Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jun 7;73(Pt 7):983–986. doi: 10.1107/S2056989017008283

Crystal structure of (–)-methyl (R,E)-4-[(2R,4R)-2-amino-2-tri­chloro­methyl-1,3-dioxolan-4-yl]-4-hy­droxy-2-methyl­but-2-enoate

Takeshi Oishi a,*, Mayu Kidena b, Tomoya Sugai b, Takaaki Sato b, Noritaka Chida b
PMCID: PMC5499274  PMID: 28775866

In the title compound, the 1,3-dioxane ring has an envelope conformation. In the crystal, classical O—H⋯O and N—H⋯O hydrogen bonds link mol­ecules into a sheet structure, and a weak inter­molecular C—H⋯Cl inter­action extends the sheet structure into a three-dimensional network.

Keywords: crystal structure; 1,3-dioxolane; hy­droxy group; amino group; hydrogen bonding

Abstract

In the title compound, C10H14Cl3NO5, the five-membered dioxolane ring adopts an envelope conformation with the C atom bonded to the butenoate side chain as the flap. It deviates from the mean plane of the other atoms in the ring by 0.446 (6) Å. In the crystal, mol­ecules are connected by O—H⋯O hydrogen bonds into helical chains running along the b-axis direction. The chains are linked into a sheet structure parallel to (001) by an N—H⋯O hydrogen bond. These classical hydrogen bonds enclose an R 4 4(24) graph-set motif in the sheet structure. Furthermore, a weak inter­molecular C—H⋯Cl inter­action expands the sheet structures into a three-dimensional network.

Chemical context  

Cyclic compounds often play a significant role, not only in controlling stereochemistry due to their conformational rigidity, but also as protecting groups in organic synthesis. On the basis of this concept, we have explored the utilization of cyclic ortho­amides, prepared from allylic diol and triol with known conditions (Overman, 1974; 1976), and have developed a new strategy for the total synthesis of a certain natural product (Nakayama, et al., 2013). The title compound is a structural isomer of a recently reported compound (Oishi et al., 2016).graphic file with name e-73-00983-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The 1,3-dioxolane ring (C5/O7/C8/C9/O10) adopts an envelope conformation with the flap atom C9 deviating by 0.446 (6) Å from the mean plane of the other four atoms [puckering parameters are Q(2) = 0.285 (4) Å and φ(2) = 296.7 (8)°]. The C=C and C=O double bonds of the unsat­urated ester are slightly skewed with torsion angle C13=C14—C16=O18 being of 8.4 (6)°. There is a weak intra­molecular N6—H6A⋯Cl1 inter­action present (Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The purple dotted line indicates the short intra­molecular N—H⋯Cl contact (see Table 1). Only H atoms connected to N, O and chiral C atoms are shown for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯Cl1 0.87 (2) 2.66 (4) 3.118 (4) 115 (3)
O12—H12⋯O17i 0.84 1.97 2.774 (4) 161
N6—H6B⋯O12ii 0.84 (2) 2.28 (3) 3.047 (5) 152 (4)
C8—H8B⋯Cl2iii 0.99 2.83 3.713 (5) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, a classical O—H⋯O hydrogen bond (O12—H12⋯O17i; Table 1) connects the mol­ecules into a helical-chain running along the b-axis direction, with a C(7) graph-set motif (Fig. 2). A classical N—H⋯O hydrogen bond (N6—H6B⋯O12ii; Table 1), which is formed between one of N-bound H atoms and hy­droxy O group, links the chains into a sheet structure parallel to (001), also generating a C(7) graph-set motif (Fig. 3). In the sheet structure, the classical O—H⋯O and N—H⋯O hydrogen bonds enclose an Inline graphic(24) graph-set motif (Fig. 4). Furthermore, a weak C—H⋯Cl inter­action (C8—H8B⋯Cl2iii; Table 1) supports the crystal packing to construct a three-dimensional architecture (Fig. 2). An inter­molecular Cl1⋯O17 (x, y − 1, z) short contact of 3.076 (3) Å is also observed.

Figure 2.

Figure 2

The crystal packing of the title compound, viewed along the a axis, showing the helical chain structures running along the b-axis direction. Yellow lines indicate the inter­molecular O—H⋯O hydrogen bonds. Black dashed lines indicate weak inter­molecular C—H⋯Cl inter­actions. Only H atoms involved in the hydrogen bonds are shown for clarity. [Symmetry codes: (i) −x + 1, y – 1/2, −z; (iii) −x + 1, y + Inline graphic, −z + 1.]

Figure 3.

Figure 3

The crystal packing of the title compound, viewed along the c axis, showing the sheet structure parallel to (001). The helical chain running along the b-axis direction is drawn as overlapped mol­ecules. Yellow lines indicate the inter­molecular N—H⋯O hydrogen bonds. Only H atoms involved in the hydrogen bonds are shown for clarity. [Symmetry code: (ii) x – 1, y, z.]

Figure 4.

Figure 4

A part of sheet structure, showing the Inline graphic graph-set motif generated by classical O—H⋯O and N—H⋯O hydrogen bonds. Yellow lines indicate the inter­molecular O—H⋯O and N—H⋯O hydrogen bonds. Only H atoms involved in the hydrogen bonds are shown for clarity. [Symmetry codes: (i) −x + 1, y – 1/2, −z; (ii) x – 1, y, z; (iv) −x, y − Inline graphic, −z.]

Database survey  

In the Cambridge Structural Database (CSD, Version 5.38, Feb. 2017; Groom et al., 2016), there are two structures containing the 4-alk­oxy-2-methyl-4-(2-methyl-1,3-dioxolan-4-yl)but-2-enoate skeleton, (a), related to the title compound (Fig. 5), but its 4-hy­droxy free derivative (R = H) has not yet been reported.

Figure 5.

Figure 5

The core structures for the database survey; (a) 4-alk­oxy-2-methyl-4-(2-methyl-1,3-dioxolan-4-yl)but-2-enoate, (b) 2-amino-2-tri­chloro­methyl-1,3-dioxolane, and its (c) -1,3-oxa­thiol­ane and (d) -1,3-dioxane derivatives instead of the 1,3-dioxolane ring.

For the cyclic ortho­amide core with a tri­chloro­methyl group on the central carbon atom, four structures are registered in the CSD. These are two derivatives (WEKWOY: Haeckel et al., 1994; and LAGMAK: Oishi et al., 2016) of 1,3-dioxolane (b), one derivative (WAXBEE: Metwally, 2011) of 1,3-oxa­thiol­ane (c), and one derivative (LIBHIO: Rondot et al., 2007) of 1,3-dioxane (d). The amino H atoms were refined as adopting an sp 2 configuration for WEKWOY and WAXBEE, while they were refined assuming an sp 3 configuration of the N atom for LIBHIO and LAGMAK, as in the present study. Each N—H bond of the amino group in LIBHIO is mostly eclipsed by the neighbouring C—Cl bonds of the tri­chloro­methyl group, whereas those in the title compound are slightly tilted (Fig. 6). There is an intra­molecular N—H⋯Cl inter­action [H6A⋯Cl1 = 2.66 (4) Å; N6—H6A⋯Cl1 = 115 (3)°] in the title compound (Table 1), while the corres­ponding geometries are 2.76 Å and 109° in LIBHIO. These amino groups may be oriented to avoid intra­molecular non-bonding short contacts as well as to form classical inter­molecular hydrogen bonds. The amino H atoms in LAGMAK are disordered according to the possible intra­molecular N—H⋯O and N⋯H—O hydrogen bonds with the hy­droxy group (Oishi et al., 2016).

Figure 6.

Figure 6

A projected diagram looking through the N atom of the amino group onto the C atom of the tri­chloro­methyl group.

Synthesis and crystallization  

The title compound was afforded from l-threose, which can be prepared according to the reported procedure (Smith et al., 1992) from d-galactose (Kidena et al., 2017). Purification was carried out by silica gel column chromatography, and colourless crystals were obtained from a benzene solution under a hexane-saturated atmosphere, by slow evaporation at ambient temperature (m.p. 358–359 K). [α]D 24 – 32.7 (c 1.01, CHCl3). HRMS (ESI) m/z calculated for C10H15Cl3NO5 + [M + H]+: 334.0016; found: 334.0016.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with U iso(H) = 1.5U eq(methyl C) and 1.2U eq(C) for other C-bound H atoms. The hy­droxy H atom was placed, guided by difference-Fourier maps, with O—H = 0.84 Å and refined with U iso(H) = 1.5U eq(O). The amino H atoms were placed, guided by difference-Fourier maps, and were refined with distance restraints of N—H = 0.86 (2) Å and H⋯H = 1.40 (2) Å, with U iso(H) = 1.2U eq(N).

Table 2. Experimental details.

Crystal data
Chemical formula C10H14Cl3NO5
M r 334.57
Crystal system, space group Monoclinic, P21
Temperature (K) 90
a, b, c (Å) 5.8494 (4), 12.6458 (8), 9.5658 (6)
β (°) 104.763 (2)
V3) 684.23 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.68
Crystal size (mm) 0.28 × 0.22 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.83, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 10686, 2376, 2268
R int 0.042
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.030, 0.060, 1.06
No. of reflections 2376
No. of parameters 181
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.29
Absolute structure Flack x determined using 993 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter 0.04 (3)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017008283/su5377sup1.cif

e-73-00983-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017008283/su5377Isup2.hkl

e-73-00983-Isup2.hkl (130.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017008283/su5377Isup3.cml

CCDC reference: 1554119

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor S. Ohba (Keio University, Japan) for his valuable advice.

supplementary crystallographic information

Crystal data

C10H14Cl3NO5 Dx = 1.624 Mg m3
Mr = 334.57 Melting point = 358–359 K
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 5.8494 (4) Å Cell parameters from 8568 reflections
b = 12.6458 (8) Å θ = 2.7–25.4°
c = 9.5658 (6) Å µ = 0.68 mm1
β = 104.763 (2)° T = 90 K
V = 684.23 (8) Å3 Plate, colorless
Z = 2 0.28 × 0.22 × 0.08 mm
F(000) = 344

Data collection

Bruker D8 Venture diffractometer 2376 independent reflections
Radiation source: fine-focus sealed tube 2268 reflections with I > 2σ(I)
Multilayered confocal mirror monochromator Rint = 0.042
Detector resolution: 7.4074 pixels mm-1 θmax = 25.0°, θmin = 2.2°
φ and ω scans h = −6→6
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −15→15
Tmin = 0.83, Tmax = 0.95 l = −11→11
10686 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + 0.7994P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2376 reflections Δρmax = 0.28 e Å3
181 parameters Δρmin = −0.29 e Å3
4 restraints Absolute structure: Flack x determined using 993 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.04 (3)

Special details

Experimental. IR (film): 3393, 3325, 2953, 1714, 1438, 1239, 1093, 1035, 825, 803, 749 cm-1; 1H NMR (500 MHz, CDCl3): δ (p.p.m.) 6.78 (dq, J = 8.7, 1.4 Hz, 1H; H13), 4.69–4.62 (m, 1H; H12), 4.65 (ddd, J = 7.0, 4.3, 2.9 Hz, 1H; H9), 4.43–4.39 (m, 3H; H8AB & H11), 3.75 (s, 3H; H19ABC), 2.95 (bs, 2H; H6AB), 1.92 (d, J = 1.4 Hz, 3H; H14ABC); 13C NMR (125 MHz, CDCl3): δ (p.p.m.) 168.2 (C; C16), 138.9 (CH; C13), 130.2 (C; C14), 116.0 (C; C5), 103.3 (C; C4), 82.9 (CH; C9), 70.1 (CH2; C8), 69.2 (CH; C11), 52.2 (CH3; C19), 13.2 (CH3; C14).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.49362 (19) 0.09132 (8) 0.28126 (12) 0.0182 (2)
Cl2 0.63815 (19) 0.22438 (8) 0.53302 (11) 0.0188 (3)
Cl3 0.14274 (19) 0.19083 (8) 0.40183 (12) 0.0218 (3)
C4 0.4229 (7) 0.2071 (3) 0.3659 (4) 0.0158 (9)
C5 0.4173 (7) 0.3050 (3) 0.2656 (5) 0.0136 (9)
N6 0.2535 (7) 0.2954 (3) 0.1287 (4) 0.0173 (8)
H6A 0.236 (7) 0.230 (2) 0.099 (5) 0.021*
H6B 0.121 (6) 0.321 (3) 0.128 (5) 0.021*
O7 0.3602 (5) 0.3953 (2) 0.3345 (3) 0.0151 (7)
C8 0.5670 (8) 0.4608 (3) 0.3782 (5) 0.0163 (10)
H8A 0.6482 0.4492 0.4812 0.02*
H8B 0.5255 0.5366 0.3633 0.02*
C9 0.7202 (8) 0.4255 (3) 0.2809 (4) 0.0149 (9)
H9 0.8909 0.4302 0.334 0.018*
O10 0.6524 (5) 0.3163 (2) 0.2537 (3) 0.0136 (6)
C11 0.6763 (8) 0.4863 (3) 0.1386 (5) 0.0146 (10)
H11 0.508 0.4774 0.0826 0.018*
O12 0.8311 (5) 0.4449 (2) 0.0574 (3) 0.0162 (7)
H12 0.7506 0.417 −0.019 0.024*
C13 0.7305 (7) 0.6008 (3) 0.1666 (4) 0.0142 (9)
H13 0.8909 0.6187 0.2091 0.017*
C14 0.5772 (7) 0.6801 (4) 0.1381 (4) 0.0137 (9)
C15 0.3168 (7) 0.6713 (4) 0.0683 (5) 0.0198 (10)
H15A 0.282 0.7022 −0.0288 0.03*
H15B 0.2282 0.7093 0.1268 0.03*
H15C 0.2704 0.5966 0.0615 0.03*
C16 0.6582 (8) 0.7912 (3) 0.1764 (5) 0.0146 (10)
O17 0.5238 (5) 0.8654 (2) 0.1682 (3) 0.0165 (7)
O18 0.8922 (5) 0.8021 (2) 0.2209 (3) 0.0151 (7)
C19 0.9749 (8) 0.9094 (3) 0.2504 (5) 0.0209 (11)
H19A 1.1481 0.9103 0.2763 0.031*
H19B 0.918 0.9378 0.3307 0.031*
H19C 0.9147 0.953 0.1641 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0221 (6) 0.0107 (5) 0.0232 (6) 0.0009 (5) 0.0080 (5) −0.0014 (5)
Cl2 0.0220 (6) 0.0165 (6) 0.0159 (5) −0.0020 (5) 0.0014 (4) 0.0028 (5)
Cl3 0.0160 (6) 0.0218 (6) 0.0312 (6) −0.0003 (5) 0.0124 (5) 0.0039 (5)
C4 0.015 (2) 0.017 (3) 0.017 (2) −0.0005 (19) 0.0063 (18) −0.001 (2)
C5 0.012 (2) 0.012 (2) 0.016 (2) −0.0005 (19) 0.0046 (19) −0.0001 (19)
N6 0.0160 (19) 0.017 (2) 0.018 (2) 0.0019 (17) 0.0027 (17) −0.0012 (17)
O7 0.0155 (16) 0.0100 (16) 0.0208 (16) 0.0031 (13) 0.0068 (13) −0.0037 (13)
C8 0.022 (2) 0.011 (2) 0.016 (2) −0.002 (2) 0.0044 (19) −0.0007 (19)
C9 0.016 (2) 0.012 (2) 0.016 (2) −0.0047 (18) 0.0028 (18) −0.0050 (19)
O10 0.0141 (15) 0.0077 (15) 0.0204 (16) 0.0000 (12) 0.0068 (13) 0.0006 (12)
C11 0.014 (2) 0.013 (2) 0.016 (2) 0.0026 (18) 0.0025 (19) 0.0009 (19)
O12 0.0160 (16) 0.0174 (17) 0.0154 (16) −0.0006 (13) 0.0042 (13) −0.0033 (14)
C13 0.014 (2) 0.014 (2) 0.015 (2) −0.0002 (19) 0.0040 (18) −0.002 (2)
C14 0.018 (2) 0.011 (2) 0.013 (2) −0.003 (2) 0.0053 (18) 0.0030 (19)
C15 0.014 (2) 0.016 (2) 0.030 (3) 0.0027 (19) 0.006 (2) 0.000 (2)
C16 0.018 (2) 0.017 (2) 0.010 (2) 0.001 (2) 0.0072 (18) 0.002 (2)
O17 0.0167 (16) 0.0138 (16) 0.0186 (16) 0.0034 (14) 0.0034 (13) 0.0005 (14)
O18 0.0124 (16) 0.0105 (15) 0.0208 (16) −0.0026 (13) 0.0016 (13) −0.0004 (13)
C19 0.020 (3) 0.009 (2) 0.030 (3) −0.0012 (19) 0.000 (2) −0.003 (2)

Geometric parameters (Å, º)

Cl1—C4 1.773 (4) C11—C13 1.492 (6)
Cl2—C4 1.778 (4) C11—H11 1.0
Cl3—C4 1.770 (4) O12—H12 0.84
C4—C5 1.561 (6) C13—C14 1.327 (6)
C5—O7 1.401 (5) C13—H13 0.95
C5—O10 1.416 (5) C14—C16 1.498 (6)
C5—N6 1.417 (6) C14—C15 1.503 (6)
N6—H6A 0.87 (2) C15—H15A 0.98
N6—H6B 0.84 (2) C15—H15B 0.98
O7—C8 1.438 (5) C15—H15C 0.98
C8—C9 1.514 (6) C16—O17 1.213 (5)
C8—H8A 0.99 C16—O18 1.333 (5)
C8—H8B 0.99 O18—C19 1.444 (5)
C9—O10 1.442 (5) C19—H19A 0.98
C9—C11 1.527 (6) C19—H19B 0.98
C9—H9 1.0 C19—H19C 0.98
C11—O12 1.433 (5)
C5—C4—Cl3 109.6 (3) O12—C11—C13 108.4 (3)
C5—C4—Cl1 110.2 (3) O12—C11—C9 108.3 (3)
Cl3—C4—Cl1 109.1 (2) C13—C11—C9 110.4 (3)
C5—C4—Cl2 110.8 (3) O12—C11—H11 109.9
Cl3—C4—Cl2 108.6 (2) C13—C11—H11 109.9
Cl1—C4—Cl2 108.5 (2) C9—C11—H11 109.9
O7—C5—O10 108.0 (3) C11—O12—H12 109.5
O7—C5—N6 108.5 (3) C14—C13—C11 126.5 (4)
O10—C5—N6 112.1 (3) C14—C13—H13 116.7
O7—C5—C4 109.1 (3) C11—C13—H13 116.7
O10—C5—C4 105.1 (3) C13—C14—C16 120.2 (4)
N6—C5—C4 113.8 (4) C13—C14—C15 126.2 (4)
C5—N6—H6A 112 (3) C16—C14—C15 113.6 (4)
C5—N6—H6B 112 (3) C14—C15—H15A 109.5
H6A—N6—H6B 109 (4) C14—C15—H15B 109.5
C5—O7—C8 108.8 (3) H15A—C15—H15B 109.5
O7—C8—C9 103.7 (3) C14—C15—H15C 109.5
O7—C8—H8A 111.0 H15A—C15—H15C 109.5
C9—C8—H8A 111.0 H15B—C15—H15C 109.5
O7—C8—H8B 111.0 O17—C16—O18 122.5 (4)
C9—C8—H8B 111.0 O17—C16—C14 123.3 (4)
H8A—C8—H8B 109.0 O18—C16—C14 114.2 (4)
O10—C9—C8 102.4 (3) C16—O18—C19 115.2 (3)
O10—C9—C11 110.2 (3) O18—C19—H19A 109.5
C8—C9—C11 114.1 (4) O18—C19—H19B 109.5
O10—C9—H9 110.0 H19A—C19—H19B 109.5
C8—C9—H9 110.0 O18—C19—H19C 109.5
C11—C9—H9 110.0 H19A—C19—H19C 109.5
C5—O10—C9 108.0 (3) H19B—C19—H19C 109.5
Cl3—C4—C5—O7 59.6 (4) C4—C5—O10—C9 −131.3 (3)
Cl1—C4—C5—O7 179.7 (3) C8—C9—O10—C5 27.3 (4)
Cl2—C4—C5—O7 −60.2 (4) C11—C9—O10—C5 −94.5 (4)
Cl3—C4—C5—O10 175.2 (3) O10—C9—C11—O12 −65.3 (4)
Cl1—C4—C5—O10 −64.7 (3) C8—C9—C11—O12 −179.8 (3)
Cl2—C4—C5—O10 55.5 (4) O10—C9—C11—C13 176.1 (3)
Cl3—C4—C5—N6 −61.8 (4) C8—C9—C11—C13 61.6 (5)
Cl1—C4—C5—N6 58.4 (4) O12—C11—C13—C14 127.4 (4)
Cl2—C4—C5—N6 178.5 (3) C9—C11—C13—C14 −114.1 (5)
O10—C5—O7—C8 −4.9 (4) C11—C13—C14—C16 178.3 (4)
N6—C5—O7—C8 −126.7 (4) C11—C13—C14—C15 −1.5 (7)
C4—C5—O7—C8 108.8 (3) C13—C14—C16—O17 −171.5 (4)
C5—O7—C8—C9 21.5 (4) C15—C14—C16—O17 8.3 (6)
O7—C8—C9—O10 −29.3 (4) C13—C14—C16—O18 8.4 (6)
O7—C8—C9—C11 89.7 (4) C15—C14—C16—O18 −171.7 (3)
O7—C5—O10—C9 −14.9 (4) O17—C16—O18—C19 −3.5 (6)
N6—C5—O10—C9 104.6 (4) C14—C16—O18—C19 176.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N6—H6A···Cl1 0.87 (2) 2.66 (4) 3.118 (4) 115 (3)
O12—H12···O17i 0.84 1.97 2.774 (4) 161
N6—H6B···O12ii 0.84 (2) 2.28 (3) 3.047 (5) 152 (4)
C8—H8B···Cl2iii 0.99 2.83 3.713 (5) 149

Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+1.

Funding Statement

This work was funded by Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research grant .

References

  1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  3. Haeckel, R., Troll, C., Fischer, H. & Schmidt, R. R. (1994). Synlett, pp. 84–86.
  4. Kidena, M., Sugai, T., Sato, T. & Chida, N. (2017). In preparation. [DOI] [PMC free article] [PubMed]
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Metwally, N. H. (2011). Arkivoc, 10, 254–265.
  7. Nakayama, Y., Sekiya, R., Oishi, H., Hama, N., Yamazaki, M., Sato, T. & Chida, N. (2013). Chem. Eur. J. 19, 12052–12058. [DOI] [PubMed]
  8. Oishi, T., Yasushima, D., Yuasa, K., Sato, T. & Chida, N. (2016). Acta Cryst. E72, 343–346. [DOI] [PMC free article] [PubMed]
  9. Overman, L. E. (1974). J. Am. Chem. Soc. 96, 597–599.
  10. Overman, L. E. (1976). J. Am. Chem. Soc. 98, 2901–2910.
  11. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  12. Rondot, C., Retailleau, P. & Zhu, J. (2007). Org. Lett. 9, 247–250. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Smith, A. B. III, Sulikowski, G. A., Sulikowski, M. M. & Fujimoto, K. (1992). J. Am. Chem. Soc. 114, 2567–2576.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017008283/su5377sup1.cif

e-73-00983-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017008283/su5377Isup2.hkl

e-73-00983-Isup2.hkl (130.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017008283/su5377Isup3.cml

CCDC reference: 1554119

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES