Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jun 30;73(Pt 7):1092–1096. doi: 10.1107/S2056989017009537

Crystal structure of (E)-4-benzyl­idene-6-phenyl-1,2,3,4,7,8,9,10-octa­hydro­phenanthridine

Baidaa K Al-Rubaye a, Alice Brink b, Gary J Miller c, Herman Potgieter d,e, Mohamad J Al-Jeboori a,*
PMCID: PMC5499298  PMID: 28775890

The title compound was synthesized using a novel one-pot method under mild conditions and fully characterized using NMR, ESI–MS and SXRD. The supra­molecular structure of the title compound is defined by a combination of C—H⋯N and π–π inter­actions.

Keywords: crystal structure, Mannich reaction, phenanthridine moiety, C—H⋯N inter­actions, π–π inter­actions, Hirschfeld surfaces

Abstract

The preparation of the title compound, C26H25N, was achieved by the condensation of an ethano­lic mixture of benzaldehyde, cyclo­hexa­none and ammonium acetate in a 2:1:1 molar ratio. There are two crystallographically independent mol­ecules in the asymmetric unit. The two cyclo­hexyl rings adopt an anti-envelope conformation with the benzyl moiety adopting a cis conformation with respect to the nitro­gen atom of the phenanthridine segment. In the crystal, mol­ecules are linked through C—H⋯N inter­actions into hydrogen-bonded chains that are further arranged into distinct layers by weak offset π–π inter­actions.

Chemical context  

The preparation of piperidine derivatives via the Mannich reaction is well documented (Noller & Baliah, 1948). Further, the condensation of a ketone with α-methyl­ene groups, with an aldehyde in the presence of ammonium acetate results in the formation of the required piperidone derivatives through the Mannich reaction (Karthikeyan et al., 2009; Al-Jeboori et al., 2009). However, the formation of unpredicted phenanthridine derivatives as a second product with piperidone upon using a range of cyclic ketones has also been mentioned (Karthikeyan et al., 2009). Phenanthridine derivatives are an important class of heterocyclic nitro­gen-based compounds that form a range of natural products and biologically important mol­ecules (Tumir et al., 2014). These compounds have found significant applications in different fields, including their potential applications in medicinal chemistry (Stevens et al., 2008) and in the fabrication of materials (Gerfaud et al., 2009). Therefore, researchers have been inter­ested in the development of efficient and versatile methods for the synthesis of these materials (Bao et al., 2014; Xu et al., 2014). These compounds can be fabricated using a range of synthetic methods, including cyclization, that require harsh conditions and several preparation steps to obtain phenanthridines (Herrera et al., 2006). In this paper, the formation of a phenanthridine derivative was achieved via a one-pot reaction using cyclo­hexa­none and benzaldehyde in an ethano­lic solution of ammonium acetate.graphic file with name e-73-01092-scheme1.jpg

Structural commentary  

The asymmetric unit contains two crystallographically independent mol­ecules, A and B, shown in Figs. 1 and 2, with no solvent mol­ecules incorporated into the crystal lattice. Selected geometric parameters for the title compound are given in Table 1. All of the bond lengths and bond angles are within the normal range of analogous phenanthridine compounds (Helesbeux et al., 2011; Shabashov & Daugulis, 2007). In the structure, the cyclo­hexane rings adopt the anti-envelope conformation. In mol­ecule B one of these rings shows static disorder of the C91 and C92 atoms over two sets of sites. This was modelled as two positions with the site occupancies refined to give 81.7 (3)% occupancy for the major component and 18.3 (3)% for the minor component. Full refinement details are given in Section 5. In both of the crystallographically independent mol­ecules, the phenyl and benzyl­idene groups are rotated out-of-plane with respect to the octa­hydro­phenanthrine moieties: in mol­ecule A the angle between the mean planes of the phenyl and pyridine rings is 46.92 (5)° with the equivalent angle in mol­ecule B of 53.43 (5)°. The angle between the mean planes of the benzyl­idine and pyridine rings in mol­ecule A is 48.53 (5)° and the corresponding angle in mol­ecule B is 41.37 (5)°.

Figure 1.

Figure 1

Atom arrangement and numbering scheme for mol­ecule A, with displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

Atom arrangement and numbering scheme for mol­ecule B, with displacement ellipsoids drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °).

C1—N2 1.3351 (19) C101—N1 1.3492 (18)
C5—N2 1.3511 (18) C105—N1 1.3308 (19)
C14—C9—C5 120.36 (13) C106—C114—C130 128.70 (14)
C9—C14—C20 128.41 (14) C105—N1—C101 119.51 (12)
C114—C106—C101 119.35 (13) C1—N2—C5 119.35 (12)

Supra­molecular features  

The crystal structure features a combination of weak hydrogen bonds and weak offset π–π inter­actions. A weak C—H⋯N contact is formed from the octa­hydro­phenanthridine C6 position in mol­ecule A to the N1 position in a B mol­ecule (symmetry operation 1 + x, −1 + y, z), with an equivalent weak contact formed from the C109 position in mol­ecule B to the N2 position of a neighbouring mol­ecule A (symmetry operation 1 – x, 2 − y, z). Geometric parameters for these contacts are given in Table 2. The geometric parameters for these contacts are within the accepted range of DA distances for weak hydrogen bonds of 3.2–4.0 Å, the D—H⋯A angles being slightly more linear than the expected values of 90–150° (Gilli, 2002). These inter­actions lead to the formation of chains consisting of alternating A and B mol­ecules oriented along the a-axis direction. These chains propagate along the baxis, with neighbouring chains offset from each other along the a axis to allow inter­calation of the phenyl and benzyl aromatic rings of neighbouring groups, as shown in Fig 3, forming layers. These layers further stack along the c-axis with the orientation of the layers inverted with respect to the layer above and below, as shown in Fig. 4. The structure is further stabilized by along the b-axis stabilized by weak offset π–π stacking inter­actions between the benzyl­idine rings of B mol­ecules in adjacent layers where the aromatic groups are oriented towards each other (symmetry operation for second B mol­ecule 1 − x, −y, 1 − z) with a centroid–centroid distance of 3.9853 (14) Å and shift distance of 2.285 (3) Å.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯N1i 0.97 2.77 (1) 3.672 (2) 155 (1)
C109—H10B⋯N2i 0.97 2.74 (1) 3.6756 (18) 163 (1)

Symmetry code: (i) Inline graphic.

Figure 3.

Figure 3

C—H⋯N hydrogen-bonded chains, viewed down the crystallographic c axis. The C—H⋯N contacts are shown as dotted blue lines and run along the crystallographic a axis.

Figure 4.

Figure 4

Packing arrangement of the structure viewed along the crystallographic a axis with the c axis parallel to the long axis of the paper. The π–π inter­actions occur between the benzyl rings that lie between the second and third rows of mol­ecules The labels of the axes should be larger.

Database survey  

Version 5.38 of the Cambridge Structural Database (CSD; Groom et al., 2016) was queried for inter­molecular C—H⋯N inter­actions between cyclo­hexyl and pyridyl groups with H-atom positions normalized and metals excluded with H⋯N distances restricted to vdW + 0.5 Å. 198 hits were obtained with the minimum and maximum H⋯N contact distances of 2.421 Å and 3.246 Å respectively with a median distance of 2.866 Å and mean of 2.853 Å. The C—H⋯N angles ranged from 92 to 174° with a mean of 128° and a median of 127°. The C—H⋯N contacts for the two crystallographically independent mol­ecules in this work are therefore shorter and more linear than the average, indicating a non-trivial role in determining the supra­molecular structure.

Hirschfeld surface analysis  

Fingerprint analysis of the inter­molecular inter­actions by the generation of Hirschfeld surfaces using CrystalExplorer (Spackman & McKinnon, 2002) reveals that the two types of mol­ecules have similar inter­molecular contact patterns. Selected fingerprint plots corresponding to the complete inter­molecular contact surface and H⋯H, H⋯C and H⋯N contacts are shown in Fig. 5. The percentage contributions of each contact type to the overall inter­action environment are tabulated in Table 3. In both cases, the major contribution is from H⋯H contacts, accounting for 66.9% of the surface area in mol­ecule A and 64.8% in mol­ecule B. It is notable that, in addition to making the largest contribution to the inter­molecular contact surfaces, the H⋯H contacts account for the closest inter­molecular contact in the case of both mol­ecules, between cyclo­hexyl hydrogen atoms on a mol­ecule A and B (H91B⋯H10X). The direction of these contacts runs parallel to the axis of the C—H⋯N contacts between mol­ecules on neighbouring hydrogen-bonded chains and appears to result from the inter­calation of these chains. As these contacts are not associated with either of the major attractive inter­actions (AB C—H⋯N hydrogen bonds or BB π–π stacking), it is probable that this contact arises solely from the packing arrangement required to maximize the number and strength of these favourable inter­actions.

Figure 5.

Figure 5

Hirschfeld surface fingerprint plots generated from the d norm surfaces generated for mol­ecules A and B in CrystalExplorer at high resolution. The decomposed plots show the areas of contact between H atoms (inter­nal) and H, C and N atoms (external).

Table 3. Percentage of d norm Hirschfeld surface accounted for by each (int)–(ext) contact type.

Contact (int)–(ext) H⋯H H⋯C H⋯N C⋯H N⋯H
Mol­ecule A 66.9% 12.8% 1.3% 16.5% 1.5%
Mol­ecule B 64.8% 14.5% 1.3% 17.9% 1.5%

Synthesis and crystallization  

The title compound was isolated from the reaction mixture using a flash column chromatography and as follows: A solution of benzaldehyde (4.02 mL, 0.038 mol), ammonium acetate (1 g, 0.019 mol) and cyclo­hexa­none (2 mL, 0.019 mol) in ethanol (20 mL) was heated to reflux for 2 h. The obtained residue was purified from the crude product by flash chromatography with an eluent mixture of 33% ethyl acetate in hexane, m.p. = 467–469 K, yield: 42%. Colourless crystals suitable for X-ray single crystal analysis were obtained by slow evaporation of a methanol solution of the compound.

(IR, KBr) cm−1: 1600 ν (C=N), 1508 ν (C=C)aromatic ring. NMR data (ppm) (numbering scheme shown in Fig. 6); 1H NMR, δ H (400 MHz, DMSO-d 6): 7.81 (s, 1H, H-14), 7.52–7.35 (m, 9H, Ar-H), 7.28–7.21 (m, 1H, Ar-H), 2.79 (t, 2H, H-13, J = 10.4Hz), 2.71 (t, 2H, H-6, J = 12Hz), 2.66 (t, 2H, H-10, J = 12.8Hz), 2.61 (t, 2H, H-8, J = 12.8Hz), 1.80 (m, 4H, H-11;12), 1.62 (m, 2H, H-7). 13C NMR, δ c (100 MHz, DMSO-d 6): 155.15 (C-1), 147.72 (C-5), 144.86 (C-3), 140.98 (C-9) and 137.45 (C-2), 136.07 (C-15), 129.61 (C-4), 129.44 (C-21), 129.14, 129.03, 128.76, 128.33, 128.00 and 127.76 and 126.70 (C-Ar), 124.60 (C-14), 27.83 C-8), 26.90 (C-6), 25.80 (C-10), 24.91 (C-13), 22.18 (C-11;12), 21.96 (C-7). The electrospray (+) mass spectrum showed the parent ion peak at m/z = 352.2068 (M + H)+ for C26H26N; requires =352.2065. Elemental analysis: calculated for C26H25N: C 88.85%, H 7.17%, N 3.99%; found: C 88.76%, H 7.20%, N 3.88%.

Figure 6.

Figure 6

General numbering pattern for NMR spectra of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. Hydrogen atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model with Ui so(H)= 1.2U eq(C). Disorder at C90/C91/C92/C93 was modelled by splitting the component atoms across two positions and refining the occupancy using FVAR to 82% for C90A–C93A and 12% for C90B–C93B. 1,2 distances were restrained using SADI and ADPs for C90A/C90B and C93A/C93B constrained using EADP commands.

Table 4. Experimental details.

Crystal data
Chemical formula C26H25N
M r 351.47
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 11.0758 (8), 12.4989 (11), 14.2425 (13)
α, β, γ (°) 98.088 (3), 96.537 (3), 102.151 (3)
V3) 1887.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.73 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEX II CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 37669, 9087, 6437
R int 0.052
(sin θ/λ)max−1) 0.661
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.131, 1.04
No. of reflections 9087
No. of parameters 500
No. of restraints 7
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.36

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick 2008), SHELXL2016 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017009537/ff2149sup1.cif

e-73-01092-sup1.cif (691.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017009537/ff2149Isup2.hkl

e-73-01092-Isup2.hkl (497.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017009537/ff2149Isup3.cml

CCDC reference: 1506784

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The award of a PhD studentship to BAR by the Iraqi Ministry for Higher Education and the University of Baghdad is gratefully acknowledged.

supplementary crystallographic information

Crystal data

C26H25N Z = 4
Mr = 351.47 F(000) = 752
Triclinic, P1 Dx = 1.237 Mg m3
a = 11.0758 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.4989 (11) Å Cell parameters from 8882 reflections
c = 14.2425 (13) Å θ = 3.7–28.2°
α = 98.088 (3)° µ = 0.07 mm1
β = 96.537 (3)° T = 100 K
γ = 102.151 (3)° Needle, colourless
V = 1887.2 (3) Å3 0.73 × 0.12 × 0.10 mm

Data collection

Bruker APEX II CCD diffractometer 6437 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.052
Graphite monochromator θmax = 28.0°, θmin = 1.5°
Detector resolution: 8 pixels mm-1 h = −14→12
ω and φ scans k = −16→16
37669 measured reflections l = −18→18
9087 independent reflections

Refinement

Refinement on F2 7 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.341P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
9087 reflections Δρmax = 0.28 e Å3
500 parameters Δρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Positional disorder at C90-C91-C92-C93 modelled by splitting the component atoms across two positions and refining occupamcy using FVAR to 82% for C90A-C93A and 12% for C90B-C93B. C90A/C90B and C93A/C93B. 1,2 distances were restrained using SADI and ADPs for C90A/C90B and C93A/C93B constrained using EADP commands.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.75248 (13) 0.29476 (12) 0.20313 (10) 0.0158 (3)
C2 0.84704 (13) 0.30527 (12) 0.14419 (10) 0.0159 (3)
C3 0.88741 (13) 0.20963 (12) 0.11278 (10) 0.0167 (3)
C4 0.84028 (13) 0.11067 (12) 0.14605 (10) 0.0167 (3)
C5 0.75826 (13) 0.11251 (12) 0.21406 (10) 0.0162 (3)
C6 0.88220 (14) 0.00608 (12) 0.11239 (11) 0.0210 (3)
H6A 0.971308 0.016008 0.138570 0.025*
H6B 0.874827 −0.005966 0.041569 0.025*
C7 0.80663 (15) −0.09584 (13) 0.14287 (11) 0.0228 (3)
H7A 0.848529 −0.158080 0.131630 0.027*
H7B 0.722841 −0.118141 0.103657 0.027*
C8 0.79308 (15) −0.07234 (13) 0.24859 (11) 0.0226 (3)
H8A 0.747909 −0.140845 0.268188 0.027*
H8B 0.876762 −0.048501 0.287910 0.027*
C9 0.72234 (13) 0.01739 (12) 0.26527 (10) 0.0174 (3)
C10 0.91203 (13) 0.41798 (13) 0.12489 (11) 0.0190 (3)
H10G 0.920079 0.474429 0.182854 0.023*
H10H 0.860508 0.438884 0.072075 0.023*
C11 1.04157 (14) 0.41736 (13) 0.09788 (11) 0.0215 (3)
H11A 1.077384 0.488802 0.078186 0.026*
H11B 1.097725 0.408337 0.153999 0.026*
C12 1.03130 (15) 0.32257 (13) 0.01614 (11) 0.0237 (4)
H12A 1.113864 0.326040 −0.005136 0.028*
H12B 0.972045 0.330066 −0.038744 0.028*
C13 0.98628 (14) 0.21096 (13) 0.04722 (11) 0.0212 (3)
H13A 0.952118 0.154118 −0.010738 0.025*
H13B 1.058869 0.189794 0.080583 0.025*
C14 0.63212 (13) 0.01532 (12) 0.32117 (11) 0.0182 (3)
H14 0.589659 0.073877 0.320625 0.022*
C20 0.59071 (14) −0.06578 (12) 0.38298 (11) 0.0185 (3)
C21 0.67174 (14) −0.11676 (13) 0.43322 (11) 0.0215 (3)
H21 0.757319 −0.102334 0.425204 0.026*
C22 0.62901 (16) −0.18842 (14) 0.49489 (12) 0.0267 (4)
H22 0.685667 −0.221967 0.528859 0.032*
C23 0.50500 (16) −0.21108 (14) 0.50704 (12) 0.0280 (4)
H23 0.476005 −0.260676 0.548698 0.034*
C24 0.42291 (15) −0.16108 (14) 0.45813 (12) 0.0260 (4)
H24 0.337239 −0.176894 0.465855 0.031*
C25 0.46554 (14) −0.08796 (13) 0.39791 (11) 0.0215 (3)
H25 0.409013 −0.052358 0.366284 0.026*
C30 0.69251 (13) 0.38769 (12) 0.23336 (11) 0.0173 (3)
C31 0.67721 (13) 0.41515 (13) 0.32883 (11) 0.0199 (3)
H31 0.707041 0.375497 0.375212 0.024*
C32 0.61888 (14) 0.49979 (13) 0.35682 (12) 0.0247 (4)
H32 0.610150 0.518423 0.422312 0.030*
C33 0.57346 (14) 0.55707 (14) 0.29010 (13) 0.0283 (4)
H33 0.533412 0.614915 0.309501 0.034*
C34 0.58648 (14) 0.52993 (14) 0.19485 (13) 0.0274 (4)
H34 0.554651 0.568680 0.148555 0.033*
C35 0.64618 (14) 0.44587 (13) 0.16682 (12) 0.0222 (3)
H35 0.655403 0.428021 0.101346 0.027*
C101 0.24367 (12) 1.06093 (12) 0.22013 (10) 0.0159 (3)
C102 0.31762 (13) 1.01710 (12) 0.15830 (10) 0.0167 (3)
C103 0.31864 (13) 0.90403 (13) 0.15121 (10) 0.0175 (3)
C104 0.24125 (13) 0.83688 (12) 0.20087 (10) 0.0169 (3)
C105 0.16390 (12) 0.88740 (12) 0.25625 (10) 0.0159 (3)
C106 0.24962 (13) 1.18171 (12) 0.24183 (10) 0.0167 (3)
C107 0.34880 (15) 1.25554 (13) 0.20045 (11) 0.0236 (4)
H10A 0.429983 1.269302 0.242502 0.028*
H10B 0.326897 1.327928 0.197459 0.028*
C108 0.36013 (15) 1.20115 (13) 0.10034 (11) 0.0240 (4)
H10C 0.423462 1.251491 0.073296 0.029*
H10D 0.279151 1.188266 0.058194 0.029*
C109 0.39768 (14) 1.09112 (13) 0.10293 (11) 0.0223 (3)
H10E 0.390784 1.051887 0.036440 0.027*
H10F 0.486078 1.105900 0.132738 0.027*
C93A 0.4116 (5) 0.8580 (4) 0.0917 (4) 0.0206 (7) 0.817 (3)
H93A 0.375443 0.841374 0.022929 0.025* 0.817 (3)
H93B 0.490199 0.915521 0.099259 0.025* 0.817 (3)
C90B 0.231 (2) 0.707 (3) 0.203 (2) 0.0180 (7) 0.183 (3)
H90A 0.218318 0.688651 0.267133 0.022* 0.183 (3)
H90B 0.163700 0.659781 0.154055 0.022* 0.183 (3)
C114 0.16908 (13) 1.21776 (12) 0.29555 (11) 0.0173 (3)
H114 0.106753 1.161469 0.311764 0.021*
C120 0.07724 (13) 0.82602 (12) 0.31378 (11) 0.0160 (3)
C121 −0.01618 (13) 0.73238 (12) 0.27271 (11) 0.0171 (3)
H121 −0.023046 0.703379 0.206497 0.021*
C122 −0.09929 (13) 0.68110 (13) 0.32762 (11) 0.0205 (3)
H122 −0.163111 0.617750 0.298720 0.025*
C123 −0.08947 (14) 0.72189 (14) 0.42419 (12) 0.0240 (4)
H123 −0.145732 0.686091 0.461845 0.029*
C124 0.00251 (15) 0.81502 (14) 0.46590 (12) 0.0265 (4)
H124 0.009518 0.843098 0.532324 0.032*
C125 0.08462 (14) 0.86754 (13) 0.41083 (11) 0.0220 (3)
H125 0.146412 0.932388 0.439606 0.026*
C130 0.16464 (13) 1.33237 (12) 0.33245 (10) 0.0171 (3)
C131 0.04885 (14) 1.35477 (13) 0.34805 (11) 0.0194 (3)
H131 −0.023826 1.295852 0.334857 0.023*
C132 0.03890 (15) 1.46137 (13) 0.38235 (11) 0.0230 (3)
H132 −0.040504 1.475080 0.391411 0.028*
C133 0.14399 (15) 1.54818 (14) 0.40355 (12) 0.0261 (4)
H133 0.136814 1.621421 0.426329 0.031*
C134 0.25990 (15) 1.52720 (13) 0.39122 (12) 0.0255 (4)
H134 0.332497 1.586158 0.406367 0.031*
C135 0.27010 (14) 1.42036 (13) 0.35684 (11) 0.0209 (3)
H135 0.350105 1.406835 0.349775 0.025*
N1 0.16703 (11) 0.99549 (10) 0.26679 (9) 0.0163 (3)
N2 0.71246 (11) 0.20276 (10) 0.23903 (9) 0.0172 (3)
C91A 0.31965 (18) 0.67122 (17) 0.12626 (16) 0.0232 (5) 0.817 (3)
H91A 0.338416 0.600767 0.140796 0.028* 0.817 (3)
H91B 0.265362 0.655261 0.063378 0.028* 0.817 (3)
C92A 0.44037 (19) 0.75409 (17) 0.12225 (16) 0.0240 (5) 0.817 (3)
H92A 0.492391 0.773150 0.186207 0.029* 0.817 (3)
H92B 0.487991 0.720499 0.076150 0.029* 0.817 (3)
C91B 0.3619 (9) 0.6965 (8) 0.1797 (7) 0.0232 (5) 0.183 (3)
H91C 0.427655 0.745027 0.229720 0.028* 0.183 (3)
H91D 0.369834 0.618866 0.178379 0.028* 0.183 (3)
C92B 0.3780 (10) 0.7300 (8) 0.0831 (7) 0.0240 (5) 0.183 (3)
H92C 0.303890 0.692931 0.034995 0.029* 0.183 (3)
H92D 0.452722 0.709534 0.060388 0.029* 0.183 (3)
C90A 0.2523 (4) 0.7201 (5) 0.2044 (4) 0.0180 (7) 0.817 (3)
H90C 0.167352 0.672261 0.198610 0.022* 0.817 (3)
H90D 0.297639 0.717820 0.267889 0.022* 0.817 (3)
C93B 0.394 (3) 0.8628 (19) 0.100 (2) 0.0206 (7) 0.183 (3)
H93C 0.481093 0.897458 0.130508 0.025* 0.183 (3)
H93D 0.383960 0.885593 0.035915 0.025* 0.183 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0151 (7) 0.0161 (7) 0.0154 (7) 0.0035 (6) 0.0000 (6) 0.0017 (6)
C2 0.0146 (7) 0.0183 (8) 0.0143 (7) 0.0033 (6) 0.0003 (5) 0.0032 (6)
C3 0.0144 (7) 0.0228 (8) 0.0124 (7) 0.0053 (6) −0.0002 (5) 0.0018 (6)
C4 0.0147 (7) 0.0185 (8) 0.0162 (7) 0.0053 (6) 0.0003 (6) −0.0005 (6)
C5 0.0143 (7) 0.0162 (7) 0.0171 (7) 0.0038 (6) −0.0002 (6) 0.0011 (6)
C6 0.0213 (7) 0.0223 (8) 0.0211 (8) 0.0091 (6) 0.0050 (6) 0.0013 (7)
C7 0.0304 (8) 0.0190 (8) 0.0218 (8) 0.0114 (7) 0.0056 (7) 0.0025 (7)
C8 0.0291 (8) 0.0211 (8) 0.0213 (8) 0.0119 (7) 0.0058 (7) 0.0049 (7)
C9 0.0194 (7) 0.0164 (8) 0.0157 (7) 0.0056 (6) −0.0009 (6) 0.0012 (6)
C10 0.0212 (7) 0.0192 (8) 0.0173 (8) 0.0043 (6) 0.0048 (6) 0.0043 (6)
C11 0.0205 (7) 0.0246 (8) 0.0199 (8) 0.0023 (6) 0.0055 (6) 0.0076 (7)
C12 0.0249 (8) 0.0291 (9) 0.0210 (8) 0.0090 (7) 0.0092 (7) 0.0080 (7)
C13 0.0213 (7) 0.0262 (9) 0.0188 (8) 0.0088 (7) 0.0070 (6) 0.0048 (7)
C14 0.0197 (7) 0.0143 (7) 0.0198 (8) 0.0045 (6) −0.0002 (6) 0.0016 (6)
C20 0.0232 (7) 0.0147 (7) 0.0155 (7) 0.0029 (6) 0.0022 (6) −0.0012 (6)
C21 0.0247 (8) 0.0209 (8) 0.0177 (8) 0.0050 (6) 0.0022 (6) 0.0009 (6)
C22 0.0369 (9) 0.0236 (9) 0.0201 (8) 0.0086 (7) 0.0019 (7) 0.0044 (7)
C23 0.0403 (10) 0.0200 (8) 0.0214 (9) −0.0005 (7) 0.0077 (7) 0.0050 (7)
C24 0.0252 (8) 0.0242 (9) 0.0233 (9) −0.0035 (7) 0.0055 (7) −0.0011 (7)
C25 0.0221 (7) 0.0216 (8) 0.0183 (8) 0.0039 (6) −0.0001 (6) −0.0013 (6)
C30 0.0127 (6) 0.0157 (7) 0.0232 (8) 0.0015 (6) 0.0042 (6) 0.0034 (6)
C31 0.0167 (7) 0.0185 (8) 0.0248 (8) 0.0022 (6) 0.0067 (6) 0.0042 (7)
C32 0.0197 (7) 0.0229 (9) 0.0301 (9) 0.0014 (7) 0.0113 (7) −0.0014 (7)
C33 0.0206 (8) 0.0213 (8) 0.0455 (11) 0.0079 (7) 0.0125 (7) 0.0032 (8)
C34 0.0233 (8) 0.0251 (9) 0.0383 (10) 0.0112 (7) 0.0067 (7) 0.0107 (8)
C35 0.0196 (7) 0.0236 (8) 0.0256 (9) 0.0073 (6) 0.0054 (6) 0.0059 (7)
C101 0.0139 (7) 0.0186 (8) 0.0143 (7) 0.0014 (6) 0.0014 (5) 0.0039 (6)
C102 0.0141 (7) 0.0219 (8) 0.0134 (7) 0.0016 (6) 0.0018 (5) 0.0046 (6)
C103 0.0150 (7) 0.0233 (8) 0.0136 (7) 0.0044 (6) 0.0015 (6) 0.0022 (6)
C104 0.0161 (7) 0.0181 (8) 0.0153 (7) 0.0037 (6) 0.0005 (6) 0.0011 (6)
C105 0.0142 (7) 0.0176 (8) 0.0145 (7) 0.0022 (6) 0.0002 (5) 0.0024 (6)
C106 0.0169 (7) 0.0180 (8) 0.0129 (7) −0.0005 (6) 0.0001 (6) 0.0032 (6)
C107 0.0259 (8) 0.0209 (8) 0.0221 (8) −0.0022 (7) 0.0095 (7) 0.0037 (7)
C108 0.0259 (8) 0.0241 (9) 0.0215 (8) −0.0011 (7) 0.0095 (7) 0.0076 (7)
C109 0.0185 (7) 0.0286 (9) 0.0200 (8) 0.0026 (7) 0.0076 (6) 0.0052 (7)
C93A 0.019 (2) 0.0278 (11) 0.0188 (14) 0.0098 (9) 0.0118 (10) 0.0021 (9)
C90B 0.0137 (19) 0.016 (2) 0.0228 (8) 0.0004 (15) 0.0038 (12) 0.0014 (10)
C114 0.0178 (7) 0.0167 (8) 0.0167 (7) 0.0010 (6) 0.0012 (6) 0.0057 (6)
C120 0.0157 (7) 0.0162 (7) 0.0190 (8) 0.0066 (6) 0.0053 (6) 0.0062 (6)
C121 0.0172 (7) 0.0166 (7) 0.0189 (8) 0.0058 (6) 0.0040 (6) 0.0033 (6)
C122 0.0161 (7) 0.0168 (8) 0.0300 (9) 0.0040 (6) 0.0064 (6) 0.0063 (7)
C123 0.0237 (8) 0.0263 (9) 0.0272 (9) 0.0080 (7) 0.0125 (7) 0.0119 (7)
C124 0.0344 (9) 0.0306 (9) 0.0162 (8) 0.0086 (8) 0.0087 (7) 0.0047 (7)
C125 0.0242 (8) 0.0191 (8) 0.0204 (8) 0.0008 (6) 0.0043 (6) 0.0018 (6)
C130 0.0210 (7) 0.0173 (8) 0.0130 (7) 0.0035 (6) 0.0016 (6) 0.0054 (6)
C131 0.0201 (7) 0.0216 (8) 0.0161 (8) 0.0023 (6) 0.0020 (6) 0.0065 (6)
C132 0.0248 (8) 0.0259 (9) 0.0214 (8) 0.0107 (7) 0.0044 (6) 0.0063 (7)
C133 0.0340 (9) 0.0191 (8) 0.0264 (9) 0.0090 (7) 0.0044 (7) 0.0042 (7)
C134 0.0268 (8) 0.0197 (8) 0.0271 (9) 0.0006 (7) 0.0020 (7) 0.0029 (7)
C135 0.0197 (7) 0.0222 (8) 0.0206 (8) 0.0036 (6) 0.0033 (6) 0.0046 (7)
N1 0.0146 (6) 0.0171 (6) 0.0168 (6) 0.0018 (5) 0.0034 (5) 0.0037 (5)
N2 0.0153 (6) 0.0178 (6) 0.0191 (7) 0.0051 (5) 0.0023 (5) 0.0037 (5)
C91A 0.0211 (10) 0.0225 (10) 0.0253 (12) 0.0076 (8) 0.0045 (9) −0.0032 (9)
C92A 0.0185 (10) 0.0279 (11) 0.0280 (12) 0.0094 (9) 0.0077 (9) 0.0030 (9)
C91B 0.0211 (10) 0.0225 (10) 0.0253 (12) 0.0076 (8) 0.0045 (9) −0.0032 (9)
C92B 0.0185 (10) 0.0279 (11) 0.0280 (12) 0.0094 (9) 0.0077 (9) 0.0030 (9)
C90A 0.0137 (19) 0.016 (2) 0.0228 (8) 0.0004 (15) 0.0038 (12) 0.0014 (10)
C93B 0.019 (2) 0.0278 (11) 0.0188 (14) 0.0098 (9) 0.0118 (10) 0.0021 (9)

Geometric parameters (Å, º)

C1—C2 1.4115 (19) C23—C24 1.386 (2)
C1—C30 1.492 (2) C24—H24 0.9500
C93A—H93A 0.9900 C24—C25 1.387 (2)
C93A—H93B 0.9900 C25—H25 0.9500
C90B—H90A 0.9900 C30—C31 1.393 (2)
C90B—H90B 0.9900 C30—C35 1.389 (2)
C1—N2 1.3351 (19) C31—H31 0.9500
C91A—H91A 0.9900 C31—C32 1.387 (2)
C91A—H91B 0.9900 C32—H32 0.9500
C93A—C92A 1.510 (4) C32—C33 1.380 (2)
C91A—C92A 1.521 (3) C33—H33 0.9500
C92A—H92A 0.9900 C33—C34 1.383 (2)
C92A—H92B 0.9900 C34—H34 0.9500
C90B—C91B 1.55 (2) C34—C35 1.391 (2)
C91B—H91C 0.9900 C35—H35 0.9500
C91B—H91D 0.9900 C101—C102 1.4014 (19)
C91B—C92B 1.513 (11) C101—C106 1.484 (2)
C92B—H92C 0.9900 C101—N1 1.3492 (18)
C92B—H92D 0.9900 C102—C103 1.405 (2)
C91A—C90A 1.536 (5) C102—C109 1.511 (2)
C90A—H90C 0.9900 C103—C104 1.393 (2)
C90A—H90D 0.9900 C103—C93A 1.556 (4)
C92B—C93B 1.61 (2) C103—C93B 1.31 (2)
C93B—H93C 0.9900 C104—C105 1.4128 (19)
C93B—H93D 0.9900 C104—C90B 1.61 (4)
C2—C3 1.396 (2) C104—C90A 1.498 (7)
C2—C10 1.518 (2) C105—C120 1.492 (2)
C3—C4 1.406 (2) C105—N1 1.3308 (19)
C3—C13 1.5168 (19) C106—C107 1.510 (2)
C4—C5 1.4025 (19) C106—C114 1.3460 (19)
C4—C6 1.511 (2) C107—H10A 0.9900
C5—C9 1.488 (2) C107—H10B 0.9900
C5—N2 1.3511 (18) C107—C108 1.521 (2)
C6—H6A 0.9900 C108—H10C 0.9900
C6—H6B 0.9900 C108—H10D 0.9900
C6—C7 1.517 (2) C108—C109 1.522 (2)
C7—H7A 0.9900 C109—H10E 0.9900
C7—H7B 0.9900 C109—H10F 0.9900
C7—C8 1.524 (2) C114—H114 0.9500
C8—H8A 0.9900 C114—C130 1.468 (2)
C8—H8B 0.9900 C120—C121 1.394 (2)
C8—C9 1.505 (2) C120—C125 1.393 (2)
C9—C14 1.345 (2) C121—H121 0.9500
C10—H10G 0.9900 C121—C122 1.388 (2)
C10—H10H 0.9900 C122—H122 0.9500
C10—C11 1.5285 (19) C122—C123 1.381 (2)
C11—H11A 0.9900 C123—H123 0.9500
C11—H11B 0.9900 C123—C124 1.384 (2)
C11—C12 1.516 (2) C124—H124 0.9500
C12—H12A 0.9900 C124—C125 1.389 (2)
C12—H12B 0.9900 C125—H125 0.9500
C12—C13 1.524 (2) C130—C131 1.4040 (19)
C13—H13A 0.9900 C130—C135 1.398 (2)
C13—H13B 0.9900 C131—H131 0.9500
C14—H14 0.9500 C131—C132 1.385 (2)
C14—C20 1.470 (2) C132—H132 0.9500
C20—C21 1.395 (2) C132—C133 1.385 (2)
C20—C25 1.402 (2) C133—H133 0.9500
C21—H21 0.9500 C133—C134 1.388 (2)
C21—C22 1.391 (2) C134—H134 0.9500
C22—H22 0.9500 C134—C135 1.388 (2)
C22—C23 1.379 (2) C135—H135 0.9500
C23—H23 0.9500
C2—C1—C30 122.39 (13) C24—C23—H23 120.2
N2—C1—C2 123.03 (13) C23—C24—H24 119.9
N2—C1—C30 114.54 (12) C23—C24—C25 120.16 (15)
C1—C2—C10 121.26 (12) C25—C24—H24 119.9
C3—C2—C1 117.21 (13) C20—C25—H25 119.5
C3—C2—C10 121.18 (12) C24—C25—C20 121.07 (15)
C2—C3—C4 119.60 (12) C24—C25—H25 119.5
C92A—C93A—C103 112.2 (2) C31—C30—C1 120.48 (13)
C91B—C90B—C104 100.5 (13) C35—C30—C1 121.05 (13)
C92A—C93A—H93A 109.2 C35—C30—C31 118.43 (13)
C92A—C93A—H93B 109.2 C30—C31—H31 119.7
H93A—C93A—H93B 107.9 C32—C31—C30 120.65 (15)
C92B—C91B—C90B 109.1 (13) C32—C31—H31 119.7
C91B—C90B—H90A 111.7 C31—C32—H32 119.8
C91B—C90B—H90B 111.7 C33—C32—C31 120.37 (15)
C2—C3—C13 121.57 (13) C33—C32—H32 119.8
C4—C3—C13 118.76 (13) C32—C33—H33 120.1
C3—C4—C6 120.39 (12) C32—C33—C34 119.71 (14)
C5—C4—C3 118.62 (13) C34—C33—H33 120.1
C5—C4—C6 120.93 (13) C33—C34—H34 120.0
C4—C5—C9 121.62 (13) C33—C34—C35 120.00 (16)
N2—C5—C4 121.40 (13) C35—C34—H34 120.0
N2—C5—C9 116.92 (12) C30—C35—C34 120.84 (15)
C4—C6—H6A 109.0 C30—C35—H35 119.6
C4—C6—H6B 109.0 C34—C35—H35 119.6
C4—C6—C7 112.79 (12) C102—C101—C106 122.24 (13)
H6A—C6—H6B 107.8 C103—C93A—H93A 109.2
C7—C6—H6A 109.0 N1—C101—C102 121.45 (13)
C7—C6—H6B 109.0 N1—C101—C106 116.24 (12)
C6—C7—H7A 109.5 C101—C102—C103 118.68 (13)
C6—C7—H7B 109.5 C101—C102—C109 120.45 (13)
C6—C7—C8 110.76 (13) C103—C102—C109 120.85 (13)
H90A—C90B—H90B 109.4 C102—C103—C93A 118.83 (18)
C93A—C92A—C91A 110.0 (2) C104—C103—C102 119.70 (13)
C92A—C91A—H91A 109.8 C104—C103—C93A 121.41 (18)
C90A—C91A—H91A 109.8 C103—C104—C105 117.24 (13)
H91A—C91A—H91B 108.3 C103—C104—C90B 126.8 (6)
C92A—C91A—H91B 109.8 C103—C104—C90A 120.55 (16)
C90A—C91A—H91B 109.8 C105—C104—C90B 115.9 (6)
C91A—C92A—H92A 109.7 C105—C104—C90A 121.79 (17)
C93A—C92A—H92A 109.7 C104—C105—C120 123.11 (13)
C93A—C92A—H92B 109.7 N1—C105—C104 123.19 (13)
C91A—C92A—H92B 109.7 N1—C105—C120 113.58 (12)
H92A—C92A—H92B 108.2 C101—C106—C107 115.73 (12)
C90B—C91B—H91C 109.9 C114—C106—C101 119.35 (13)
C92B—C91B—H91C 109.9 C114—C106—C107 124.93 (14)
C92B—C91B—H91D 109.9 C106—C107—H10A 109.6
H91C—C91B—H91D 108.3 C106—C107—H10B 109.6
C90B—C91B—H91D 109.9 C106—C107—C108 110.36 (13)
C91B—C92B—H92C 110.6 H10A—C107—H10B 108.1
C93B—C92B—H92C 110.6 C108—C107—H10A 109.6
C93B—C92B—H92D 110.6 C108—C107—H10B 109.6
H92C—C92B—H92D 108.8 C103—C93A—H93B 109.2
H7A—C7—H7B 108.1 C103—C93B—C92B 117.3 (13)
C8—C7—H7A 109.5 C103—C93B—H93C 108.0
C8—C7—H7B 109.5 C103—C93B—H93D 108.0
C7—C8—H8A 109.7 C104—C90B—H90A 111.7
C7—C8—H8B 109.7 C104—C90B—H90B 111.7
H8A—C8—H8B 108.2 C104—C90A—C91A 114.6 (3)
C9—C8—C7 109.87 (13) C104—C90A—H90C 108.6
C9—C8—H8A 109.7 C104—C90A—H90D 108.6
C9—C8—H8B 109.7 C107—C108—H10C 109.5
C5—C9—C8 115.10 (12) C107—C108—H10D 109.5
C14—C9—C5 120.36 (13) C107—C108—C109 110.87 (13)
C14—C9—C8 124.55 (14) H10C—C108—H10D 108.1
C2—C10—H10G 109.3 C109—C108—H10C 109.5
C2—C10—H10H 109.3 C109—C108—H10D 109.5
C2—C10—C11 111.63 (12) C102—C109—C108 112.51 (12)
H10G—C10—H10H 108.0 C102—C109—H10E 109.1
C11—C10—H10G 109.3 C102—C109—H10F 109.1
C11—C10—H10H 109.3 C108—C109—H10E 109.1
C10—C11—H11A 109.8 C108—C109—H10F 109.1
C10—C11—H11B 109.8 H10E—C109—H10F 107.8
H11A—C11—H11B 108.2 C106—C114—H114 115.7
C12—C11—C10 109.45 (13) C106—C114—C130 128.70 (14)
C12—C11—H11A 109.8 C130—C114—H114 115.7
C12—C11—H11B 109.8 C121—C120—C105 122.34 (13)
C11—C12—H12A 109.5 C125—C120—C105 118.96 (13)
C11—C12—H12B 109.5 C125—C120—C121 118.57 (13)
C11—C12—C13 110.83 (12) C120—C121—H121 119.7
H12A—C12—H12B 108.1 C122—C121—C120 120.64 (14)
C13—C12—H12A 109.5 C122—C121—H121 119.7
C13—C12—H12B 109.5 C121—C122—H122 119.9
C3—C13—C12 114.32 (12) C123—C122—C121 120.20 (15)
C3—C13—H13A 108.7 C123—C122—H122 119.9
C3—C13—H13B 108.7 C122—C123—H123 120.1
C12—C13—H13A 108.7 C122—C123—C124 119.83 (14)
C12—C13—H13B 108.7 C124—C123—H123 120.1
H13A—C13—H13B 107.6 C123—C124—H124 119.9
C9—C14—H14 115.8 C123—C124—C125 120.11 (15)
C9—C14—C20 128.41 (14) C125—C124—H124 119.9
C20—C14—H14 115.8 C120—C125—H125 119.7
C21—C20—C14 123.19 (13) C124—C125—C120 120.63 (15)
C21—C20—C25 117.75 (14) C124—C125—H125 119.7
C25—C20—C14 118.91 (14) C131—C130—C114 118.49 (13)
C20—C21—H21 119.5 C135—C130—C114 123.77 (13)
C22—C21—C20 120.94 (14) C135—C130—C131 117.69 (14)
C22—C21—H21 119.5 C130—C131—H131 119.5
C21—C22—H22 119.8 C132—C131—C130 121.04 (14)
C23—C22—C21 120.45 (16) C132—C131—H131 119.5
C23—C22—H22 119.8 C131—C132—H132 119.8
C22—C23—H23 120.2 C131—C132—C133 120.43 (14)
C91B—C92B—H92D 110.6 C133—C132—H132 119.8
C92A—C91A—C90A 109.2 (2) C132—C133—H133 120.3
C91A—C90A—H90C 108.6 C132—C133—C134 119.42 (15)
C91A—C90A—H90D 108.6 C134—C133—H133 120.3
H90C—C90A—H90D 107.6 C133—C134—H134 119.9
C91B—C92B—C93B 105.6 (12) C135—C134—C133 120.25 (15)
C92B—C93B—H93C 108.0 C135—C134—H134 119.9
C92B—C93B—H93D 108.0 C130—C135—H135 119.4
H93C—C93B—H93D 107.2 C134—C135—C130 121.11 (14)
C93B—C103—C102 119.9 (8) C134—C135—H135 119.4
C93B—C103—C104 120.4 (8) C105—N1—C101 119.51 (12)
C22—C23—C24 119.60 (15) C1—N2—C5 119.35 (12)
C90B—C91B—C92B—C93B 71.8 (19) C32—C33—C34—C35 −0.6 (2)
C90A—C91A—C92A—C93A −64.4 (4) C33—C34—C35—C30 0.5 (2)
C91B—C92B—C93B—C103 −44 (3) C35—C30—C31—C32 −1.0 (2)
C92A—C91A—C90A—C104 48.1 (4) C101—C102—C103—C104 3.8 (2)
C1—C2—C3—C4 −4.7 (2) C101—C102—C109—C108 −16.2 (2)
C1—C2—C3—C13 178.50 (13) C101—C106—C107—C108 38.53 (18)
C1—C2—C10—C11 155.77 (14) C101—C106—C114—C130 174.32 (14)
C1—C30—C31—C32 −178.48 (13) C102—C101—C106—C107 −5.4 (2)
C1—C30—C35—C34 177.76 (14) C102—C101—C106—C114 174.64 (14)
C93B—C103—C104—C90B 0 (2) C102—C101—N1—C105 2.0 (2)
C101—C102—C103—C93B −174.8 (18) C102—C103—C93A—C92A 156.5 (3)
C101—C102—C103—C93A −173.2 (3) C102—C103—C93B—C92B −172.1 (13)
C93A—C103—C104—C90A 4.7 (4) C102—C103—C104—C105 0.4 (2)
C109—C102—C103—C93B 3.3 (18) C103—C93A—C92A—C91A 49.9 (5)
C109—C102—C103—C93A 4.8 (3) C103—C102—C109—C108 165.74 (14)
C93A—C103—C104—C105 177.3 (3) C103—C104—C90B—C91B 25 (2)
C102—C103—C104—C90B −178.8 (14) C103—C104—C90A—C91A −18.9 (5)
C102—C103—C104—C90A −172.3 (3) C103—C104—C105—C120 −179.43 (13)
C93B—C103—C104—C105 178.9 (18) C90B—C104—C105—N1 175.5 (13)
C2—C1—C30—C31 −132.86 (15) C90A—C104—C105—N1 168.8 (3)
C2—C1—C30—C35 49.7 (2) C103—C104—C105—N1 −3.7 (2)
C2—C1—N2—C5 −4.0 (2) C104—C90B—C91B—C92B −59.3 (17)
C2—C3—C4—C5 −3.2 (2) C104—C103—C93A—C92A −20.5 (6)
C2—C3—C4—C6 179.61 (13) C104—C103—C93B—C92B 9 (3)
C2—C3—C13—C12 −2.7 (2) C104—C105—C120—C121 −57.7 (2)
C2—C10—C11—C12 52.66 (17) C104—C105—C120—C125 126.44 (16)
C3—C2—C10—C11 −17.37 (19) C104—C105—N1—C101 2.6 (2)
C3—C4—C5—C9 −169.02 (13) C105—C104—C90B—C91B −154.5 (9)
C3—C4—C5—N2 8.1 (2) C105—C104—C90A—C91A 168.8 (2)
C3—C4—C6—C7 −170.74 (13) C105—C120—C121—C122 −176.48 (13)
C4—C3—C13—C12 −179.58 (13) C105—C120—C125—C124 177.61 (14)
C4—C5—C9—C8 7.9 (2) C106—C101—C102—C103 171.76 (13)
C4—C5—C9—C14 −171.80 (14) C106—C101—C102—C109 −6.3 (2)
C4—C5—N2—C1 −4.6 (2) C106—C101—N1—C105 −175.10 (13)
C4—C6—C7—C8 −47.05 (17) C106—C107—C108—C109 −60.97 (17)
C5—C4—C6—C7 12.1 (2) C106—C114—C130—C131 151.65 (16)
C5—C9—C14—C20 −174.65 (14) C106—C114—C130—C135 −31.1 (2)
C6—C4—C5—C9 8.2 (2) C107—C106—C114—C130 −5.6 (3)
C6—C4—C5—N2 −174.71 (13) C107—C108—C109—C102 49.52 (18)
C6—C7—C8—C9 62.67 (17) C109—C102—C103—C104 −178.16 (14)
C7—C8—C9—C5 −42.45 (18) C114—C106—C107—C108 −141.57 (15)
C7—C8—C9—C14 137.19 (16) C114—C130—C131—C132 −179.71 (14)
C8—C9—C14—C20 5.7 (3) C114—C130—C135—C134 179.84 (14)
C9—C5—N2—C1 172.70 (13) C120—C105—N1—C101 178.66 (12)
C9—C14—C20—C21 35.3 (2) C120—C121—C122—C123 −0.6 (2)
C9—C14—C20—C25 −149.20 (16) C121—C120—C125—C124 1.6 (2)
C10—C2—C3—C4 168.74 (13) C121—C122—C123—C124 0.8 (2)
C90A—C104—C105—C120 −6.9 (3) C122—C123—C124—C125 0.1 (2)
C90B—C104—C105—C120 −0.2 (13) C123—C124—C125—C120 −1.4 (2)
C10—C2—C3—C13 −8.1 (2) C125—C120—C121—C122 −0.6 (2)
C10—C11—C12—C13 −64.02 (16) C130—C131—C132—C133 −1.1 (2)
C11—C12—C13—C3 38.47 (18) C131—C130—C135—C134 −2.8 (2)
C13—C3—C4—C5 173.73 (13) C131—C132—C133—C134 −0.8 (2)
C13—C3—C4—C6 −3.5 (2) C132—C133—C134—C135 0.8 (2)
C14—C20—C21—C22 176.47 (14) C133—C134—C135—C130 1.1 (2)
C14—C20—C25—C24 −177.86 (14) C135—C130—C131—C132 2.8 (2)
C20—C21—C22—C23 0.5 (2) N1—C101—C102—C103 −5.1 (2)
C21—C20—C25—C24 −2.1 (2) N1—C101—C102—C109 176.83 (13)
C21—C22—C23—C24 −0.7 (2) N1—C101—C106—C107 171.57 (13)
C22—C23—C24—C25 −0.5 (2) N1—C101—C106—C114 −8.3 (2)
C23—C24—C25—C20 2.0 (2) N1—C105—C120—C121 126.25 (15)
C25—C20—C21—C22 0.9 (2) N1—C105—C120—C125 −49.63 (18)
C30—C1—C2—C3 −173.79 (13) N2—C1—C2—C3 8.6 (2)
C30—C1—C2—C10 12.8 (2) N2—C1—C2—C10 −164.80 (14)
C30—C1—N2—C5 178.20 (13) N2—C1—C30—C31 44.94 (19)
C30—C31—C32—C33 0.9 (2) N2—C1—C30—C35 −132.46 (15)
C31—C30—C35—C34 0.3 (2) N2—C5—C9—C8 −169.40 (13)
C31—C32—C33—C34 −0.1 (2) N2—C5—C9—C14 11.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6A···N1i 0.97 2.77 (1) 3.672 (2) 155 (1)
C109—H10B···N2i 0.97 2.74 (1) 3.6756 (18) 163 (1)

Symmetry code: (i) −x, −y, −z.

References

  1. Al-Jeboori, M. J., Al-Fahdawi, M. S. & Sameh, A. A. (2009). J. Coord. Chem. 62, 3853–3863.
  2. Bao, X., Yao, W., Zhu, Q. & Xu, Y. (2014). Eur. J. Org. Chem. pp. 7443–7450.
  3. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Gerfaud, T., Neuville, L. & Zhu, J. (2009). Angew. Chem. Int. Ed. 48, 572–577. [DOI] [PubMed]
  6. Gilli, G. (2002). Fundamentals of Crystallography, edited by C. Giacovazzo, pp. 590–595. Oxford University Press.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Helesbeux, J.-J., Vanquelef, E., Guillon, J., Léger, J.-M. & Duval, O. (2011). J. Chem. Crystallogr. 41, 1945–1948.
  9. Herrera, A., Martínez-Alvarez, R., Chioua, M., Chatt, R., Chioua, R., Sanchez, A. & Almy, J. (2006). Tetrahedron, 62, 2799–2811.
  10. Karthikeyan, N. S., Sathiyanarayanan, K. & Aravindan, P. G. (2009). Bull. Korean Chem. Soc. 30, 2555–2558.
  11. Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855. [DOI] [PubMed]
  12. Shabashov, D. & Daugulis, O. (2007). J. Org. Chem. 72, 7720–7725. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  16. Stevens, N., O’Connor, N., Vishwasrao, H., Samaroo, D., Kandel, E. R., Akins, D. L., Drain, C. M. & Turro, N. J. J. (2008). J. Am. Chem. Soc. 130, 7182–7183. [DOI] [PMC free article] [PubMed]
  17. Tumir, L. M., Stojković, R. M. & Piantanida, I. (2014). Beilstein J. Org. Chem. 10, 2930–2954. [DOI] [PMC free article] [PubMed]
  18. Xu, Z., Yan, C. & Liu, Z. Q. (2014). Org. Lett. 16, 5670–5673. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017009537/ff2149sup1.cif

e-73-01092-sup1.cif (691.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017009537/ff2149Isup2.hkl

e-73-01092-Isup2.hkl (497.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017009537/ff2149Isup3.cml

CCDC reference: 1506784

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES