dd, 2 H, J = 8.06 Hz, CH), 7.55 (t, 1 H, J = 8.06 Hz, CH), 7.61–7.73 (m, CH), 7.81 (d, 1 H, J = 8.56 Hz, CH), 8.06 (d, 1 H J = 8.06 Hz, CH), 8.08 (d, 1 H J = 8.06 Hz, CH).

Figure 3.

Figure 3

Synthetic scheme for complex (1).

Synthesis of ({(1R,2R)-N,N′-bis­[(quinolin-2-yl)methyl]cyclo­hexane-1,2-di­amine}­chlorido­iron(III))-μ-oxido-[tri­chlo­rido­ferrate(III)] chloro­form monosolvate R-QMC (0.25 g, 0.63 mmol) was dissolved in 50/50 mixture of di­chloro­methane and ethanol (20 mL) in a 50 mL round-bottom flask. Iron(II) chloride (0.08 g, 0.63 mmol) was added to the flask to give a brown-colored solution. The reaction was allowed to mix for 6 h under gentle heat producing a brown-colored precipitate. The precipitate was filtered and washed twice with cold solvent then dried under vacuum for 30 minutes producing a brown powder (0.19 g, 58%). Brown prisms of (1) suitable for X-ray analysis were obtained by slow solvent diffusion of diethyl ether into a concentrated complex solution made in chloro­form.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All hydrogen atoms, except for the amine hydrogen atom bonded to N3, were added at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. The amine hydrogen bonded to N3 was allowed to refine freely. In addition to the {[(1R,2R)-N,N′-bis­[(quinolin-2-yl)methyl]cyclo­hexane-1,2-di­amine]­chlorido­iron(III)}-μ-oxido-[tri­chlo­rido­ferrate(III)], there is one mol­ecule of chloro­form solvent in the asymmetric unit. The solvent mol­ecule exhibits extensive positional disorder over three positions. Initially, the disorder was modeled with chloro­form mol­ecule in an idealized geometry, where the 1,2 and the 1,3 bond lengths were constrained. As the refinement converged, the geometry constraints were lifted. The chlorine atoms Cl6 and Cl7 were modeled over two positions, with the major component contributing 54.4 (3)%. The carbon atom C27 required modeling over three positions with the major component contribution of 54.4 (3)% and the two minor components contributing 24.1 (4)% and 21.5 (4)%. The C–Cl distances for all of the disorder components were restrained to be similar. In addition, Cl6A–Cl7A and Cl7A–Cl5 were restrained to be similar. The absolute structure was unequivocally determined by anomalous dispersion.

Table 3. Experimental details.

Crystal data
Chemical formula [Fe2Cl4O(C26H28N4)]·CHCl3
M r 785.39
Crystal system, space group Orthorhombic, P212121
Temperature (K) 120
a, b, c (Å) 10.3489 (6), 14.3664 (8), 21.4619 (13)
V3) 3190.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.53
Crystal size (mm) 0.26 × 0.22 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.658, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 79886, 10537, 8808
R int 0.065
(sin θ/λ)max−1) 0.736
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.082, 1.05
No. of reflections 10537
No. of parameters 413
No. of restraints 37
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.52
Absolute structure parameter 0.000 (14)

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007952/hb7682sup1.cif

e-73-00936-sup1.cif (2.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007952/hb7682Isup2.hkl

e-73-00936-Isup2.hkl (836KB, hkl)

CCDC reference: 1552964

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Kansas State University for instrument support.

supplementary crystallographic information

Crystal data

[Fe2Cl4O(C26H28N4)]·CHCl3 Dx = 1.635 Mg m3
Mr = 785.39 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9981 reflections
a = 10.3489 (6) Å θ = 2.7–30.8°
b = 14.3664 (8) Å µ = 1.53 mm1
c = 21.4619 (13) Å T = 120 K
V = 3190.9 (3) Å3 Prism, brown
Z = 4 0.26 × 0.22 × 0.14 mm
F(000) = 1592

Data collection

Bruker APEXII CCD diffractometer 8808 reflections with I > 2σ(I)
φ and ω scans Rint = 0.065
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 31.6°, θmin = 2.4°
Tmin = 0.658, Tmax = 0.746 h = −14→15
79886 measured reflections k = −20→20
10537 independent reflections l = −30→31

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.5065P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.67 e Å3
10537 reflections Δρmin = −0.52 e Å3
413 parameters Absolute structure: Refined as an inversion twin
37 restraints Absolute structure parameter: 0.000 (14)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.24940 (4) 0.34973 (3) 0.86909 (2) 0.02294 (9)
Fe2 0.37047 (4) 0.32209 (3) 0.72075 (2) 0.02735 (10)
Cl1 0.15040 (7) 0.38505 (5) 0.96507 (4) 0.03021 (16)
Cl2 0.24573 (9) 0.28798 (6) 0.63979 (4) 0.04158 (19)
Cl3 0.54491 (9) 0.23071 (7) 0.72381 (7) 0.0617 (3)
Cl4 0.43247 (8) 0.47130 (5) 0.71335 (4) 0.03348 (16)
O1 0.28867 (19) 0.30834 (14) 0.79183 (10) 0.0295 (5)
N1 0.2138 (2) 0.19951 (16) 0.89191 (12) 0.0257 (5)
N2 0.4247 (2) 0.30306 (17) 0.91515 (12) 0.0276 (5)
H2 0.4088 0.3066 0.9611 0.033*
N3 0.3688 (2) 0.47300 (16) 0.86772 (13) 0.0244 (5)
H3 0.397 (3) 0.472 (2) 0.8331 (18) 0.029*
N4 0.1286 (2) 0.46258 (17) 0.82871 (12) 0.0259 (5)
C1 0.0979 (3) 0.1519 (2) 0.88928 (14) 0.0279 (6)
C2 −0.0189 (3) 0.2008 (2) 0.88477 (17) 0.0357 (7)
H2A −0.0188 0.2669 0.8860 0.043*
C3 −0.1336 (3) 0.1535 (3) 0.8786 (2) 0.0474 (9)
H3A −0.2119 0.1875 0.8746 0.057*
C4 −0.1369 (4) 0.0557 (3) 0.8781 (2) 0.0492 (10)
H4 −0.2167 0.0239 0.8733 0.059*
C5 −0.0246 (4) 0.0067 (2) 0.88457 (17) 0.0415 (9)
H5 −0.0269 −0.0594 0.8849 0.050*
C6 0.0945 (3) 0.0530 (2) 0.89077 (15) 0.0319 (7)
C7 0.2130 (4) 0.0055 (2) 0.89797 (15) 0.0339 (7)
H7 0.2143 −0.0606 0.8990 0.041*
C8 0.3249 (3) 0.0539 (2) 0.90334 (15) 0.0318 (7)
H8 0.4042 0.0221 0.9101 0.038*
C9 0.3225 (3) 0.1519 (2) 0.89887 (14) 0.0273 (6)
C10 0.4472 (3) 0.2049 (2) 0.89977 (17) 0.0320 (7)
H10A 0.5061 0.1770 0.9310 0.038*
H10B 0.4892 0.2004 0.8584 0.038*
C11 0.5348 (3) 0.3655 (2) 0.90109 (15) 0.0266 (6)
H11 0.5616 0.3551 0.8569 0.032*
C12 0.6531 (3) 0.3515 (2) 0.94307 (15) 0.0314 (6)
H12A 0.6286 0.3619 0.9871 0.038*
H12B 0.6848 0.2867 0.9390 0.038*
C13 0.7603 (3) 0.4192 (2) 0.92475 (16) 0.0367 (7)
H13A 0.7889 0.4058 0.8817 0.044*
H13B 0.8353 0.4106 0.9528 0.044*
C14 0.7134 (3) 0.5200 (3) 0.92877 (16) 0.0369 (8)
H14A 0.6956 0.5360 0.9728 0.044*
H14B 0.7822 0.5622 0.9135 0.044*
C15 0.5912 (3) 0.5347 (2) 0.89019 (16) 0.0316 (7)
H15A 0.5587 0.5988 0.8970 0.038*
H15B 0.6123 0.5281 0.8454 0.038*
C16 0.4860 (3) 0.4654 (2) 0.90736 (14) 0.0260 (6)
H16 0.4605 0.4762 0.9517 0.031*
C17 0.2910 (3) 0.5562 (2) 0.87921 (16) 0.0296 (6)
H17A 0.3375 0.6120 0.8641 0.036*
H17B 0.2756 0.5634 0.9245 0.036*
C18 0.1644 (3) 0.5469 (2) 0.84567 (15) 0.0288 (6)
C19 0.0884 (3) 0.6267 (2) 0.83377 (17) 0.0374 (8)
H19 0.1182 0.6866 0.8458 0.045*
C20 −0.0278 (4) 0.6169 (2) 0.80486 (17) 0.0390 (8)
H20 −0.0808 0.6699 0.7977 0.047*
C21 −0.0696 (3) 0.5276 (2) 0.78549 (15) 0.0327 (7)
C22 −0.1905 (3) 0.5116 (3) 0.75714 (16) 0.0400 (9)
H22 −0.2471 0.5624 0.7494 0.048*
C23 −0.2267 (3) 0.4237 (3) 0.74077 (16) 0.0420 (9)
H23 −0.3098 0.4132 0.7233 0.050*
C24 −0.1422 (3) 0.3490 (3) 0.74965 (16) 0.0398 (8)
H24 −0.1675 0.2883 0.7370 0.048*
C25 −0.0227 (3) 0.3622 (2) 0.77650 (16) 0.0327 (7)
H 0.0349 0.3112 0.7811 0.039*
C26 0.0136 (3) 0.4510 (2) 0.79695 (14) 0.0276 (6)
Cl5 0.04556 (12) 0.59674 (7) 1.00240 (6) 0.0613 (3)
Cl6 0.0633 (4) 0.79088 (18) 0.97904 (15) 0.0776 (11) 0.544 (3)
Cl6A −0.0063 (4) 0.7908 (4) 0.9720 (2) 0.0927 (17) 0.456 (3)
Cl7 −0.1718 (2) 0.71764 (14) 1.04018 (13) 0.0676 (7) 0.544 (3)
Cl7A −0.0951 (2) 0.70539 (15) 1.08266 (12) 0.0531 (7) 0.456 (3)
C27 −0.0048 (11) 0.7090 (7) 1.0301 (6) 0.046 (4) 0.544 (3)
H27 0.0360 0.7186 1.0718 0.055* 0.544 (3)
C27A 0.030 (2) 0.7114 (11) 1.0304 (9) 0.027 (5) 0.241 (4)
H27A 0.1111 0.7305 1.0522 0.032* 0.241 (4)
C27B −0.0529 (16) 0.6944 (8) 1.0038 (7) 0.042 (5) 0.215 (4)
H27B −0.1340 0.6761 0.9816 0.050* 0.215 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.02119 (17) 0.02163 (17) 0.0260 (2) 0.00049 (15) 0.00144 (18) 0.00237 (15)
Fe2 0.0243 (2) 0.0275 (2) 0.0302 (2) 0.00048 (16) 0.00332 (18) −0.00318 (17)
Cl1 0.0337 (4) 0.0278 (3) 0.0291 (4) 0.0003 (3) 0.0073 (3) 0.0025 (3)
Cl2 0.0377 (4) 0.0501 (5) 0.0369 (4) −0.0118 (4) −0.0030 (4) −0.0031 (3)
Cl3 0.0351 (4) 0.0454 (5) 0.1045 (9) 0.0137 (4) 0.0018 (5) −0.0252 (6)
Cl4 0.0340 (4) 0.0311 (3) 0.0354 (4) −0.0051 (3) 0.0032 (3) 0.0020 (3)
O1 0.0321 (11) 0.0242 (10) 0.0323 (12) 0.0011 (8) 0.0013 (9) 0.0037 (8)
N1 0.0286 (12) 0.0220 (11) 0.0265 (13) 0.0005 (9) 0.0003 (10) 0.0022 (9)
N2 0.0271 (12) 0.0298 (13) 0.0260 (13) −0.0001 (10) −0.0009 (10) 0.0025 (10)
N3 0.0245 (12) 0.0255 (11) 0.0231 (12) −0.0012 (9) 0.0020 (11) 0.0015 (10)
N4 0.0223 (12) 0.0284 (12) 0.0271 (13) 0.0042 (10) 0.0030 (10) 0.0029 (10)
C1 0.0326 (15) 0.0273 (14) 0.0237 (14) −0.0049 (11) 0.0017 (12) 0.0018 (11)
C2 0.0304 (16) 0.0346 (16) 0.042 (2) −0.0018 (12) 0.0051 (14) −0.0025 (14)
C3 0.0321 (17) 0.048 (2) 0.062 (3) −0.0058 (15) 0.0095 (17) −0.0116 (19)
C4 0.0396 (19) 0.048 (2) 0.060 (3) −0.0161 (16) 0.0080 (19) −0.0117 (18)
C5 0.056 (2) 0.0312 (16) 0.038 (2) −0.0146 (15) 0.0046 (17) −0.0048 (14)
C6 0.0449 (19) 0.0266 (14) 0.0242 (15) −0.0042 (12) 0.0031 (14) −0.0008 (12)
C7 0.054 (2) 0.0233 (14) 0.0246 (15) 0.0014 (13) 0.0005 (14) 0.0018 (12)
C8 0.0449 (19) 0.0279 (14) 0.0225 (15) 0.0067 (12) −0.0027 (13) 0.0009 (12)
C9 0.0332 (15) 0.0276 (13) 0.0210 (14) 0.0043 (12) −0.0020 (12) 0.0028 (11)
C10 0.0294 (15) 0.0298 (15) 0.0368 (18) 0.0054 (12) −0.0052 (14) 0.0021 (13)
C11 0.0205 (13) 0.0353 (15) 0.0240 (15) −0.0015 (11) −0.0002 (11) −0.0001 (12)
C12 0.0264 (14) 0.0416 (16) 0.0261 (15) 0.0003 (13) 0.0003 (12) −0.0006 (13)
C13 0.0272 (15) 0.054 (2) 0.0284 (16) −0.0016 (15) −0.0033 (14) 0.0001 (14)
C14 0.0324 (16) 0.053 (2) 0.0256 (16) −0.0133 (14) −0.0024 (13) −0.0007 (14)
C15 0.0283 (15) 0.0386 (16) 0.0277 (16) −0.0086 (12) 0.0020 (13) −0.0011 (13)
C16 0.0247 (14) 0.0310 (14) 0.0223 (15) −0.0041 (11) 0.0006 (11) 0.0011 (11)
C17 0.0318 (15) 0.0230 (13) 0.0339 (18) −0.0018 (11) 0.0038 (13) 0.0010 (12)
C18 0.0319 (15) 0.0270 (14) 0.0275 (16) 0.0040 (11) 0.0070 (13) 0.0058 (11)
C19 0.047 (2) 0.0276 (16) 0.0380 (19) 0.0091 (13) 0.0060 (16) 0.0046 (13)
C20 0.044 (2) 0.0367 (17) 0.0366 (19) 0.0175 (15) 0.0084 (15) 0.0111 (14)
C21 0.0302 (15) 0.0430 (17) 0.0250 (16) 0.0113 (13) 0.0077 (13) 0.0096 (14)
C22 0.0293 (16) 0.065 (2) 0.0262 (17) 0.0171 (16) 0.0047 (13) 0.0148 (16)
C23 0.0234 (17) 0.074 (3) 0.0284 (17) 0.0031 (15) −0.0004 (13) 0.0066 (17)
C24 0.0303 (16) 0.057 (2) 0.0321 (18) −0.0008 (16) 0.0002 (14) −0.0039 (15)
C25 0.0257 (14) 0.0415 (17) 0.0308 (17) 0.0046 (12) 0.0004 (13) −0.0028 (14)
C26 0.0237 (14) 0.0374 (15) 0.0216 (15) 0.0060 (11) 0.0036 (11) 0.0046 (12)
Cl5 0.0708 (7) 0.0439 (5) 0.0691 (7) −0.0069 (5) 0.0295 (6) 0.0027 (5)
Cl6 0.143 (3) 0.0404 (12) 0.0489 (14) −0.0417 (17) 0.011 (2) 0.0081 (10)
Cl6A 0.096 (3) 0.122 (3) 0.060 (2) 0.051 (3) 0.010 (2) 0.042 (2)
Cl7 0.0658 (13) 0.0416 (10) 0.0953 (19) 0.0037 (9) −0.0259 (13) −0.0139 (10)
Cl7A 0.0577 (14) 0.0441 (11) 0.0573 (15) −0.0032 (9) 0.0153 (11) −0.0198 (10)
C27 0.059 (9) 0.043 (5) 0.036 (6) −0.033 (5) −0.012 (5) 0.001 (4)
C27A 0.023 (9) 0.038 (10) 0.019 (9) −0.011 (6) −0.010 (6) 0.000 (7)
C27B 0.025 (8) 0.027 (8) 0.073 (15) −0.010 (6) −0.002 (8) −0.012 (8)

Geometric parameters (Å, º)

Fe1—O1 1.808 (2) C12—H12B 0.9900
Fe1—N1 2.243 (2) C12—C13 1.527 (5)
Fe1—N2 2.172 (3) C13—H13A 0.9900
Fe1—N3 2.159 (2) C13—H13B 0.9900
Fe1—N4 2.223 (2) C13—C14 1.530 (5)
Fe1—Cl1 2.3560 (8) C14—H14A 0.9900
Fe2—O1 1.756 (2) C14—H14B 0.9900
Fe2—Cl2 2.2194 (9) C14—C15 1.526 (4)
Fe2—Cl3 2.2331 (10) C15—H15A 0.9900
Fe2—Cl4 2.2432 (9) C15—H15B 0.9900
N1—C1 1.382 (4) C15—C16 1.521 (4)
N1—C9 1.324 (4) C16—H16 1.0000
N2—H2 1.0000 C17—H17A 0.9900
N2—C10 1.467 (4) C17—H17B 0.9900
N2—C11 1.481 (4) C17—C18 1.501 (4)
N3—H3 0.80 (4) C18—C19 1.414 (4)
N3—C16 1.486 (4) C19—H19 0.9500
N3—C17 1.462 (4) C19—C20 1.361 (5)
N4—C18 1.318 (4) C20—H20 0.9500
N4—C26 1.381 (4) C20—C21 1.417 (5)
C1—C2 1.401 (4) C21—C22 1.411 (5)
C1—C6 1.422 (4) C21—C26 1.418 (4)
C2—H2A 0.9500 C22—H22 0.9500
C2—C3 1.374 (5) C22—C23 1.363 (6)
C3—H3A 0.9500 C23—H23 0.9500
C3—C4 1.405 (5) C23—C24 1.398 (5)
C4—H4 0.9500 C24—H24 0.9500
C4—C5 1.366 (6) C24—C25 1.378 (5)
C5—H5 0.9500 C25—H 0.9500
C5—C6 1.407 (5) C25—C26 1.401 (5)
C6—C7 1.412 (5) Cl5—C27 1.796 (11)
C7—H7 0.9500 Cl5—C27A 1.761 (17)
C7—C8 1.355 (5) Cl5—C27B 1.733 (13)
C8—H8 0.9500 Cl6—C27 1.755 (10)
C8—C9 1.413 (4) Cl6A—C27A 1.735 (17)
C9—C10 1.498 (4) Cl6A—C27B 1.618 (12)
C10—H10A 0.9900 Cl7—C27 1.746 (11)
C10—H10B 0.9900 Cl7A—C27A 1.716 (17)
C11—H11 1.0000 Cl7A—C27B 1.755 (15)
C11—C12 1.534 (4) C27—H27 1.0000
C11—C16 1.527 (4) C27A—H27A 1.0000
C12—H12A 0.9900 C27B—H27B 1.0000
O1—Fe1—Cl1 166.06 (7) C13—C12—C11 110.2 (3)
O1—Fe1—N1 85.45 (9) C13—C12—H12A 109.6
O1—Fe1—N2 97.36 (10) C13—C12—H12B 109.6
O1—Fe1—N3 97.40 (10) C12—C13—H13A 109.4
O1—Fe1—N4 90.50 (9) C12—C13—H13B 109.4
N1—Fe1—Cl1 86.84 (7) C12—C13—C14 111.0 (3)
N2—Fe1—Cl1 91.81 (7) H13A—C13—H13B 108.0
N2—Fe1—N1 74.96 (9) C14—C13—H13A 109.4
N2—Fe1—N4 150.72 (10) C14—C13—H13B 109.4
N3—Fe1—Cl1 94.82 (7) C13—C14—H14A 109.4
N3—Fe1—N1 152.34 (9) C13—C14—H14B 109.4
N3—Fe1—N2 77.39 (9) H14A—C14—H14B 108.0
N3—Fe1—N4 73.64 (9) C15—C14—C13 111.3 (3)
N4—Fe1—Cl1 86.52 (7) C15—C14—H14A 109.4
N4—Fe1—N1 133.98 (9) C15—C14—H14B 109.4
Cl2—Fe2—Cl3 111.31 (4) C14—C15—H15A 109.3
Cl2—Fe2—Cl4 108.78 (4) C14—C15—H15B 109.3
Cl3—Fe2—Cl4 109.42 (4) H15A—C15—H15B 107.9
O1—Fe2—Cl2 112.02 (8) C16—C15—C14 111.8 (3)
O1—Fe2—Cl3 107.35 (8) C16—C15—H15A 109.3
O1—Fe2—Cl4 107.87 (7) C16—C15—H15B 109.3
Fe2—O1—Fe1 150.26 (13) N3—C16—C11 106.8 (2)
C1—N1—Fe1 127.54 (19) N3—C16—C15 113.4 (2)
C9—N1—Fe1 112.45 (19) N3—C16—H16 108.5
C9—N1—C1 119.1 (3) C11—C16—H16 108.5
Fe1—N2—H2 107.2 C15—C16—C11 111.0 (3)
C10—N2—Fe1 109.10 (19) C15—C16—H16 108.5
C10—N2—H2 107.2 N3—C17—H17A 109.9
C10—N2—C11 114.5 (2) N3—C17—H17B 109.9
C11—N2—Fe1 111.27 (18) N3—C17—C18 109.1 (2)
C11—N2—H2 107.2 H17A—C17—H17B 108.3
Fe1—N3—H3 102 (3) C18—C17—H17A 109.9
C16—N3—Fe1 113.52 (17) C18—C17—H17B 109.9
C16—N3—H3 104 (3) N4—C18—C17 117.4 (3)
C17—N3—Fe1 110.66 (17) N4—C18—C19 122.7 (3)
C17—N3—H3 112 (3) C19—C18—C17 120.0 (3)
C17—N3—C16 114.4 (2) C18—C19—H19 120.3
C18—N4—Fe1 113.9 (2) C20—C19—C18 119.3 (3)
C18—N4—C26 119.3 (3) C20—C19—H19 120.3
C26—N4—Fe1 126.1 (2) C19—C20—H20 120.1
N1—C1—C2 120.3 (3) C19—C20—C21 119.8 (3)
N1—C1—C6 121.0 (3) C21—C20—H20 120.1
C2—C1—C6 118.7 (3) C20—C21—C26 117.8 (3)
C1—C2—H2A 119.8 C22—C21—C20 123.0 (3)
C3—C2—C1 120.3 (3) C22—C21—C26 119.2 (3)
C3—C2—H2A 119.8 C21—C22—H22 119.8
C2—C3—H3A 119.5 C23—C22—C21 120.4 (3)
C2—C3—C4 121.0 (4) C23—C22—H22 119.8
C4—C3—H3A 119.5 C22—C23—H23 119.9
C3—C4—H4 120.2 C22—C23—C24 120.3 (3)
C5—C4—C3 119.6 (3) C24—C23—H23 119.9
C5—C4—H4 120.2 C23—C24—H24 119.6
C4—C5—H5 119.6 C25—C24—C23 120.9 (4)
C4—C5—C6 120.8 (3) C25—C24—H24 119.6
C6—C5—H5 119.6 C24—C25—H 120.1
C5—C6—C1 119.5 (3) C24—C25—C26 119.8 (3)
C5—C6—C7 122.9 (3) C26—C25—H 120.1
C7—C6—C1 117.7 (3) N4—C26—C21 121.0 (3)
C6—C7—H7 119.9 N4—C26—C25 119.7 (3)
C8—C7—C6 120.2 (3) C25—C26—C21 119.3 (3)
C8—C7—H7 119.9 C27B—Cl5—C27A 35.2 (10)
C7—C8—H8 120.3 C27B—Cl6A—C27A 36.6 (11)
C7—C8—C9 119.4 (3) C27A—Cl7A—C27B 35.5 (11)
C9—C8—H8 120.3 Cl5—C27—H27 107.3
N1—C9—C8 122.5 (3) Cl6—C27—Cl5 106.2 (6)
N1—C9—C10 118.1 (3) Cl6—C27—H27 107.3
C8—C9—C10 119.4 (3) Cl7—C27—Cl5 113.1 (7)
N2—C10—C9 110.7 (3) Cl7—C27—Cl6 115.3 (7)
N2—C10—H10A 109.5 Cl7—C27—H27 107.3
N2—C10—H10B 109.5 Cl5—C27A—H27A 109.9
C9—C10—H10A 109.5 Cl6A—C27A—Cl5 112.9 (11)
C9—C10—H10B 109.5 Cl6A—C27A—H27A 109.9
H10A—C10—H10B 108.1 Cl7A—C27A—Cl5 104.2 (9)
N2—C11—H11 108.4 Cl7A—C27A—Cl6A 110.0 (11)
N2—C11—C12 114.5 (2) Cl7A—C27A—H27A 109.9
N2—C11—C16 107.3 (2) Cl5—C27B—Cl7A 103.7 (8)
C12—C11—H11 108.4 Cl5—C27B—H27B 105.9
C16—C11—H11 108.4 Cl6A—C27B—Cl5 120.7 (8)
C16—C11—C12 109.6 (3) Cl6A—C27B—Cl7A 113.8 (8)
C11—C12—H12A 109.6 Cl6A—C27B—H27B 105.9
C11—C12—H12B 109.6 Cl7A—C27B—H27B 105.9
H12A—C12—H12B 108.1
Fe1—N1—C1—C2 −14.7 (4) C9—N1—C1—C2 177.1 (3)
Fe1—N1—C1—C6 165.0 (2) C9—N1—C1—C6 −3.2 (4)
Fe1—N1—C9—C8 −169.5 (2) C10—N2—C11—C12 −69.3 (4)
Fe1—N1—C9—C10 8.4 (3) C10—N2—C11—C16 168.8 (3)
Fe1—N2—C10—C9 −39.2 (3) C11—N2—C10—C9 −164.6 (3)
Fe1—N2—C11—C12 166.5 (2) C11—C12—C13—C14 57.7 (4)
Fe1—N2—C11—C16 44.6 (3) C12—C11—C16—N3 −177.7 (2)
Fe1—N3—C16—C11 37.6 (3) C12—C11—C16—C15 58.2 (3)
Fe1—N3—C16—C15 160.1 (2) C12—C13—C14—C15 −54.6 (4)
Fe1—N3—C17—C18 −39.6 (3) C13—C14—C15—C16 53.5 (4)
Fe1—N4—C18—C17 10.4 (3) C14—C15—C16—N3 −175.9 (3)
Fe1—N4—C18—C19 −169.2 (2) C14—C15—C16—C11 −55.7 (4)
Fe1—N4—C26—C21 165.7 (2) C16—N3—C17—C18 −169.4 (2)
Fe1—N4—C26—C25 −13.3 (4) C16—C11—C12—C13 −59.2 (3)
Cl1—Fe1—O1—Fe2 149.00 (17) C17—N3—C16—C11 165.9 (2)
Cl2—Fe2—O1—Fe1 −136.6 (2) C17—N3—C16—C15 −71.5 (3)
Cl3—Fe2—O1—Fe1 100.9 (2) C17—C18—C19—C20 −178.2 (3)
Cl4—Fe2—O1—Fe1 −16.9 (3) C18—N4—C26—C21 −3.6 (4)
N1—Fe1—O1—Fe2 −154.4 (3) C18—N4—C26—C25 177.4 (3)
N1—C1—C2—C3 176.3 (3) C18—C19—C20—C21 −1.8 (5)
N1—C1—C6—C5 −176.5 (3) C19—C20—C21—C22 177.8 (3)
N1—C1—C6—C7 2.9 (5) C19—C20—C21—C26 −0.4 (5)
N1—C9—C10—N2 20.6 (4) C20—C21—C22—C23 −178.5 (3)
N2—Fe1—O1—Fe2 −80.2 (3) C20—C21—C26—N4 3.2 (4)
N2—C11—C12—C13 −179.8 (3) C20—C21—C26—C25 −177.8 (3)
N2—C11—C16—N3 −52.8 (3) C21—C22—C23—C24 −2.6 (5)
N2—C11—C16—C15 −176.9 (2) C22—C21—C26—N4 −175.2 (3)
N3—Fe1—O1—Fe2 −2.1 (3) C22—C21—C26—C25 3.8 (4)
N3—C17—C18—N4 19.0 (4) C22—C23—C24—C25 1.8 (5)
N3—C17—C18—C19 −161.3 (3) C23—C24—C25—C26 1.9 (5)
N4—Fe1—O1—Fe2 71.5 (3) C24—C25—C26—N4 174.4 (3)
N4—C18—C19—C20 1.4 (5) C24—C25—C26—C21 −4.6 (5)
C1—N1—C9—C8 0.4 (5) C26—N4—C18—C17 −179.1 (3)
C1—N1—C9—C10 178.3 (3) C26—N4—C18—C19 1.3 (4)
C1—C2—C3—C4 1.5 (6) C26—C21—C22—C23 −0.2 (5)
C1—C6—C7—C8 0.2 (5) C27A—Cl5—C27B—Cl6A 64.6 (14)
C2—C1—C6—C5 3.2 (5) C27A—Cl5—C27B—Cl7A −64.3 (12)
C2—C1—C6—C7 −177.4 (3) C27A—Cl6A—C27B—Cl5 −62.5 (14)
C2—C3—C4—C5 0.8 (6) C27A—Cl6A—C27B—Cl7A 61.7 (12)
C3—C4—C5—C6 −1.0 (6) C27A—Cl7A—C27B—Cl5 66.9 (12)
C4—C5—C6—C1 −1.0 (5) C27A—Cl7A—C27B—Cl6A −66.1 (12)
C4—C5—C6—C7 179.6 (4) C27B—Cl5—C27A—Cl6A −51.8 (12)
C5—C6—C7—C8 179.6 (3) C27B—Cl5—C27A—Cl7A 67.5 (14)
C6—C1—C2—C3 −3.4 (5) C27B—Cl6A—C27A—Cl5 54.6 (12)
C6—C7—C8—C9 −2.8 (5) C27B—Cl6A—C27A—Cl7A −61.3 (14)
C7—C8—C9—N1 2.6 (5) C27B—Cl7A—C27A—Cl5 −65.1 (12)
C7—C8—C9—C10 −175.2 (3) C27B—Cl7A—C27A—Cl6A 56.1 (12)
C8—C9—C10—N2 −161.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···Cl4 0.80 (4) 2.60 (4) 3.378 (3) 167 (3)
C27A—H27A···Cl2i 1.00 2.41 3.30 (2) 149

Symmetry code: (i) −x+1/2, −y+1, z+1/2.

Funding Statement

This work was funded by Creighton University grant . Hamilton Company grant . Cambridge Isotope Laboratories, Inc. grant . National Science Foundation, Division of Chemistry grant CHE-0349258.

References

  1. Bruker (2016). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Company, A., Gómez, L., Güell, M., Ribas, X., Luis, J., Que, L. & Costas, M. (2007). J. Am. Chem. Soc. 129, 15766–15767. [DOI] [PubMed]
  3. Costas, M., Chen, K. & Que, L. (2000). Coord. Chem. Rev. 200–202, 517–544.
  4. Dengler, J. E., Lehenmeier, M. W., Klaus, S., Anderson, C. E., Herdtweck, E. & Rieger, B. (2011). Eur. J. Inorg. Chem. pp. 336–343.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Dubois, G., Murphy, A. & Stack, D. P. (2003). Org. Lett. 5, 2469–2472. [DOI] [PubMed]
  7. Dutta, S. K., Werner, R., Flörke, U., Mohanta, S., Nanda, K. K., Haase, W. & Nag, K. (1996). Inorg. Chem. 35, 2292–2300. [DOI] [PubMed]
  8. Feig, A. L. & Lippard, S. T. (1994). Chem. Rev. 94, 759–805.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Meunier, B., de Visser, S. P. & Shaik, S. (2004). Chem. Rev. 104, 3947–3980. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007952/hb7682sup1.cif

e-73-00936-sup1.cif (2.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007952/hb7682Isup2.hkl

e-73-00936-Isup2.hkl (836KB, hkl)

CCDC reference: 1552964

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES