Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jun 7;73(Pt 7):980–982. doi: 10.1107/S2056989017008180

Crystal structure of the tetra­aqua­bis­(thio­cyanato-κN)cobalt(II)–caffeine–water (1/2/4) co-crystal

H El Hamdani a,*, M El Amane a, C Duhayon b,c
PMCID: PMC5499273  PMID: 28775865

In the structure of the title compound, [Co(NCS)2(H2O)4]·2C8H10N4O2·4H2O, the cobalt metal lies on an inversion centre and is coordinated in a slightly distorted octa­hedral geometry. In the crystal, the complex mol­ecules inter­act with the caffeine mol­ecules through O—H⋯N, O—H⋯O, C–H⋯S hydrogen bonds and π–π inter­actions.

Keywords: crystal structure, caffeine, hydrogen bonding, single-crystal X-ray diffraction analysis

Abstract

In the structure of the title compound [systematic name: tetra­aqua­bis­(thio­cyanato-κN)cobalt(II)–1,3,7-trimethyl-1,2,3,6-tetra­hydro-7H-purine-2,6-dione–water (1/2/4)], [Co(NCS)2(H2O)4]·2C8H10N4O2·4H2O, the cobalt(II) cation lies on an inversion centre and is coordinated in a slightly distorted octa­hedral geometry by the oxygen atoms of four water mol­ecules and two N atoms of two trans-arranged thio­cyanate anions. In the crystal, the complex mol­ecules inter­act with the caffeine mol­ecules through O—H⋯N, O—H⋯O and C—H⋯S hydrogen bonds and π–π inter­actions [centroid-to-centroid distance = 3.4715 (5) Å], forming layers parallel to the ab plane, which are further connected into a three-dimensional network by O—H⋯O and O—H⋯S hydrogen bonds involving the non-coordinating water mol­ecules.

Chemical context  

Compounds with supra­molecular metal–organic structures, which are diversified by their innovative applications, attract attention in various fields such as non-linear optical activity, catalysis, electrical conductivity, and cooperative magnetic behavior (Fan et al., 2016). In particular, the supra­molecular complexes of mixed metals and ligands that possess active pharmaceutical ingredients (APIs) offers an approach to generate crystalline materials that form pharmaceutical co-crystals to effect therapeutic parameters such as solubility and lipophilicity (Ma & Moulton, 2007). The properties of caffeine as a pharmaceutical compound exhibiting moisture instability with the formation of a non-stoichiometric crystalline hydrate have been widely studied. Caffeine is a stimulant of the central nervous system and a smooth muscle relaxant, and is used as a formulation additive to analgesic remedies (Trask et al., 2005). Caffeine has attractive effects on various biological systems, including cardiovascular, gastrointestinal, respiratory and muscle systems (Taşdemir et al., 2016), and forms complexes with transition metals having different coordination and biological properties such as anti-inflammatory and anti­bacterial (Taşdemir et al., 2016). Thio­cyanate is a commonly used ligand because of its numerous bonding modes to one or more transition metal ions, and provides useful precursors for numerous coordination complexes. Usually, the thio­cyanate anion bonds terminally through the nitro­gen atom with first-row transition metals, and can act as a hydrogen-bond acceptor through the nitro­gen or sulfur atom (Bie et al., 2005).graphic file with name e-73-00980-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound (Fig. 1) contains half a complex mol­ecule of formula [Co(NCS)2(H2O)4], a caffeine mol­ecule and two free water mol­ecules. The cobalt(II) cation lies on an inversion centre and displays a trans-arranged octa­hedral coordination geometry provided by the N atoms of two thio­cyanate anions and four O atoms of coordinating water mol­ecules. The Co1—N15 [2.0981 (8) Å] and Co1—O18 [2.0981 (7) Å] bond lengths are equal within standard uncertainties and significantly longer than the Co1–O19 bond length [2.0732 (7) Å], and therefore the CoN2O4 octa­hedron is slightly axially compressed. This structural feature is typical for related compounds (Shylin et al., 2013, 2015). The thio­cyanato ligands are bound through the nitro­gen atoms and are nearly linear [N15—C16—S17 = 177.81 (8)°], while the Co–NCS linkage is bent [C16—N15—Co1 = 167.35 (8)°]. Previously reported complexes with an N-bound NCS group possess similar structural features (Petrusenko et al., 1997). The caffeine mol­ecule is nearly planar (r.m.s. deviation = 0.0346 Å), with a maximum deviation from the mean plane of 0.0404 (7) Å for atom N5.

Figure 1.

Figure 1

The asymmetric unit [expanded for the cobalt(II) cation to show the full coordination sphere; primed atoms are related to the non-primed atoms by the symmetry operation −x + 2, −y + 1, −z + 1] of the title compound, with displacement ellipsoids drawn at the 50% probability level

Supra­molecular features  

In the crystal, each complex mol­ecule inter­acts with four neighboring caffeine mol­ecules through classical O—H⋯N and O—H⋯O hydrogen bonds (Table 1) involving the coordinating water mol­ecules as H-atom donors to form layers parallel to the ab plane. These planes are further enforced by C—H⋯S hydrogen bonds and π–π inter­actions occurring between centrosymmetrically related six-membered rings of the purine ring system [CgCg i = 3.4715 (5) Å; Cg is the centroid of the N3/N7/C4/C6/C8/C9 ring; symmetry code: (i) 1 − x, 2 − y, 1 − z; Fig. 2], and are alternated by layers of non-coordinating water mol­ecules linked through O—H⋯O and O—H⋯S hydrogen bonds (Fig. 3), leading to the formation of a three-dimensional network (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H21⋯S17i 0.97 2.83 3.7622 (9) 160.6
O20—H202⋯O21ii 0.86 1.98 2.8119 (11) 161.6
O19—H191⋯O21 0.86 1.91 2.7634 (10) 174.9
O18—H182⋯N3iii 0.85 2.01 2.8671 (11) 178.4
O21—H211⋯S17iv 0.88 2.38 3.2481 (7) 173.3
O21—H212⋯O20iv 0.87 1.97 2.8157 (11) 164.8
O20—H201⋯O12 0.85 2.02 2.8531 (10) 166.8
O19—H192⋯O14v 0.85 1.89 2.7460 (10) 178.5

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

Partial packing diagram of the title compound, showing the network of hydrogen bonds (orange dotted lines) and π–π inter­actions (purple dotted lines) linking complexes and caffeine mol­ecules into layers parallel to the ab plane.

Figure 3.

Figure 3

Crystal packing of the title compound viewed down the a axis.

Synthesis and crystallization  

In a glass tube, a solution of CoCl2·6H2O (129 mg, 1 mmol) in 5 ml of water and caffeine (194.19 mg, 1 mmol) in 10 ml of ethanol was added to a solution of potassium thio­cyanate (190 mg, 2 mmol) in 5 ml of water. Single crystals of the title compound suitable for X-ray analysis were grown after several months by slow evaporation of the solvent at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms could be located in a difference-Fourier map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.98, O—H = 0.82 Å) and with U iso(H) set at 1.2–1.5 times of the U eq of the parent atom, after which the positions were refined with riding constraints (Cooper et al., 2010).

Table 2. Experimental details.

Crystal data
Chemical formula [Co(NCS)2(H2O)4]·2C8H10N4O2·4H2O
M r 707.61
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 10.65854 (19), 8.16642 (14), 18.0595 (3)
β (°) 96.4701 (15)
V3) 1561.93 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.75
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011)
T min, T max 0.78, 0.86
No. of measured, independent and observed [I > 2.0σ(I)] reflections 62568, 4002, 3693
R int 0.023
(sin θ/λ)max−1) 0.689
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.023, 0.022, 1.13
No. of reflections 3586
No. of parameters 196
H-atom treatment H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 0.36, −0.24

Computer programs: GEMINI (Oxford Diffraction, 2006), CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003) and CAMERON (Watkin et al., 1996). Weighting scheme: Chebychev polynomial, (Watkin, 1994; Prince, 1982).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017008180/rz5216sup1.cif

e-73-00980-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017008180/rz5216Isup2.hkl

e-73-00980-Isup2.hkl (251KB, hkl)

CCDC reference: 1553654

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the LCC CNRS (Laboratory of Chemistry of Coordination) for their help.

supplementary crystallographic information

Crystal data

[Co(NCS)2(H2O)4]·2C8H10N4O2·4H2O F(000) = 738
Mr = 707.61 Dx = 1.504 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 26895 reflections
a = 10.65854 (19) Å θ = 4–29°
b = 8.16642 (14) Å µ = 0.75 mm1
c = 18.0595 (3) Å T = 120 K
β = 96.4701 (15)° Block, orange
V = 1561.93 (3) Å3 0.25 × 0.20 × 0.20 mm
Z = 2

Data collection

Oxford Diffraction Gemini diffractometer 3693 reflections with I > 2.0σ(I)
Graphite monochromator Rint = 0.023
φ & ω scans θmax = 29.3°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) h = −14→13
Tmin = 0.78, Tmax = 0.86 k = −10→10
62568 measured reflections l = −24→24
4002 independent reflections

Refinement

Refinement on F Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 H-atom parameters not refined
wR(F2) = 0.022 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 4.58 -1.83 2.76
S = 1.13 (Δ/σ)max = 0.001
3586 reflections Δρmax = 0.36 e Å3
196 parameters Δρmin = −0.24 e Å3
0 restraints

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K. Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.52963 (7) 0.70159 (10) 0.44118 (4) 0.0159
N3 0.39238 (7) 0.69668 (10) 0.52732 (4) 0.0165
N5 0.50891 (7) 0.88202 (9) 0.61607 (4) 0.0138
N7 0.70166 (7) 0.97981 (10) 0.57845 (4) 0.0148
N15 0.87722 (7) 0.56972 (10) 0.57738 (4) 0.0177
C2 0.42006 (9) 0.64292 (12) 0.46092 (5) 0.0177
C4 0.49202 (8) 0.79469 (11) 0.55076 (5) 0.0134
C6 0.61761 (8) 0.97269 (11) 0.63265 (5) 0.0145
C8 0.68939 (8) 0.89801 (11) 0.50972 (5) 0.0140
C9 0.57826 (8) 0.80031 (11) 0.49965 (5) 0.0138
C10 0.58693 (10) 0.66144 (13) 0.37365 (5) 0.0214
C11 0.41902 (9) 0.86319 (12) 0.67132 (5) 0.0187
C13 0.81636 (9) 1.07902 (13) 0.59652 (6) 0.0212
C16 0.82097 (8) 0.58619 (11) 0.62832 (5) 0.0146
O12 0.63887 (6) 1.04807 (9) 0.69164 (4) 0.0199
O14 0.76700 (6) 0.91542 (9) 0.46473 (4) 0.0191
O18 1.14207 (7) 0.63274 (10) 0.56379 (4) 0.0243
O19 1.04404 (7) 0.29467 (9) 0.56531 (4) 0.0202
O20 0.85940 (7) 1.15725 (10) 0.78244 (4) 0.0218
O21 1.04346 (7) 0.33657 (9) 0.71711 (4) 0.0227
S17 0.73704 (2) 0.60472 (3) 0.699098 (13) 0.0206
Co1 1.0000 0.5000 0.5000 0.0133
H21 0.3674 0.5683 0.4293 0.0226*
H103 0.6697 0.6105 0.3874 0.0339*
H102 0.5958 0.7614 0.3446 0.0343*
H101 0.5302 0.5835 0.3448 0.0347*
H111 0.4397 0.9420 0.7112 0.0299*
H112 0.3339 0.8828 0.6471 0.0298*
H113 0.4258 0.7533 0.6921 0.0310*
H131 0.8546 1.0964 0.5513 0.0326*
H132 0.7942 1.1847 0.6172 0.0322*
H133 0.8741 1.0211 0.6328 0.0327*
H181 1.1398 0.6463 0.6098 0.0378*
H202 0.9034 1.2295 0.7618 0.0364*
H191 1.0428 0.3014 0.6127 0.0336*
H182 1.2164 0.6538 0.5531 0.0384*
H211 1.1073 0.2809 0.7394 0.0376*
H212 1.0591 0.4409 0.7176 0.0382*
H201 0.7920 1.1412 0.7538 0.0355*
H192 1.1020 0.2292 0.5552 0.0330*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0180 (4) 0.0155 (4) 0.0136 (3) 0.0004 (3) 0.0001 (3) −0.0018 (3)
N3 0.0150 (3) 0.0163 (4) 0.0178 (4) −0.0018 (3) 0.0000 (3) −0.0004 (3)
N5 0.0130 (3) 0.0168 (4) 0.0119 (3) −0.0009 (3) 0.0028 (3) −0.0008 (3)
N7 0.0127 (3) 0.0175 (4) 0.0140 (3) −0.0031 (3) 0.0010 (3) 0.0002 (3)
N15 0.0152 (3) 0.0229 (4) 0.0155 (3) −0.0010 (3) 0.0039 (3) −0.0018 (3)
C2 0.0164 (4) 0.0178 (4) 0.0185 (4) −0.0015 (3) −0.0005 (3) −0.0012 (3)
C4 0.0133 (4) 0.0136 (4) 0.0132 (4) 0.0012 (3) 0.0007 (3) 0.0012 (3)
C6 0.0140 (4) 0.0156 (4) 0.0135 (4) 0.0007 (3) 0.0002 (3) 0.0007 (3)
C8 0.0137 (4) 0.0141 (4) 0.0140 (4) 0.0024 (3) 0.0012 (3) 0.0023 (3)
C9 0.0149 (4) 0.0146 (4) 0.0120 (4) 0.0011 (3) 0.0011 (3) 0.0000 (3)
C10 0.0269 (5) 0.0228 (5) 0.0152 (4) 0.0007 (4) 0.0058 (4) −0.0028 (4)
C11 0.0177 (4) 0.0244 (5) 0.0152 (4) −0.0010 (4) 0.0067 (3) −0.0006 (3)
C13 0.0154 (4) 0.0269 (5) 0.0208 (4) −0.0084 (4) 0.0000 (3) −0.0009 (4)
C16 0.0139 (4) 0.0147 (4) 0.0146 (4) −0.0021 (3) −0.0005 (3) −0.0003 (3)
O12 0.0199 (3) 0.0232 (3) 0.0163 (3) −0.0028 (3) 0.0006 (2) −0.0052 (3)
O14 0.0172 (3) 0.0224 (3) 0.0190 (3) 0.0006 (3) 0.0071 (2) 0.0021 (3)
O18 0.0175 (3) 0.0413 (4) 0.0147 (3) −0.0121 (3) 0.0044 (2) −0.0074 (3)
O19 0.0212 (3) 0.0232 (3) 0.0173 (3) 0.0041 (3) 0.0063 (2) 0.0018 (3)
O20 0.0203 (3) 0.0300 (4) 0.0146 (3) −0.0021 (3) −0.0004 (2) 0.0011 (3)
O21 0.0241 (3) 0.0246 (4) 0.0195 (3) 0.0044 (3) 0.0020 (3) 0.0047 (3)
S17 0.01944 (11) 0.02902 (12) 0.01456 (10) −0.00462 (9) 0.00757 (8) −0.00446 (9)
Co1 0.01068 (8) 0.01859 (9) 0.01093 (8) −0.00186 (6) 0.00259 (5) −0.00104 (6)

Geometric parameters (Å, º)

N1—C2 1.3469 (12) C10—H102 0.980
N1—C9 1.3820 (11) C10—H101 0.985
N1—C10 1.4616 (12) C11—H111 0.972
N3—C2 1.3407 (12) C11—H112 0.975
N3—C4 1.3588 (12) C11—H113 0.972
N5—C4 1.3727 (11) C13—H131 0.963
N5—C6 1.3792 (11) C13—H132 0.980
N5—C11 1.4672 (11) C13—H133 0.969
N7—C6 1.4006 (11) C16—S17 1.6476 (9)
N7—C8 1.4027 (11) O18—Co1 2.0981 (7)
N7—C13 1.4723 (11) O18—H181 0.842
N15—C16 1.1610 (12) O18—H182 0.853
N15—Co1 2.0981 (8) O19—Co1 2.0732 (7)
C2—H21 0.969 O19—H191 0.860
C4—C9 1.3749 (12) O19—H192 0.853
C6—O12 1.2291 (11) O20—H202 0.864
C8—C9 1.4226 (12) O20—H201 0.846
C8—O14 1.2314 (11) O21—H211 0.877
C10—H103 0.982 O21—H212 0.868
C2—N1—C9 105.49 (7) H111—C11—H112 110.1
C2—N1—C10 126.68 (8) N5—C11—H113 109.5
C9—N1—C10 127.76 (8) H111—C11—H113 109.0
C2—N3—C4 103.21 (8) H112—C11—H113 110.5
C4—N5—C6 119.42 (7) N7—C13—H131 108.3
C4—N5—C11 119.83 (7) N7—C13—H132 109.8
C6—N5—C11 120.37 (7) H131—C13—H132 109.6
C6—N7—C8 126.55 (7) N7—C13—H133 109.2
C6—N7—C13 116.65 (7) H131—C13—H133 110.3
C8—N7—C13 116.77 (7) H132—C13—H133 109.6
C16—N15—Co1 167.35 (8) N15—C16—S17 177.81 (8)
N1—C2—N3 113.89 (8) Co1—O18—H181 120.7
N1—C2—H21 122.0 Co1—O18—H182 127.7
N3—C2—H21 124.1 H181—O18—H182 109.1
N5—C4—N3 126.58 (8) Co1—O19—H191 119.2
N5—C4—C9 121.78 (8) Co1—O19—H192 120.6
N3—C4—C9 111.64 (8) H191—O19—H192 110.2
N7—C6—N5 117.28 (8) H202—O20—H201 107.9
N7—C6—O12 120.99 (8) H211—O21—H212 111.4
N5—C6—O12 121.70 (8) O18i—Co1—O18 179.995
N7—C8—C9 111.93 (7) O18i—Co1—N15i 87.69 (3)
N7—C8—O14 121.76 (8) O18—Co1—N15i 92.31 (3)
C9—C8—O14 126.29 (8) O18i—Co1—N15 92.31 (3)
C8—C9—N1 131.30 (8) O18—Co1—N15 87.69 (3)
C8—C9—C4 122.88 (8) N15i—Co1—N15 179.995
N1—C9—C4 105.77 (8) O18i—Co1—O19 89.86 (3)
N1—C10—H103 109.4 O18—Co1—O19 90.14 (3)
N1—C10—H102 109.5 N15i—Co1—O19 92.36 (3)
H103—C10—H102 110.5 N15—Co1—O19 87.64 (3)
N1—C10—H101 107.3 O18i—Co1—O19i 90.14 (3)
H103—C10—H101 109.9 O18—Co1—O19i 89.86 (3)
H102—C10—H101 110.2 N15i—Co1—O19i 87.64 (3)
N5—C11—H111 108.8 N15—Co1—O19i 92.36 (3)
N5—C11—H112 108.9 O19—Co1—O19i 179.994

Symmetry code: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H21···S17ii 0.97 2.83 3.7622 (9) 160.6
O20—H202···O21iii 0.86 1.98 2.8119 (11) 161.6
O19—H191···O21 0.86 1.91 2.7634 (10) 174.9
O18—H182···N3iv 0.85 2.01 2.8671 (11) 178.4
O21—H211···S17v 0.88 2.38 3.2481 (7) 173.3
O21—H212···O20v 0.87 1.97 2.8157 (11) 164.8
O20—H201···O12 0.85 2.02 2.8531 (10) 166.8
O19—H192···O14i 0.85 1.89 2.7460 (10) 178.5

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) −x+2, y−1/2, −z+3/2.

References

  1. Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  4. Bie, H. Y., Lu, J., Yu, J. H., Xu, J., Zhao, K. & Zhang, X. (2005). J. Solid State Chem. 178, 1445–1451.
  5. Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.
  6. Fan, G., Deng, L.-J., Ma, Z.-Y., Li, X.-B., Zhang, Y.-L. & Sun, J.-J. (2016). Chin. J. Struct. Chem. 35, 100–106.
  7. Ma, Z. & Moulton, B. (2007). Mol. Pharm. 4, 373–385. [DOI] [PubMed]
  8. Oxford Diffraction (2006). Gemini User Manual. Oxford Diffraction, Abingdon, England.
  9. Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.
  10. Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
  11. Shylin, S. I., Gural’skiy, I. A., Bykov, D., Demeshko, S., Dechert, S., Meyer, F., Hauka, M. & Fritsky, I. O. (2015). Polyhedron, 87, 147–155.
  12. Shylin, S. I., Gural’skiy, I. A., Haukka, M. & Golenya, I. A. (2013). Acta Cryst. E69, m280. [DOI] [PMC free article] [PubMed]
  13. Taşdemir, E., Özbek, F. E., Sertçelik, M., Hökelek, T., Çelik, R. Ç., & Necefoğlu, H. (2016). J. Mol. Struct. 1119, 472–478.
  14. Trask, A. V., Motherwell, W. D. S. & Jones, W. (2005). Cryst. Growth Des. 5, 1013–1021.
  15. Watkin, D. (1994). Acta Cryst. A50, 411–437.
  16. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017008180/rz5216sup1.cif

e-73-00980-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017008180/rz5216Isup2.hkl

e-73-00980-Isup2.hkl (251KB, hkl)

CCDC reference: 1553654

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES