Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jun 16;73(Pt 7):1041–1043. doi: 10.1107/S2056989017008738

Crystal structure of N′-[2-(benzo[d]thia­zol-2-yl)acet­yl]-4-methyl­benzene­sulfono­hydrazide

Rasha A Azzam a, Galal H Elgemeie a, Rasha E Elsayed a, Peter G Jones b,*
PMCID: PMC5499286  PMID: 28775878

In the title compound, the hydrazide N atom bonded to the C=O group is planar, whereas that bonded to the SO2 group is pyramidally coordinated. The inter­planar angle between the ring systems is 40.71 (3)°. In the crystal, mol­ecules are connected by N—H⋯O=C and N—H⋯Nthia­zole hydrogen bonds, forming ribbons parallel to the b axis.

Keywords: crystal structure, benzo­thia­zole, hydrazide

Abstract

In the title compound, C16H15N3O3S2, the hydrazide N atom bonded to the C=O group is planar, whereas that bonded to the SO2 group is pyramidally coordinated. The inter­planar angle between the ring systems is 40.71 (3)°. Mol­ecules are connected into ribbons parallel to the b axis by two classical hydrogen bonds N—H⋯O=C and N—H⋯Nthia­zole.

Chemical context  

Benzo­thia­zoles are versatile heterocyclic compounds with potential pharmaceutical applications (Elgemeie & Aal, 1986). Various benzo­thia­zoles have been used as anti-inflammatory, anti­microbial and analgesic agents and as laser dyes (Elgemeie, 1989). This has led to an increasing inter­est in benzo­thia­zole derivatives in the area of drug design and discovery (Elgemeie et al., 2000). As a part of our research work on new syntheses of benzo­thia­zoles as chemotherapeutic agents (Elgemeie et al., 2017), we have previously reported the synthesis of 2-aryl­benzo­thia­zoles that later found applications as anti­cancer agents and are presently in clinical use for various diseases (Elgemeie & Elghandour, 1990). We report here the new compound N′-(2-(benzo[d]thia­zol-2-yl)acet­yl)-4-methyl­benzene­sulfono­hydrazide (1), which was prepared by the reaction of 2-(benzo[d]thia­zol-2-yl)acetohydrazide with p-toluene­sulfonyl chloride in the presence of pyridine at room temperature. The structure of (1) was determined on the basis of its spectroscopic data and elemental analysis (see Experimental). In order to establish the structure of the product unambiguously, its crystal structure was determined.graphic file with name e-73-01041-scheme1.jpg

Structural commentary  

The X-ray analysis confirms the exclusive presence of the form (1) in the solid state (Fig. 1). The mol­ecular dimensions may be regarded as normal (Table 1); the torsion angles defining the conformation of the chain connecting the ring systems are also given in this Table. The bond lengths C2—S1 and C2—N3 in the heterocycle correspond well with the average values of 1.750 (15) and 1.200 (14) Å found in the Cambridge Structural Database (Version 5.38; Groom et al., 2016) for 375 examples of this ring system (unsubstituted benzo ring, carbon-substituted at C2). Nitro­gen N1 displays a planar geometry, whereas N2 is pyramidal [they lie 0.014 (7) and 0.337 (8) Å, respectively, outside the plane of their substituents]. Hydrogen atom H01 is anti­periplanar to O3 and H02 to O2 across the N1—C9 and N2—S2 bonds, respectively. The inter­planar angle between the ring systems is 40.71 (3)°.

Figure 1.

Figure 1

The structure of compound (1) in the crystal, with displacement ellipsoids at the 50% probability level.

Table 1. Selected geometric parameters (Å, °).

S1—C2 1.7373 (11) N1—N2 1.4069 (12)
C2—N3 1.2972 (14)    
       
C7A—S1—C2 89.39 (5) N1—N2—S2 112.94 (7)
C9—N1—N2 121.14 (9)    
       
S1—C2—C8—C9 −80.57 (10) N2—S2—C11—C12 77.16 (9)
C2—C8—C9—N1 −109.79 (10) H01—N1—N2—H02 −146.7 (17)
C8—C9—N1—N2 176.74 (9) O3—C9—N1—H01 175.5 (13)
C9—N1—N2—S2 −96.08 (10) H02—N2—S2—O2 179.1 (12)
N1—N2—S2—C11 62.53 (8)    

Supra­molecular features  

Mol­ecules are connected by two pairs of classical hydrogen bonds across inversion centres, to form ribbons parallel to the b axis (Table 2, Fig. 2). A C—H⋯O inter­action connects the mol­ecules by c-axis translation (not shown in the Figure), forming layers parallel to (100).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯N3i 0.866 (16) 2.013 (16) 2.8717 (13) 171.0 (15)
N2—H02⋯O3ii 0.845 (17) 2.029 (17) 2.8553 (12) 165.7 (16)
C6—H6⋯O2iii 0.95 2.54 3.4142 (15) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Packing diagram of compound (1), viewed perpendicular to the bc plane. Hydrogen bonds are drawn as thick dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.

Database survey  

A search of the Cambridge Database (Version 5.38; Groom et al., 2016) for the substructure Ar—SO2—NH—NH—C(=O)—C gave six hits: EYOZIB, KUKYOG, XOVFEV, XOZDOG, YOTKAU and ZIVVUX.

Synthesis and crystallization  

A solution of p-toluene­sulfonyl chloride (1.90 g, 0.015 mol) in pyridine (10 ml) was added gradually to a stirred solution of 2-(benzo[d]thia­zol-2-yl)acetohydrazide (2.07 g, 0.01 mol) in pyridine (10 ml) at 273 K. The reaction mixture was then stirred at room temperature for 3 h (TLC control). After the reaction was completed, the mixture was poured into ice-water with continuous stirring and neutralized with 1 N HCl solution to pH 7. The precipitate thus formed was filtered off, washed with water and recrystallized from ethanol to give colourless crystals (yield 85%; m.p. = 458 K). IR (KBr, cm−1): ν 3427 (NH), 3164 (Ar CH), 2929, 2858 (CH3, CH2), 1692 (C=O); 1H NMR (400 MHz, DMSO-d 6): δ 2.26 (s, 3H, CH3), 3.95 (s, 2H, CH2), 7.15 (d, J = 8 Hz, 2H, SO2C6H4), 7.44 (t, J = 8 Hz, 1H, benzo­thia­zole H), 7.52 (t, J = 8 Hz, 1H, benzo­thia­zole H), 7.62 (d, J = 8 Hz, 2H, SO2C6H4), 7.96 (d, J = 8 Hz, 1H, benzo­thia­zole H), 8.07 (d, J = 8 Hz, 1H, benzo­thia­zole H), 9.95 (s, 1H, NH), 10.52 (s, 1H, NH).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. NH hydrogen atoms were refined freely. The methyl hydrogen atoms were not well defined and so were refined as a hexa­gon of half-occupied sites with C—H = 0.98 Å (AFIX 127). Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene 0.99 Å) with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C16H15N3O3S2
M r 361.43
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 8.3436 (4), 9.7591 (5), 10.8815 (6)
α, β, γ (°) 97.905 (4), 98.142 (4), 101.576 (4)
V3) 846.59 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.5 × 0.4 × 0.2
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
T min, T max 0.952, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 45592, 5040, 4503
R int 0.032
(sin θ/λ)max−1) 0.726
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.031, 0.079, 1.05
No. of reflections 5040
No. of parameters 226
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.42

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 and SHELXL97 (Sheldrick, 2008) and XP (Siemens, 1994).

Despite the slightly larger ellipsoid of the benzo­thia­zol sulfur atom S1, there is no evidence for significant mixing (disorder) of the sites N3/S1.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017008738/hg5489sup1.cif

e-73-01041-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017008738/hg5489Isup2.hkl

e-73-01041-Isup2.hkl (246.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017008738/hg5489Isup3.cml

CCDC reference: 1555516

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C16H15N3O3S2 Z = 2
Mr = 361.43 F(000) = 376
Triclinic, P1 Dx = 1.418 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.3436 (4) Å Cell parameters from 13640 reflections
b = 9.7591 (5) Å θ = 2.6–30.8°
c = 10.8815 (6) Å µ = 0.33 mm1
α = 97.905 (4)° T = 100 K
β = 98.142 (4)° Tablet, colourless
γ = 101.576 (4)° 0.5 × 0.4 × 0.2 mm
V = 846.59 (8) Å3

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 5040 independent reflections
Radiation source: fine-focus sealed X-ray tube 4503 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
Detector resolution: 16.1419 pixels mm-1 θmax = 31.1°, θmin = 2.5°
ω–scan h = −12→11
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) k = −14→14
Tmin = 0.952, Tmax = 1.000 l = −15→15
45592 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.355P] where P = (Fo2 + 2Fc2)/3
5040 reflections (Δ/σ)max = 0.008
226 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 6.2088 (0.0012) x - 6.2111 (0.0022) y + 4.5043 (0.0028) z = 5.8783 (0.0023) * -0.0257 (0.0005) S1 * -0.0152 (0.0007) C2 * 0.0114 (0.0007) N3 * 0.0250 (0.0009) C3A * -0.0026 (0.0008) C4 * -0.0272 (0.0009) C5 * -0.0057 (0.0009) C6 * 0.0176 (0.0009) C7 * 0.0223 (0.0009) C7A Rms deviation of fitted atoms = 0.0190 7.8014 (0.0014) x - 0.3099 (0.0046) y + 1.6293 (0.0049) z = 2.0216 (0.0030) Angle to previous plane (with approximate esd) = 40.71 ( 0.03 ) * 0.0051 (0.0008) C11 * -0.0053 (0.0008) C12 * -0.0012 (0.0008) C13 * 0.0080 (0.0008) C14 * -0.0083 (0.0008) C15 * 0.0018 (0.0008) C16 Rms deviation of fitted atoms = 0.0057=========================================================== Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 6.5691 (0.0357) x + 3.5739 (0.0897) y - 5.4501 (0.0327) z = 1.7544 (0.0236) * 0.0000 (0.0001) C9 * 0.0000 (0.0000) H01 * 0.0000 (0.0000) N2 -0.0139 (0.0071) N1 Rms deviation of fitted atoms = 0.0000 - 2.5491 (0.0143) x + 2.7622 (0.0942) y + 9.8695 (0.0419) z = 3.6614 (0.0102) Angle to previous plane (with approximate esd) = 66.25 ( 0.42 ) * 0.0000 (0.0000) S2 * 0.0000 (0.0000) H02 * 0.0000 (0.0000) N1 -0.3372 (0.0082) N2 Rms deviation of fitted atoms = 0.0000
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.57619 (4) 0.26397 (3) 0.86910 (3) 0.01947 (7)
C2 0.56817 (13) 0.15226 (11) 0.72845 (10) 0.01492 (19)
N3 0.46391 (11) 0.03031 (9) 0.70990 (9) 0.01448 (17)
C3A 0.38014 (13) 0.01774 (11) 0.81106 (10) 0.01466 (19)
C4 0.25456 (14) −0.09823 (12) 0.81811 (11) 0.0185 (2)
H4 0.2221 −0.1782 0.7522 0.022*
C5 0.17867 (14) −0.09401 (13) 0.92308 (12) 0.0223 (2)
H5 0.0920 −0.1714 0.9287 0.027*
C6 0.22767 (15) 0.02293 (14) 1.02157 (11) 0.0238 (2)
H6 0.1749 0.0225 1.0934 0.029*
C7 0.35125 (15) 0.13868 (13) 1.01602 (11) 0.0223 (2)
H7 0.3840 0.2178 1.0827 0.027*
C7A 0.42644 (13) 0.13542 (12) 0.90892 (10) 0.0170 (2)
C8 0.66708 (13) 0.20010 (12) 0.63115 (11) 0.0172 (2)
H8A 0.6814 0.1169 0.5740 0.021*
H8B 0.7784 0.2573 0.6723 0.021*
C9 0.57197 (12) 0.28914 (11) 0.55711 (10) 0.01401 (19)
N1 0.50433 (11) 0.22734 (9) 0.43761 (9) 0.01544 (17)
H01 0.519 (2) 0.1475 (18) 0.4007 (15) 0.027 (4)*
N2 0.40574 (11) 0.29335 (10) 0.35950 (9) 0.01529 (17)
H02 0.434 (2) 0.3829 (18) 0.3759 (15) 0.029 (4)*
O1 0.12667 (11) 0.31786 (9) 0.27597 (8) 0.02335 (18)
S2 0.20281 (3) 0.23646 (3) 0.35718 (2) 0.01622 (7)
O2 0.16863 (11) 0.08446 (8) 0.32664 (8) 0.02168 (17)
O3 0.55748 (10) 0.40588 (8) 0.60522 (8) 0.01870 (16)
C11 0.16430 (13) 0.28095 (11) 0.51069 (11) 0.0163 (2)
C12 0.15942 (14) 0.42100 (12) 0.55429 (12) 0.0203 (2)
H12 0.1721 0.4901 0.5007 0.024*
C13 0.13587 (15) 0.45785 (12) 0.67661 (12) 0.0233 (2)
H13 0.1329 0.5532 0.7069 0.028*
C14 0.11639 (14) 0.35757 (13) 0.75641 (11) 0.0208 (2)
C15 0.11840 (13) 0.21746 (12) 0.71012 (11) 0.0196 (2)
H15 0.1023 0.1477 0.7628 0.023*
C16 0.14367 (13) 0.17876 (11) 0.58797 (11) 0.0176 (2)
H16 0.1468 0.0835 0.5575 0.021*
C17 0.09014 (19) 0.39948 (16) 0.88922 (13) 0.0327 (3)
H17A 0.0428 0.4838 0.8946 0.049* 0.50
H17B 0.1969 0.4207 0.9468 0.049* 0.50
H17C 0.0137 0.3212 0.9127 0.049* 0.50
H17D 0.1261 0.3334 0.9415 0.049* 0.50
H17E −0.0280 0.3964 0.8893 0.049* 0.50
H17F 0.1552 0.4960 0.9233 0.049* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02314 (14) 0.01447 (12) 0.01758 (14) 0.00166 (10) 0.00006 (10) −0.00091 (9)
C2 0.0156 (4) 0.0138 (4) 0.0160 (5) 0.0062 (4) 0.0003 (4) 0.0028 (4)
N3 0.0162 (4) 0.0134 (4) 0.0152 (4) 0.0061 (3) 0.0028 (3) 0.0029 (3)
C3A 0.0154 (4) 0.0149 (4) 0.0144 (5) 0.0061 (4) 0.0009 (4) 0.0027 (4)
C4 0.0177 (5) 0.0180 (5) 0.0193 (5) 0.0038 (4) 0.0019 (4) 0.0039 (4)
C5 0.0174 (5) 0.0285 (6) 0.0225 (6) 0.0043 (4) 0.0042 (4) 0.0101 (5)
C6 0.0215 (5) 0.0366 (7) 0.0168 (5) 0.0109 (5) 0.0054 (4) 0.0074 (5)
C7 0.0249 (6) 0.0279 (6) 0.0144 (5) 0.0104 (5) 0.0017 (4) 0.0003 (4)
C7A 0.0178 (5) 0.0173 (5) 0.0155 (5) 0.0053 (4) 0.0003 (4) 0.0016 (4)
C8 0.0150 (5) 0.0175 (5) 0.0207 (5) 0.0054 (4) 0.0028 (4) 0.0064 (4)
C9 0.0130 (4) 0.0125 (4) 0.0169 (5) 0.0018 (3) 0.0033 (4) 0.0043 (4)
N1 0.0184 (4) 0.0119 (4) 0.0170 (4) 0.0071 (3) 0.0025 (3) 0.0012 (3)
N2 0.0186 (4) 0.0122 (4) 0.0155 (4) 0.0053 (3) 0.0018 (3) 0.0020 (3)
O1 0.0244 (4) 0.0237 (4) 0.0210 (4) 0.0090 (3) −0.0038 (3) 0.0031 (3)
S2 0.01722 (12) 0.01375 (12) 0.01595 (13) 0.00428 (9) −0.00088 (9) −0.00068 (9)
O2 0.0247 (4) 0.0139 (4) 0.0223 (4) 0.0018 (3) 0.0004 (3) −0.0036 (3)
O3 0.0264 (4) 0.0110 (3) 0.0175 (4) 0.0041 (3) 0.0012 (3) 0.0010 (3)
C11 0.0134 (4) 0.0156 (5) 0.0194 (5) 0.0047 (4) 0.0020 (4) −0.0002 (4)
C12 0.0219 (5) 0.0151 (5) 0.0258 (6) 0.0065 (4) 0.0074 (4) 0.0030 (4)
C13 0.0247 (6) 0.0163 (5) 0.0298 (6) 0.0070 (4) 0.0101 (5) −0.0014 (4)
C14 0.0162 (5) 0.0230 (5) 0.0235 (6) 0.0056 (4) 0.0060 (4) −0.0001 (4)
C15 0.0159 (5) 0.0206 (5) 0.0229 (6) 0.0053 (4) 0.0031 (4) 0.0049 (4)
C16 0.0149 (5) 0.0142 (5) 0.0228 (5) 0.0046 (4) 0.0006 (4) 0.0007 (4)
C17 0.0379 (7) 0.0349 (7) 0.0264 (7) 0.0088 (6) 0.0143 (6) −0.0010 (5)

Geometric parameters (Å, º)

S1—C7A 1.7310 (12) C13—C14 1.3957 (18)
S1—C2 1.7373 (11) C14—C15 1.3949 (16)
C2—N3 1.2972 (14) C14—C17 1.5056 (17)
C2—C8 1.4996 (15) C15—C16 1.3882 (16)
N3—C3A 1.3914 (14) C4—H4 0.9500
C3A—C4 1.3983 (15) C5—H5 0.9500
C3A—C7A 1.4040 (15) C6—H6 0.9500
C4—C5 1.3819 (16) C7—H7 0.9500
C5—C6 1.4037 (18) C8—H8A 0.9900
C6—C7 1.3826 (18) C8—H8B 0.9900
C7—C7A 1.3992 (16) N1—H01 0.866 (16)
C8—C9 1.5238 (14) N2—H02 0.845 (17)
C9—O3 1.2231 (13) C12—H12 0.9500
C9—N1 1.3464 (14) C13—H13 0.9500
N1—N2 1.4069 (12) C15—H15 0.9500
N2—S2 1.6680 (10) C16—H16 0.9500
O1—S2 1.4325 (8) C17—H17A 0.9800
S2—O2 1.4353 (8) C17—H17B 0.9800
S2—C11 1.7580 (11) C17—H17C 0.9800
C11—C16 1.3907 (16) C17—H17D 0.9800
C11—C12 1.3944 (15) C17—H17E 0.9800
C12—C13 1.3821 (17) C17—H17F 0.9800
C7A—S1—C2 89.39 (5) C5—C6—H6 119.4
N3—C2—C8 122.61 (10) C6—C7—H7 121.1
N3—C2—S1 115.98 (8) C7A—C7—H7 121.1
C8—C2—S1 121.25 (8) C2—C8—H8A 110.2
C2—N3—C3A 110.63 (9) C9—C8—H8A 110.2
N3—C3A—C4 124.96 (10) C2—C8—H8B 110.2
N3—C3A—C7A 114.86 (10) C9—C8—H8B 110.2
C4—C3A—C7A 120.15 (10) H8A—C8—H8B 108.5
C5—C4—C3A 118.54 (11) C9—N1—H01 124.9 (11)
C4—C5—C6 120.98 (11) N2—N1—H01 113.9 (11)
C7—C6—C5 121.26 (11) N1—N2—H02 113.1 (11)
C6—C7—C7A 117.79 (11) S2—N2—H02 111.0 (11)
C7—C7A—C3A 121.26 (11) C13—C12—H12 120.5
C7—C7A—S1 129.57 (9) C11—C12—H12 120.5
C3A—C7A—S1 109.14 (8) C12—C13—H13 119.4
C2—C8—C9 107.51 (8) C14—C13—H13 119.4
O3—C9—N1 123.90 (10) C16—C15—H15 119.6
O3—C9—C8 121.56 (10) C14—C15—H15 119.6
N1—C9—C8 114.53 (9) C15—C16—H16 120.4
C9—N1—N2 121.14 (9) C11—C16—H16 120.4
N1—N2—S2 112.94 (7) C14—C17—H17A 109.5
O1—S2—O2 120.92 (5) C14—C17—H17B 109.5
O1—S2—N2 103.98 (5) H17A—C17—H17B 109.5
O2—S2—N2 106.20 (5) C14—C17—H17C 109.5
O1—S2—C11 109.49 (5) H17A—C17—H17C 109.5
O2—S2—C11 107.66 (5) H17B—C17—H17C 109.5
N2—S2—C11 107.89 (5) C14—C17—H17D 109.5
C16—C11—C12 120.86 (10) H17A—C17—H17D 141.1
C16—C11—S2 120.35 (8) H17B—C17—H17D 56.3
C12—C11—S2 118.76 (9) H17C—C17—H17D 56.3
C13—C12—C11 119.02 (11) C14—C17—H17E 109.5
C12—C13—C14 121.22 (10) H17A—C17—H17E 56.3
C15—C14—C13 118.82 (11) H17B—C17—H17E 141.1
C15—C14—C17 120.67 (12) H17C—C17—H17E 56.3
C13—C14—C17 120.50 (11) H17D—C17—H17E 109.5
C16—C15—C14 120.77 (11) C14—C17—H17F 109.5
C15—C16—C11 119.28 (10) H17A—C17—H17F 56.3
C5—C4—H4 120.7 H17B—C17—H17F 56.3
C3A—C4—H4 120.7 H17C—C17—H17F 141.1
C4—C5—H5 119.5 H17D—C17—H17F 109.5
C6—C5—H5 119.5 H17E—C17—H17F 109.5
C7—C6—H6 119.4
C7A—S1—C2—N3 0.45 (8) C8—C9—N1—N2 176.74 (9)
C7A—S1—C2—C8 175.95 (9) C9—N1—N2—S2 −96.08 (10)
C8—C2—N3—C3A −175.40 (9) N1—N2—S2—O1 178.74 (7)
S1—C2—N3—C3A 0.03 (11) N1—N2—S2—O2 −52.67 (8)
C2—N3—C3A—C4 177.18 (10) N1—N2—S2—C11 62.53 (8)
C2—N3—C3A—C7A −0.66 (13) O1—S2—C11—C16 146.33 (9)
N3—C3A—C4—C5 −177.98 (10) O2—S2—C11—C16 13.11 (10)
C7A—C3A—C4—C5 −0.24 (16) N2—S2—C11—C16 −101.12 (9)
C3A—C4—C5—C6 −0.91 (17) O1—S2—C11—C12 −35.40 (10)
C4—C5—C6—C7 1.12 (18) O2—S2—C11—C12 −168.61 (9)
C5—C6—C7—C7A −0.15 (17) N2—S2—C11—C12 77.16 (9)
C6—C7—C7A—C3A −1.00 (16) C16—C11—C12—C13 0.85 (17)
C6—C7—C7A—S1 176.79 (9) S2—C11—C12—C13 −177.42 (9)
N3—C3A—C7A—C7 179.17 (10) C11—C12—C13—C14 −0.25 (18)
C4—C3A—C7A—C7 1.22 (16) C12—C13—C14—C15 −1.00 (18)
N3—C3A—C7A—S1 0.98 (11) C12—C13—C14—C17 −179.74 (12)
C4—C3A—C7A—S1 −176.98 (8) C13—C14—C15—C16 1.68 (17)
C2—S1—C7A—C7 −178.77 (11) C17—C14—C15—C16 −179.58 (11)
C2—S1—C7A—C3A −0.76 (8) C14—C15—C16—C11 −1.10 (16)
N3—C2—C8—C9 94.63 (11) C12—C11—C16—C15 −0.18 (16)
S1—C2—C8—C9 −80.57 (10) S2—C11—C16—C15 178.06 (8)
C2—C8—C9—O3 68.95 (13) H01—N1—N2—H02 −146.7 (17)
C2—C8—C9—N1 −109.79 (10) O3—C9—N1—H01 175.5 (13)
O3—C9—N1—N2 −1.96 (16) H02—N2—S2—O2 179.1 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H01···N3i 0.866 (16) 2.013 (16) 2.8717 (13) 171.0 (15)
N2—H02···O3ii 0.845 (17) 2.029 (17) 2.8553 (12) 165.7 (16)
C6—H6···O2iii 0.95 2.54 3.4142 (15) 154

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y, z+1.

References

  1. Elgemeie, G. H. (1989). Chem. Ind. 19, 653–654.
  2. Elgemeie, G. H. & Aal, F. A. (1986). Heterocycles, 24, 349–353.
  3. Elgemeie, G. H. & Elghandour, A. H. (1990). Phosphorus Sulfur Silicon, 48, 281–284.
  4. Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017). Nucleosides Nucleotides Nucleic Acids, 36, 213–223. [DOI] [PubMed]
  5. Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000). Phosphorus Sulfur Silicon, 165, 265–272.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017008738/hg5489sup1.cif

e-73-01041-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017008738/hg5489Isup2.hkl

e-73-01041-Isup2.hkl (246.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017008738/hg5489Isup3.cml

CCDC reference: 1555516

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES