Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jun 7;73(Pt 7):963–966. doi: 10.1107/S2056989017007745

Crystal structure of (5-{3-[(1,4,7,10,13-penta­oxa-16-aza­cyclo­octa­decan-16-yl)carbonyl­amino]­phen­yl}-10,15,20-tri­phenyl­porphyrinato)cobalt(II)

Qi Wu a, Mingrui He a, Jianfeng Li a,*
PMCID: PMC5499269  PMID: 28775861

In the title compound, the central CoII atom is coordinated by four pyrrole N atoms of the porphyrin core and one O atom of the crown ether. Intra­molecular N—H⋯O and inter­molecular C—H⋯π inter­actions are observed

Keywords: crystal structure, crown ether-porphyrin, cobalt(II), hydrogen bonding

Abstract

In the title compound, [Co(C57H52N6O6)], the central CoII atom is coordinated by four pyrrole N atoms of the porphyrin core and one O atom of the crown ether. The complex has a distorted porphyrin core, with mean absolute core-atom displacements of 0.14 (10) (C a), 0.20 (10) (C b), 0.24 (4) (C m) and 0.18 (10) Å (C av), respectively. The axial Co—O bond length is 2.3380 (15) and the average Co—Np bond length is 1.968 (5) Å. Intra­molecular N—H⋯O and inter­molecular C—H⋯π inter­actions are observed.

Chemical context  

Crown ether-porphyrinates have been developed to mimic the active site of the cytochrome c oxidase. There have been some reports on the single-crystal structures of crown ether-porphyrinates, including chlorido­[52-N-(4-aza-18-crown-6)methyl-54,104,154,204-tetra-tert-butyl-56-methyl-5,10,15,20-tetra­phenyl­porphyrinato]iron(III) (Dürr et al., 2007), 5,15-{2,2′-[3,3′-(1,4,10,13-tetra­oxa-7,16- di­aza­cyclo­octa­decan-7,16-di­yl)dipropionamido]­phen­yl}-2,8,12,18-tetra­ethyl-3,7,13,17-tetra­methyl­porphyrin and the corresponding zinc(II) compounds (Comte et al., 1998), 1,4,10,13-tetra­oxa-7,16-di­aza-cyclo­octa­decane-7,16-di­carb­oxy­lic acid{2,20-[10,20-bis-(3,5-di­meth­oxy­phen­yl)porphyrin-α-5,15-di­yl]diphen­yl}di­amide and the corresponding zinc(II) and lead(II) compounds (Halime et al., 2007), aqua­{5,15,10,20-bis­[bis­(2-(1,10-di­aza-18-crown-6-1,10-di­yl)carbonyl­amino­phen­yl]porphyrinato}zinc(II) (Michaudet et al., 2000). Herein, the crystal structure of a cobalt(II) porphyrin complex, (5-{3-[(1,4,7,10,13-penta­oxa-16-aza­cyclo­octa­decan-16-yl)carbonyl­amino]­phen­yl}-10,15,20-tri­phenyl­porphyrinato)cobalt(II), is reported.graphic file with name e-73-00963-scheme1.jpg

Structural commentary  

In the crystal of the title compound (Fig. 1), the asymmetric unit contains one five-coordinate single-crowned porphyrin in which the oxygen atom (O3) of the crown ether ligates to the central cobalt(II) atom. Additional qu­anti­tative information on the structure is given in Fig. 2, which displays the detailed displacement of each porphyrin core atom (in units of 0.01 Å) from the 24-atom mean plane. Averaged values of the chemically unique bond lengths (in Å) and angles (in °) are also shown. The average Co—Np (Np is the porphyrin nitro­gen atom) bond length is 1.968 (5), in the narrow range of 1.958 (2)–1.969 (2) Å reported by Dey & Rath (2014). The axial Co—O (O is the crown ether oxygen atom) bond length is 2.3380 (15) Å, slightly longer than the values of 2.230 (5) and 2.2724 (7) Å found in the structures of [CoII(TDPMP)(CH3OH)] [TDPMP = 5,10,15,20-tetra­kis­(di­phenyl­meth­yl)porphyrin; Runge et al., 1999] and [CoII(amtpp)]2 (amtpp = 52-amidato-5,10,15,20-tetra­phenyl­porphyrin; Yamanishi et al., 2011), respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

Diagrams of the porphyrin core of the title compound. Averaged values of the chemically unique bond lengths (in Å) and angles (in °) are shown. The numbers in parentheses are the s.u. values calculated on the assumption that the averaged values are all drawn from the same population. The perpendicular displacements (in units of 0.01 Å) of the porphyrin core atoms from the 24-atom mean plane are also displayed. Positive values of the displacements are towards the oxygen atom as the axial ligand.

The cobalt(II) cation is displaced slightly from the porphyrin core to the axial ligand, as illustrated by the displacement of the metal atom from the 24-atom mean plane (Δ24 = 0.06 Å). The title compound shows a distorted porphyrin core conformation. The mean absolute core-atom displacements C a, C b, C m and C av are 0.14 (10), 0.20 (10), 0.24 (4) and 0.18 (10) Å, respectively.

An intra­molecular N—H⋯O inter­action is found between one of the oxygen atoms (O2) of the crown ether and the nitro­gen atom (N5) of the amide linker. The distance between O2 and N5 is 2.886 (2) (Table 1), consistent with the range (2.70–3.05 Å) suggested for the existence of N—H⋯O hydrogen bonding (Bertolasi et al., 1995).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5B⋯O2 0.93 (3) 1.99 (3) 2.866 (2) 156 (2)

Supra­molecular features  

In the title compound, as seen in Fig. 3, the distances between the hydrogen atoms (H30A, H31A, H32A, H33A) of the crown ether and the plane of the neighbouring porphyrin core are 2.52, 2.57, 2.71 and 2.34 Å, all of which are smaller than 2.9 Å, a limit suggested for the existence of C—H⋯π inter­actions (Takahashi et al., 2001). The molecular packing is shown in Fig. 4.

Figure 3.

Figure 3

The C—H⋯π inter­actions in the title compound. Dashed lines show the distances between hydrogen atoms of the crown ether and the porphyrin core plane. Other atoms have been omitted for clarity.

Figure 4.

Figure 4

A view of the mol­ecular packing of the title compound in the crystal structure. H atoms have been omitted for clarity.

Synthesis and crystallization  

General procedure: All reactions were carried out using standard Schlenk techniques under argon unless otherwise noted. Tetra­hydro­furan (THF) was distilled over sodium/benzo­phenone, hexa­nes over potassium-sodium alloy and di­chloro­methane (CH2Cl2) over calcium hydride. 52-Amino­phenyl-5,10,15,20-tetra­phenyl­porphyrin was prepared according to the reported method (Lembo et al., 2009).

Synthesis of 5-{3-[(1,4,7,10,13-penta­oxa-16-aza­cyclo­octa­decan-16-yl)carbonyl­amino]­phen­yl}-10,15,20-tri­phenyl­porphyrin  

5-{3-[(1,4,7,10,13-penta­oxa-16-aza­cyclo­octa­decan-16-yl)carb­onyl­amino]­phen­yl}-10,15,20-tri­phenyl­porphyrin was prepared according to a modification of the reported methods (Wu & Starnes, 2012; Collman et al., 1998).

Triphosgene (220 mg, 0.74 mmol) was added to a THF (150 mL) solution of 52-amino­phenyl-5,10,15,20-tetra­phenyl­porphyrin (1.472 g, 2.3 mmol) and tri­ethyl­amine (Et3N, 0.7 mL) at 273 K. The mixture was stirred for 1 h and evaporated to dryness under vacuum. A CH2Cl2 (150 mL) solution of 1-aza-18-crown-6 (0.66 g, 2.5 mmol) and Et3N (0.3 mL) was added to the resulting solid stepwise. After overnight stirring, the solution was evaporated. The porphyrin product (1.48 g, 70%) was obtained by chromatography on a silica gel column (CH2Cl2).

Synthesis of (5-{3-[(1,4,7,10,13-penta­oxa-16-aza­cyclo­octa­decan-16-yl)carbonyl­amino]­phen­yl}-10,15,20-tri­phenyl­porphyrinato)cobalt(II)  

(5-{3-[(1,4,7,10,13-Penta­oxa-16-aza­cyclo­octa­decan-16-yl)carbonyl­amino]­phen­yl}-10,15,20-tri­phenyl­porphyrinato)cobalt(II) was prepared according to a modification of the reported method (Adler et al., 1970).

Dried CoCl2 (1.68 g, 12.9 mmol) was added to a THF (150 mL) solution of 52-N-(4-aza-18-crown-6)acyl­amino-5,10,15,20-tetra­phenyl­porphyrin (0.6 g, 0.65 mmol). The mixture was refluxed for 3 h until the reaction was complete (monitored by TLC). The solution was extracted with CH2Cl2, washed with distilled water 2–3 times. After drying over Na2SO4 and filtration, the solvent was removed by rotoevaporation. The cobalt porphyrin product (0.52 g, 92%) was obtained by chromatography on a silica gel column (chloro­form: methanol; 20:1). The title crystal was obtained in a THF solution with hexa­nes as non-solvent.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms attached to the nitro­gen atom (N5) of the amide linker and the carbon atoms (C30, C31, C32, C33) of the crown ether were placed in the locations derived from a difference map, while others were placed in calculated positions (C—H = 0.95, 0.99 Å for aryl and methine H atoms, respectively). Hydrogen atoms were refined using a riding model with fixed isotropic displacement parameters of U iso(H) = 1.2U eq(C). One outlier was omitted in the last cycles of refinement.

Table 2. Experimental details.

Crystal data
Chemical formula [Co(C57H52N6O6)]
M r 975.97
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 17.2445 (6), 14.1398 (5), 19.6452 (7)
β (°) 93.3307 (12)
V3) 4782.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.37 × 0.20 × 0.06
 
Data collection
Diffractometer Bruker D8 QUEST System
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.904, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 70434, 10590, 8774
R int 0.062
(sin θ/λ)max−1) 0.643
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.106, 1.06
No. of reflections 10590
No. of parameters 667
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.69, −0.43

Computer programs: APEX2 (Bruker, 2013),SAINT and XPREP (Bruker, 2013), SHELXT (Sheldrick, 2015a ), SHELXL2014 and SHELXCIF2014 (Sheldrick, 2015b ), XP (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007745/qm2115sup1.cif

e-73-00963-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007745/qm2115Isup2.hkl

e-73-00963-Isup2.hkl (840.2KB, hkl)

CCDC reference: 1552184

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the CAS Hundred Talent Program and the National Natural Science Foundation of China (grant No. 21371167, to JL).

supplementary crystallographic information

Crystal data

[Co(C57H52N6O6)] F(000) = 2044
Mr = 975.97 Dx = 1.356 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 17.2445 (6) Å Cell parameters from 9294 reflections
b = 14.1398 (5) Å θ = 2.7–27.2°
c = 19.6452 (7) Å µ = 0.42 mm1
β = 93.3307 (12)° T = 100 K
V = 4782.1 (3) Å3 Block, black
Z = 4 0.37 × 0.20 × 0.06 mm

Data collection

Bruker D8 QUEST System diffractometer 8774 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.062
φ and ω scans θmax = 27.2°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −22→22
Tmin = 0.904, Tmax = 0.975 k = −18→18
70434 measured reflections l = −25→25
10590 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: mixed
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0377P)2 + 5.0698P] where P = (Fo2 + 2Fc2)/3
10590 reflections (Δ/σ)max = 0.001
667 parameters Δρmax = 0.69 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.77071 (2) 0.20877 (2) 0.81653 (2) 0.01301 (7)
N1 0.82538 (9) 0.21197 (11) 0.90768 (8) 0.0141 (3)
N2 0.67472 (9) 0.16966 (11) 0.85777 (8) 0.0145 (3)
N3 0.71366 (9) 0.21920 (11) 0.72734 (8) 0.0141 (3)
N4 0.86690 (9) 0.24988 (11) 0.77621 (8) 0.0152 (3)
C101 0.89945 (11) 0.24414 (14) 0.92504 (9) 0.0166 (4)
C102 0.79657 (11) 0.18437 (14) 0.96887 (9) 0.0159 (4)
C103 0.66772 (11) 0.13693 (13) 0.92345 (9) 0.0151 (4)
C104 0.60177 (11) 0.15961 (13) 0.82619 (9) 0.0155 (4)
C105 0.63444 (11) 0.21165 (13) 0.71265 (9) 0.0154 (4)
C106 0.74468 (11) 0.23415 (13) 0.66505 (9) 0.0149 (4)
C107 0.87938 (11) 0.25847 (14) 0.70782 (9) 0.0161 (4)
C108 0.93724 (11) 0.27208 (14) 0.80922 (10) 0.0165 (4)
C201 0.91561 (12) 0.23959 (16) 0.99755 (10) 0.0217 (4)
H(BA 0.9622 0.2589 1.0218 0.026*
C202 0.85233 (12) 0.20276 (15) 1.02461 (10) 0.0214 (4)
H(BB 0.8457 0.1911 1.0716 0.026*
C203 0.59031 (11) 0.10269 (14) 0.93144 (10) 0.0189 (4)
H(BC 0.5713 0.0753 0.9714 0.023*
C204 0.54965 (11) 0.11668 (14) 0.87155 (10) 0.0180 (4)
H(BD 0.4967 0.1011 0.8613 0.022*
C205 0.61636 (11) 0.22583 (14) 0.64096 (9) 0.0183 (4)
H(BE 0.5660 0.2266 0.6186 0.022*
C206 0.68428 (11) 0.23789 (14) 0.61139 (9) 0.0176 (4)
H(BF 0.6910 0.2471 0.5642 0.021*
C207 0.95868 (11) 0.28399 (15) 0.69821 (10) 0.0218 (4)
H(BG 0.9818 0.2918 0.6558 0.026*
C208 0.99406 (12) 0.29471 (16) 0.76082 (10) 0.0221 (4)
H(BH 1.0463 0.3135 0.7710 0.027*
C301 0.95317 (11) 0.27274 (14) 0.87929 (9) 0.0166 (4)
C302 0.72418 (11) 0.14436 (13) 0.97660 (9) 0.0154 (4)
C303 0.58063 (11) 0.18478 (13) 0.75899 (9) 0.0156 (4)
C304 0.82307 (11) 0.24882 (13) 0.65463 (9) 0.0158 (4)
C1 1.03134 (11) 0.30727 (15) 0.90615 (9) 0.0190 (4)
C2 1.03696 (12) 0.39518 (16) 0.93759 (10) 0.0241 (4)
H2A 0.9909 0.4297 0.9449 0.029*
C3 1.10865 (13) 0.43372 (16) 0.95862 (11) 0.0265 (5)
H3A 1.1116 0.4936 0.9806 0.032*
C4 1.17555 (12) 0.38379 (16) 0.94717 (11) 0.0255 (5)
H4A 1.2248 0.4107 0.9597 0.031*
C5 1.17140 (12) 0.29514 (16) 0.91776 (10) 0.0228 (4)
H5A 1.2177 0.2609 0.9112 0.027*
C6 1.09946 (11) 0.25552 (15) 0.89764 (10) 0.0193 (4)
C7 0.70432 (11) 0.11388 (15) 1.04666 (9) 0.0182 (4)
C8 0.67899 (13) 0.18032 (17) 1.09286 (11) 0.0291 (5)
H8A 0.6739 0.2448 1.0797 0.035*
C9 0.66109 (14) 0.15283 (19) 1.15802 (11) 0.0335 (5)
H9A 0.6451 0.1988 1.1896 0.040*
C10 0.66645 (13) 0.05914 (19) 1.17709 (11) 0.0313 (5)
H10A 0.6531 0.0405 1.2213 0.038*
C11 0.69126 (13) −0.00749 (18) 1.13190 (11) 0.0299 (5)
H11A 0.6950 −0.0721 1.1450 0.036*
C12 0.71088 (12) 0.02048 (16) 1.06662 (10) 0.0236 (4)
H12A 0.7289 −0.0253 1.0358 0.028*
C13 0.49628 (11) 0.17977 (14) 0.73654 (9) 0.0173 (4)
C14 0.44431 (12) 0.24220 (15) 0.76426 (10) 0.0213 (4)
H14A 0.4630 0.2885 0.7962 0.026*
C15 0.36532 (12) 0.23753 (16) 0.74581 (11) 0.0253 (5)
H15A 0.3302 0.2794 0.7660 0.030*
C16 0.33789 (13) 0.17188 (18) 0.69811 (11) 0.0290 (5)
H16A 0.2842 0.1699 0.6843 0.035*
C17 0.38857 (13) 0.10962 (19) 0.67089 (12) 0.0337 (5)
H17A 0.3696 0.0639 0.6386 0.040*
C18 0.46763 (12) 0.11270 (17) 0.69006 (11) 0.0271 (5)
H18A 0.5021 0.0687 0.6712 0.033*
C19 0.84853 (11) 0.25600 (14) 0.58351 (9) 0.0162 (4)
C20 0.87286 (12) 0.34129 (15) 0.55670 (10) 0.0233 (4)
H20A 0.8704 0.3977 0.5828 0.028*
C21 0.90072 (13) 0.34417 (17) 0.49178 (11) 0.0277 (5)
H21A 0.9180 0.4024 0.4739 0.033*
C22 0.90336 (13) 0.26276 (17) 0.45314 (11) 0.0281 (5)
H22A 0.9221 0.2652 0.4086 0.034*
C23 0.87903 (12) 0.17848 (17) 0.47881 (11) 0.0273 (5)
H23A 0.8808 0.1226 0.4521 0.033*
C24 0.85176 (12) 0.17490 (15) 0.54403 (10) 0.0212 (4)
H24A 0.8351 0.1162 0.5617 0.025*
N5 1.09580 (10) 0.16211 (13) 0.87059 (9) 0.0219 (4)
H5B 1.0535 (17) 0.124 (2) 0.8796 (14) 0.043 (8)*
C25 1.13590 (11) 0.13717 (15) 0.81420 (10) 0.0209 (4)
O1 1.17389 (8) 0.19470 (11) 0.78285 (8) 0.0257 (3)
N6 1.12918 (10) 0.04417 (13) 0.79513 (9) 0.0226 (4)
O2 0.98449 (8) 0.01154 (11) 0.87015 (8) 0.0262 (3)
O3 0.79383 (8) 0.05063 (10) 0.78948 (8) 0.0253 (3)
O4 0.76136 (9) −0.07052 (11) 0.66442 (8) 0.0298 (4)
O5 0.87241 (9) −0.04949 (11) 0.55450 (8) 0.0309 (4)
O6 1.04706 (9) −0.02582 (11) 0.66271 (8) 0.0288 (3)
C26 1.11134 (12) −0.03147 (15) 0.84266 (11) 0.0248 (4)
H26A 1.1258 −0.0100 0.8897 0.030*
H26B 1.1438 −0.0872 0.8333 0.030*
C27 1.02716 (12) −0.06149 (15) 0.83898 (12) 0.0261 (5)
H27A 1.0080 −0.0701 0.7909 0.031*
H27B 1.0212 −0.1220 0.8634 0.031*
C28 0.90267 (12) −0.00076 (16) 0.86277 (11) 0.0251 (5)
H28A 0.8774 0.0433 0.8937 0.030*
H28B 0.8894 −0.0661 0.8760 0.030*
C29 0.87176 (12) 0.01736 (16) 0.78963 (11) 0.0265 (5)
H29A 0.9046 0.0650 0.7682 0.032*
H29B 0.8736 −0.0419 0.7629 0.032*
C30 0.73435 (13) −0.02000 (16) 0.77704 (13) 0.0302 (5)
H30A 0.7553 (14) −0.0834 (19) 0.7934 (12) 0.031 (7)*
H30B 0.6907 (16) −0.0014 (19) 0.8086 (14) 0.040 (7)*
C31 0.70500 (14) −0.02511 (17) 0.70410 (14) 0.0331 (5)
H31A 0.6524 (17) −0.067 (2) 0.7009 (14) 0.049 (8)*
H31B 0.6940 (17) 0.043 (2) 0.6862 (14) 0.046 (8)*
C32 0.74101 (14) −0.06236 (17) 0.59341 (13) 0.0305 (5)
H32A 0.6896 (15) −0.0967 (19) 0.5824 (13) 0.034 (7)*
H32B 0.7317 (14) 0.0051 (19) 0.5820 (13) 0.031 (7)*
C33 0.80347 (15) −0.10470 (17) 0.55274 (12) 0.0315 (5)
H33A 0.8161 (14) −0.1692 (19) 0.5687 (12) 0.030 (6)*
H33B 0.7829 (16) −0.105 (2) 0.5014 (14) 0.044 (8)*
C34 0.93009 (14) −0.07851 (16) 0.60548 (12) 0.0294 (5)
H34A 0.9554 −0.1377 0.5915 0.035*
H34B 0.9062 −0.0896 0.6494 0.035*
C35 0.98875 (14) 0.00081 (17) 0.61245 (12) 0.0316 (5)
H35A 1.0121 0.0120 0.5683 0.038*
H35B 0.9631 0.0599 0.6262 0.038*
C36 1.10801 (13) 0.04208 (16) 0.66854 (11) 0.0287 (5)
H36A 1.0860 0.1062 0.6736 0.034*
H36B 1.1377 0.0412 0.6269 0.034*
C37 1.16125 (13) 0.01862 (16) 0.73010 (11) 0.0262 (5)
H37A 1.1722 −0.0501 0.7301 0.031*
H37B 1.2112 0.0522 0.7262 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.01207 (12) 0.01794 (13) 0.00923 (12) −0.00057 (10) 0.00228 (9) 0.00073 (10)
N1 0.0128 (7) 0.0173 (8) 0.0125 (7) 0.0002 (6) 0.0035 (6) 0.0008 (6)
N2 0.0147 (8) 0.0176 (8) 0.0116 (7) 0.0007 (6) 0.0030 (6) 0.0007 (6)
N3 0.0147 (7) 0.0165 (8) 0.0114 (7) −0.0013 (6) 0.0034 (6) −0.0003 (6)
N4 0.0156 (8) 0.0185 (8) 0.0115 (7) −0.0008 (6) 0.0018 (6) 0.0011 (6)
C101 0.0145 (9) 0.0210 (10) 0.0142 (9) 0.0012 (7) 0.0006 (7) 0.0012 (7)
C102 0.0158 (9) 0.0190 (9) 0.0133 (8) 0.0031 (7) 0.0026 (7) 0.0012 (7)
C103 0.0156 (9) 0.0174 (9) 0.0129 (8) 0.0006 (7) 0.0049 (7) 0.0008 (7)
C104 0.0135 (9) 0.0184 (9) 0.0149 (9) −0.0005 (7) 0.0030 (7) −0.0014 (7)
C105 0.0158 (9) 0.0170 (9) 0.0132 (8) −0.0003 (7) 0.0010 (7) −0.0012 (7)
C106 0.0194 (9) 0.0149 (9) 0.0104 (8) −0.0010 (7) 0.0021 (7) 0.0001 (7)
C107 0.0156 (9) 0.0191 (9) 0.0139 (9) −0.0012 (7) 0.0044 (7) 0.0011 (7)
C108 0.0136 (9) 0.0206 (10) 0.0156 (9) −0.0018 (7) 0.0027 (7) 0.0019 (7)
C201 0.0181 (10) 0.0327 (12) 0.0138 (9) −0.0012 (8) −0.0026 (7) 0.0020 (8)
C202 0.0200 (10) 0.0322 (11) 0.0120 (9) 0.0005 (8) 0.0002 (7) 0.0033 (8)
C203 0.0174 (9) 0.0234 (10) 0.0162 (9) −0.0008 (8) 0.0051 (7) 0.0042 (8)
C204 0.0149 (9) 0.0223 (10) 0.0172 (9) −0.0011 (8) 0.0037 (7) 0.0022 (8)
C205 0.0184 (9) 0.0226 (10) 0.0137 (9) −0.0001 (8) −0.0002 (7) −0.0003 (7)
C206 0.0214 (10) 0.0208 (10) 0.0107 (8) −0.0016 (8) 0.0012 (7) −0.0002 (7)
C207 0.0187 (10) 0.0310 (11) 0.0161 (9) −0.0029 (8) 0.0047 (7) 0.0039 (8)
C208 0.0151 (9) 0.0332 (12) 0.0184 (9) −0.0045 (8) 0.0036 (7) 0.0053 (9)
C301 0.0138 (9) 0.0205 (10) 0.0156 (9) −0.0005 (7) 0.0003 (7) 0.0008 (7)
C302 0.0169 (9) 0.0173 (9) 0.0123 (8) 0.0022 (7) 0.0033 (7) 0.0012 (7)
C303 0.0140 (9) 0.0175 (9) 0.0155 (9) 0.0002 (7) 0.0015 (7) −0.0012 (7)
C304 0.0197 (9) 0.0164 (9) 0.0115 (8) −0.0012 (7) 0.0044 (7) 0.0007 (7)
C1 0.0169 (9) 0.0278 (11) 0.0124 (9) −0.0030 (8) 0.0007 (7) 0.0041 (8)
C2 0.0183 (10) 0.0320 (12) 0.0218 (10) 0.0000 (9) 0.0009 (8) 0.0007 (9)
C3 0.0264 (11) 0.0292 (12) 0.0237 (10) −0.0060 (9) −0.0008 (9) −0.0020 (9)
C4 0.0197 (10) 0.0343 (12) 0.0220 (10) −0.0077 (9) −0.0028 (8) 0.0054 (9)
C5 0.0156 (9) 0.0323 (12) 0.0203 (10) −0.0024 (8) −0.0010 (8) 0.0050 (9)
C6 0.0176 (9) 0.0257 (10) 0.0147 (9) −0.0024 (8) 0.0010 (7) 0.0048 (8)
C7 0.0118 (9) 0.0304 (11) 0.0125 (9) −0.0024 (8) 0.0011 (7) 0.0023 (8)
C8 0.0333 (12) 0.0331 (12) 0.0220 (11) −0.0002 (10) 0.0106 (9) −0.0002 (9)
C9 0.0306 (12) 0.0528 (16) 0.0184 (10) −0.0029 (11) 0.0118 (9) −0.0069 (10)
C10 0.0229 (11) 0.0560 (16) 0.0153 (10) −0.0056 (10) 0.0026 (8) 0.0089 (10)
C11 0.0258 (11) 0.0387 (13) 0.0248 (11) −0.0037 (10) −0.0012 (9) 0.0135 (10)
C12 0.0229 (10) 0.0292 (11) 0.0189 (10) −0.0016 (9) 0.0023 (8) 0.0026 (8)
C13 0.0150 (9) 0.0239 (10) 0.0132 (9) −0.0031 (7) 0.0020 (7) 0.0022 (7)
C14 0.0221 (10) 0.0226 (10) 0.0194 (10) 0.0002 (8) 0.0040 (8) 0.0024 (8)
C15 0.0203 (10) 0.0272 (11) 0.0291 (11) 0.0034 (8) 0.0072 (8) 0.0082 (9)
C16 0.0175 (10) 0.0417 (13) 0.0277 (11) −0.0043 (9) −0.0008 (8) 0.0105 (10)
C17 0.0258 (12) 0.0440 (14) 0.0309 (12) −0.0098 (10) −0.0028 (9) −0.0102 (11)
C18 0.0212 (10) 0.0326 (12) 0.0277 (11) −0.0008 (9) 0.0026 (8) −0.0092 (9)
C19 0.0137 (9) 0.0223 (10) 0.0126 (9) −0.0004 (7) 0.0021 (7) 0.0018 (7)
C20 0.0272 (11) 0.0238 (11) 0.0197 (10) 0.0022 (9) 0.0074 (8) 0.0020 (8)
C21 0.0299 (12) 0.0307 (12) 0.0232 (11) 0.0008 (9) 0.0083 (9) 0.0099 (9)
C22 0.0259 (11) 0.0437 (14) 0.0155 (10) −0.0003 (10) 0.0081 (8) −0.0020 (9)
C23 0.0238 (11) 0.0371 (13) 0.0215 (10) −0.0016 (9) 0.0058 (8) −0.0104 (9)
C24 0.0190 (10) 0.0245 (10) 0.0202 (10) −0.0012 (8) 0.0029 (8) −0.0012 (8)
N5 0.0174 (8) 0.0244 (9) 0.0243 (9) −0.0029 (7) 0.0032 (7) 0.0026 (7)
C25 0.0150 (9) 0.0265 (11) 0.0210 (10) 0.0012 (8) −0.0010 (8) 0.0034 (8)
O1 0.0225 (7) 0.0285 (8) 0.0264 (8) −0.0028 (6) 0.0044 (6) 0.0041 (6)
N6 0.0197 (9) 0.0234 (9) 0.0250 (9) 0.0014 (7) 0.0033 (7) 0.0032 (7)
O2 0.0188 (7) 0.0254 (8) 0.0347 (8) −0.0006 (6) 0.0040 (6) −0.0012 (7)
O3 0.0188 (7) 0.0204 (7) 0.0371 (9) 0.0019 (6) 0.0033 (6) −0.0022 (6)
O4 0.0266 (8) 0.0276 (8) 0.0346 (9) 0.0043 (7) −0.0046 (7) −0.0007 (7)
O5 0.0346 (9) 0.0254 (8) 0.0317 (8) −0.0043 (7) −0.0073 (7) 0.0071 (7)
O6 0.0299 (8) 0.0273 (8) 0.0284 (8) −0.0018 (7) −0.0050 (7) 0.0039 (7)
C26 0.0216 (10) 0.0230 (11) 0.0297 (11) 0.0023 (8) 0.0012 (8) 0.0047 (9)
C27 0.0231 (11) 0.0208 (10) 0.0346 (12) 0.0016 (8) 0.0036 (9) 0.0025 (9)
C28 0.0200 (10) 0.0237 (11) 0.0320 (12) −0.0002 (8) 0.0058 (9) 0.0027 (9)
C29 0.0221 (10) 0.0264 (11) 0.0316 (12) 0.0065 (9) 0.0058 (9) 0.0029 (9)
C30 0.0249 (11) 0.0192 (11) 0.0472 (14) −0.0015 (9) 0.0089 (10) −0.0010 (10)
C31 0.0228 (11) 0.0211 (11) 0.0551 (16) −0.0006 (9) −0.0008 (10) −0.0061 (11)
C32 0.0300 (12) 0.0213 (11) 0.0386 (13) −0.0044 (9) −0.0127 (10) 0.0060 (10)
C33 0.0398 (13) 0.0223 (12) 0.0311 (12) −0.0064 (10) −0.0083 (10) 0.0032 (9)
C34 0.0335 (12) 0.0252 (11) 0.0289 (12) 0.0022 (9) −0.0028 (9) 0.0038 (9)
C35 0.0369 (13) 0.0270 (12) 0.0297 (12) 0.0003 (10) −0.0074 (10) 0.0049 (9)
C36 0.0318 (12) 0.0264 (11) 0.0278 (11) −0.0038 (9) 0.0024 (9) 0.0026 (9)
C37 0.0236 (11) 0.0283 (11) 0.0269 (11) 0.0020 (9) 0.0038 (9) −0.0001 (9)

Geometric parameters (Å, º)

Co1—N2 1.9641 (15) C13—C14 1.391 (3)
Co1—N3 1.9645 (15) C14—C15 1.391 (3)
Co1—N4 1.9671 (16) C14—H14A 0.9500
Co1—N1 1.9751 (15) C15—C16 1.383 (3)
Co1—O3 2.3380 (15) C15—H15A 0.9500
N1—C101 1.380 (2) C16—C17 1.371 (3)
N1—C102 1.383 (2) C16—H16A 0.9500
N2—C104 1.377 (2) C17—C18 1.394 (3)
N2—C103 1.383 (2) C17—H17A 0.9500
N3—C106 1.380 (2) C18—H18A 0.9500
N3—C105 1.384 (2) C19—C24 1.387 (3)
N4—C108 1.378 (2) C19—C20 1.391 (3)
N4—C107 1.378 (2) C20—C21 1.389 (3)
C101—C301 1.388 (3) C20—H20A 0.9500
C101—C201 1.437 (3) C21—C22 1.381 (3)
C102—C302 1.387 (3) C21—H21A 0.9500
C102—C202 1.438 (3) C22—C23 1.369 (3)
C103—C302 1.390 (3) C22—H22A 0.9500
C103—C203 1.437 (3) C23—C24 1.391 (3)
C104—C303 1.395 (3) C23—H23A 0.9500
C104—C204 1.437 (3) C24—H24A 0.9500
C105—C303 1.390 (3) N5—C25 1.385 (3)
C105—C205 1.439 (3) N5—H5B 0.93 (3)
C106—C304 1.394 (3) C25—O1 1.232 (2)
C106—C206 1.439 (3) C25—N6 1.370 (3)
C107—C304 1.391 (3) N6—C26 1.464 (3)
C107—C207 1.437 (3) N6—C37 1.466 (3)
C108—C301 1.388 (3) O2—C28 1.421 (2)
C108—C208 1.440 (3) O2—C27 1.427 (3)
C201—C202 1.346 (3) O3—C29 1.424 (2)
C201—H(BA 0.9500 O3—C30 1.442 (3)
C202—H(BB 0.9500 O4—C32 1.423 (3)
C203—C204 1.349 (3) O4—C31 1.433 (3)
C203—H(BC 0.9500 O5—C33 1.421 (3)
C204—H(BD 0.9500 O5—C34 1.430 (3)
C205—C206 1.348 (3) O6—C35 1.419 (3)
C205—H(BE 0.9500 O6—C36 1.423 (3)
C206—H(BF 0.9500 C26—C27 1.510 (3)
C207—C208 1.349 (3) C26—H26A 0.9900
C207—H(BG 0.9500 C26—H26B 0.9900
C208—H(BH 0.9500 C27—H27A 0.9900
C301—C1 1.500 (3) C27—H27B 0.9900
C302—C7 1.501 (2) C28—C29 1.525 (3)
C303—C13 1.497 (3) C28—H28A 0.9900
C304—C19 1.492 (2) C28—H28B 0.9900
C1—C2 1.389 (3) C29—H29A 0.9900
C1—C6 1.402 (3) C29—H29B 0.9900
C2—C3 1.392 (3) C30—C31 1.494 (4)
C2—H2A 0.9500 C30—H30A 1.01 (3)
C3—C4 1.382 (3) C30—H30B 1.04 (3)
C3—H3A 0.9500 C31—H31A 1.08 (3)
C4—C5 1.380 (3) C31—H31B 1.04 (3)
C4—H4A 0.9500 C32—C33 1.502 (4)
C5—C6 1.397 (3) C32—H32A 1.02 (3)
C5—H5A 0.9500 C32—H32B 0.99 (3)
C6—N5 1.424 (3) C33—H33A 0.98 (3)
C7—C12 1.380 (3) C33—H33B 1.05 (3)
C7—C8 1.394 (3) C34—C35 1.511 (3)
C8—C9 1.390 (3) C34—H34A 0.9900
C8—H8A 0.9500 C34—H34B 0.9900
C9—C10 1.378 (4) C35—H35A 0.9900
C9—H9A 0.9500 C35—H35B 0.9900
C10—C11 1.379 (4) C36—C37 1.512 (3)
C10—H10A 0.9500 C36—H36A 0.9900
C11—C12 1.402 (3) C36—H36B 0.9900
C11—H11A 0.9500 C37—H37A 0.9900
C12—H12A 0.9500 C37—H37B 0.9900
C13—C18 1.387 (3)
N2—Co1—N3 89.92 (6) C15—C14—C13 120.7 (2)
N2—Co1—N4 179.03 (7) C15—C14—H14A 119.6
N3—Co1—N4 90.51 (6) C13—C14—H14A 119.6
N2—Co1—N1 90.11 (6) C16—C15—C14 120.0 (2)
N3—Co1—N1 174.16 (7) C16—C15—H15A 120.0
N4—Co1—N1 89.37 (6) C14—C15—H15A 120.0
N2—Co1—O3 89.05 (6) C17—C16—C15 119.7 (2)
N3—Co1—O3 87.26 (6) C17—C16—H16A 120.2
N4—Co1—O3 91.84 (6) C15—C16—H16A 120.2
N1—Co1—O3 98.58 (6) C16—C17—C18 120.7 (2)
C101—N1—C102 104.61 (15) C16—C17—H17A 119.7
C101—N1—Co1 128.17 (12) C18—C17—H17A 119.7
C102—N1—Co1 127.21 (13) C13—C18—C17 120.3 (2)
C104—N2—C103 105.00 (15) C13—C18—H18A 119.9
C104—N2—Co1 127.80 (12) C17—C18—H18A 119.9
C103—N2—Co1 126.91 (12) C24—C19—C20 118.83 (18)
C106—N3—C105 104.82 (15) C24—C19—C304 119.40 (17)
C106—N3—Co1 127.06 (13) C20—C19—C304 121.69 (18)
C105—N3—Co1 128.11 (12) C21—C20—C19 120.1 (2)
C108—N4—C107 104.81 (15) C21—C20—H20A 120.0
C108—N4—Co1 128.14 (12) C19—C20—H20A 120.0
C107—N4—Co1 126.99 (13) C22—C21—C20 120.3 (2)
N1—C101—C301 125.38 (17) C22—C21—H21A 119.9
N1—C101—C201 110.72 (16) C20—C21—H21A 119.9
C301—C101—C201 123.83 (18) C23—C22—C21 120.14 (19)
N1—C102—C302 125.54 (17) C23—C22—H22A 119.9
N1—C102—C202 110.65 (16) C21—C22—H22A 119.9
C302—C102—C202 123.81 (17) C22—C23—C24 119.9 (2)
N2—C103—C302 125.49 (17) C22—C23—H23A 120.1
N2—C103—C203 110.29 (16) C24—C23—H23A 120.1
C302—C103—C203 123.92 (17) C19—C24—C23 120.8 (2)
N2—C104—C303 125.56 (17) C19—C24—H24A 119.6
N2—C104—C204 110.62 (16) C23—C24—H24A 119.6
C303—C104—C204 123.79 (17) C25—N5—C6 121.42 (17)
N3—C105—C303 124.96 (17) C25—N5—H5B 116.2 (17)
N3—C105—C205 110.39 (16) C6—N5—H5B 118.6 (17)
C303—C105—C205 124.36 (17) O1—C25—N6 122.40 (19)
N3—C106—C304 125.58 (17) O1—C25—N5 122.4 (2)
N3—C106—C206 110.73 (16) N6—C25—N5 115.14 (18)
C304—C106—C206 123.61 (17) C25—N6—C26 122.96 (17)
N4—C107—C304 125.58 (17) C25—N6—C37 116.39 (17)
N4—C107—C207 110.71 (16) C26—N6—C37 118.65 (17)
C304—C107—C207 123.64 (17) C28—O2—C27 113.68 (16)
N4—C108—C301 125.89 (17) C29—O3—C30 115.69 (17)
N4—C108—C208 110.73 (16) C29—O3—Co1 119.28 (13)
C301—C108—C208 123.38 (18) C30—O3—Co1 124.87 (12)
C202—C201—C101 107.08 (17) C32—O4—C31 111.13 (18)
C202—C201—H(BA 126.5 C33—O5—C34 113.97 (17)
C101—C201—H(BA 126.5 C35—O6—C36 111.54 (17)
C201—C202—C102 106.90 (17) N6—C26—C27 114.33 (18)
C201—C202—H(BB 126.6 N6—C26—H26A 108.7
C102—C202—H(BB 126.6 C27—C26—H26A 108.7
C204—C203—C103 107.12 (17) N6—C26—H26B 108.7
C204—C203—H(BC 126.4 C27—C26—H26B 108.7
C103—C203—H(BC 126.4 H26A—C26—H26B 107.6
C203—C204—C104 106.91 (17) O2—C27—C26 107.12 (18)
C203—C204—H(BD 126.5 O2—C27—H27A 110.3
C104—C204—H(BD 126.5 C26—C27—H27A 110.3
C206—C205—C105 107.17 (17) O2—C27—H27B 110.3
C206—C205—H(BE 126.4 C26—C27—H27B 110.3
C105—C205—H(BE 126.4 H27A—C27—H27B 108.5
C205—C206—C106 106.83 (16) O2—C28—C29 111.49 (17)
C205—C206—H(BF 126.6 O2—C28—H28A 109.3
C106—C206—H(BF 126.6 C29—C28—H28A 109.3
C208—C207—C107 106.97 (17) O2—C28—H28B 109.3
C208—C207—H(BG 126.5 C29—C28—H28B 109.3
C107—C207—H(BG 126.5 H28A—C28—H28B 108.0
C207—C208—C108 106.73 (17) O3—C29—C28 109.62 (17)
C207—C208—H(BH 126.6 O3—C29—H29A 109.7
C108—C208—H(BH 126.6 C28—C29—H29A 109.7
C101—C301—C108 122.64 (18) O3—C29—H29B 109.7
C101—C301—C1 119.14 (17) C28—C29—H29B 109.7
C108—C301—C1 118.22 (16) H29A—C29—H29B 108.2
C102—C302—C103 122.98 (17) O3—C30—C31 113.2 (2)
C102—C302—C7 118.19 (17) O3—C30—H30A 108.8 (14)
C103—C302—C7 118.70 (16) C31—C30—H30A 110.9 (14)
C105—C303—C104 122.80 (17) O3—C30—H30B 104.9 (15)
C105—C303—C13 119.61 (16) C31—C30—H30B 111.6 (15)
C104—C303—C13 117.57 (16) H30A—C30—H30B 107 (2)
C107—C304—C106 123.00 (17) O4—C31—C30 109.93 (19)
C107—C304—C19 117.78 (16) O4—C31—H31A 108.5 (16)
C106—C304—C19 119.21 (17) C30—C31—H31A 108.6 (15)
C2—C1—C6 118.86 (18) O4—C31—H31B 110.4 (16)
C2—C1—C301 119.05 (18) C30—C31—H31B 108.9 (16)
C6—C1—C301 122.02 (18) H31A—C31—H31B 110 (2)
C1—C2—C3 121.3 (2) O4—C32—C33 110.20 (19)
C1—C2—H2A 119.3 O4—C32—H32A 109.3 (14)
C3—C2—H2A 119.3 C33—C32—H32A 109.7 (14)
C4—C3—C2 119.2 (2) O4—C32—H32B 109.1 (15)
C4—C3—H3A 120.4 C33—C32—H32B 112.1 (15)
C2—C3—H3A 120.4 H32A—C32—H32B 106 (2)
C5—C4—C3 120.6 (2) O5—C33—C32 113.13 (19)
C5—C4—H4A 119.7 O5—C33—H33A 109.3 (15)
C3—C4—H4A 119.7 C32—C33—H33A 110.6 (14)
C4—C5—C6 120.4 (2) O5—C33—H33B 105.1 (15)
C4—C5—H5A 119.8 C32—C33—H33B 107.4 (15)
C6—C5—H5A 119.8 H33A—C33—H33B 111 (2)
C5—C6—C1 119.56 (19) O5—C34—C35 106.57 (18)
C5—C6—N5 119.80 (18) O5—C34—H34A 110.4
C1—C6—N5 120.61 (18) C35—C34—H34A 110.4
C12—C7—C8 118.91 (18) O5—C34—H34B 110.4
C12—C7—C302 121.05 (18) C35—C34—H34B 110.4
C8—C7—C302 120.03 (19) H34A—C34—H34B 108.6
C9—C8—C7 120.4 (2) O6—C35—C34 108.04 (18)
C9—C8—H8A 119.8 O6—C35—H35A 110.1
C7—C8—H8A 119.8 C34—C35—H35A 110.1
C10—C9—C8 120.3 (2) O6—C35—H35B 110.1
C10—C9—H9A 119.9 C34—C35—H35B 110.1
C8—C9—H9A 119.9 H35A—C35—H35B 108.4
C9—C10—C11 120.0 (2) O6—C36—C37 109.12 (18)
C9—C10—H10A 120.0 O6—C36—H36A 109.9
C11—C10—H10A 120.0 C37—C36—H36A 109.9
C10—C11—C12 119.8 (2) O6—C36—H36B 109.9
C10—C11—H11A 120.1 C37—C36—H36B 109.9
C12—C11—H11A 120.1 H36A—C36—H36B 108.3
C7—C12—C11 120.6 (2) N6—C37—C36 113.61 (18)
C7—C12—H12A 119.7 N6—C37—H37A 108.8
C11—C12—H12A 119.7 C36—C37—H37A 108.8
C18—C13—C14 118.59 (19) N6—C37—H37B 108.8
C18—C13—C303 121.95 (18) C36—C37—H37B 108.8
C14—C13—C303 119.44 (18) H37A—C37—H37B 107.7

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N5—H5B···O2 0.93 (3) 1.99 (3) 2.866 (2) 156 (2)

References

  1. Adler, A. D., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443–2445.
  2. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  3. Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1995). Acta Cryst. B51, 1004–1015.
  4. Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Collman, J. P., Wang, Z. & Straumanis, A. (1998). J. Org. Chem. 63, 2424–2425. [DOI] [PubMed]
  6. Comte, C. P., Gros, C., Koeller, S., Guilard, R. J., Nurco, D. & Smith, M. (1998). New J. Chem. 22, 621–626.
  7. Dey, S. & Rath, S. P. (2014). Dalton Trans. 43, 2301–2314. [DOI] [PubMed]
  8. Dürr, K., Macpherson, B. P., Warratz, R., Hampel, F., Tuczek, F., Helmreich, M., Jux, N. & Ivanović-Burmazović, I. (2007). J. Am. Chem. Soc. 129, 4217–4228. [DOI] [PubMed]
  9. Halime, Z., Lachkar, M., Toupet, L., Coutsolelos, A. G. & Boitrel, B. (2007). Dalton Trans. pp. 3684–3689. [DOI] [PubMed]
  10. Lembo, A., Tagliatesta, P., Cicero, D., Leoni, A. & Salvatori, A. (2009). Org. Biomol. Chem. 7, 1093–1096. [DOI] [PubMed]
  11. Michaudet, L., Richard, P. & Boitrel, B. (2000). Tetrahedron Lett. 41, 8289–8292.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  16. Runge, S., Senge Mathias, O. & Ruhlandt-Senge, K. (1999). Z. Naturforsch. Teil B, 54, 662–666.
  17. Wu, X. & Starnes, S. D. (2012). Org. Lett. 14, 3652–3655. [DOI] [PubMed]
  18. Yamanishi, K., Miyazawa, M., Yairi, T., Sakai, S., Nishina, N., Kobori, Y., Kondo, M. & Uchida, F. (2011). Angew. Chem. 123, 6713–6716. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007745/qm2115sup1.cif

e-73-00963-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007745/qm2115Isup2.hkl

e-73-00963-Isup2.hkl (840.2KB, hkl)

CCDC reference: 1552184

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES