Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1964 Jan;39(1):53–59. doi: 10.1104/pp.39.1.53

Acetolactate and Acetoin Synthesis in Ripening Peas 1

M E Davies 1,2
PMCID: PMC550026  PMID: 16655879

Full text

PDF
53

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CARLSON G. L., BROWN G. M. The natural occurrence, enzymatic formation, and biochemical significance of a hydroxyethyl derivative of thiamine pyrophosphate. J Biol Chem. 1961 Jul;236:2099–2108. [PubMed] [Google Scholar]
  2. HALPERN Y. S., UMBARGER H. E. Evidence for two distinct enzyme systems forming acetolactate in Aerobacter aerogenes. J Biol Chem. 1959 Dec;234:3067–3071. [PubMed] [Google Scholar]
  3. HOLZER H., BEAUCAMP K. [Detection and characterization of alpha-lactylthiamine pyrophosphate ("active pyruvate") and alpha-hydroxyethylthiamine pyrophosphate ("active acetaldehyde") as intermediate products of pyruvate decarboxylation by pyruvate decarboxylase from brewer's yeast]. Biochim Biophys Acta. 1961 Jan 15;46:225–243. doi: 10.1016/0006-3002(61)90747-8. [DOI] [PubMed] [Google Scholar]
  4. JUNI E., HEYM G. A. Acyloin condensation reactions of pyruvic oxidase. J Biol Chem. 1956 Jan;218(1):365–378. [PubMed] [Google Scholar]
  5. JUNI E. Mechanisms of formation of acetoin by bacteria. J Biol Chem. 1952 Apr;195(2):715–726. [PubMed] [Google Scholar]
  6. KRAMPITZ L. O., SUZUKI I., GREULL G. Mechanism of action of thiamin diphosphate. Brookhaven Symp Biol. 1962 Dec;15:282–292. [PubMed] [Google Scholar]
  7. LEAVITT R. I., UMBARGER H. E. Isoleucine and valine metabolism in Escherichia coli. X. The enzymatic formation of acetohydroxybutyrate. J Biol Chem. 1961 Sep;236:2486–2491. [PubMed] [Google Scholar]
  8. NEUMANN J., JONES M. E. Aspartic transcarbamylase from lettuce seedings: case of end-product inhibition. Nature. 1962 Aug 18;195:709–710. doi: 10.1038/195709a0. [DOI] [PubMed] [Google Scholar]
  9. RADHAKRISHANAN A. N., SNELL E. E. Biosynthesis of valine and isoleucine. 2. Formation of alpha-acetolactate and alpha-aceto-alpha-hydroxybutyrate in Neurospora crassa and Escherichia coli. J Biol Chem. 1960 Aug;235:2316–2321. [PubMed] [Google Scholar]
  10. RADHAKRISHANAN A. N., WAGNER R. P., SNELL E. E. Biosynthesis of valine and i43soleucine, 3. alpha-Keto-beta-hydroxy acid reductase and alpha-hydroxy-beta-Keto acid reductoisomerase. J Biol Chem. 1960 Aug;235:2322–2331. [PubMed] [Google Scholar]
  11. SATYANARAYANA T., RADHAKRISHNAN A. N. Biosynthesis of valine and isoleucine in plants. Biochim Biophys Acta. 1962 Jan 1;56:197–199. doi: 10.1016/0006-3002(62)90554-1. [DOI] [PubMed] [Google Scholar]
  12. SINGER T. P., PENSKY J. Mechanism of acetoin synthesis by alpha-carboxylase. Biochim Biophys Acta. 1952 Sep;9(3):316–327. doi: 10.1016/0006-3002(52)90167-4. [DOI] [PubMed] [Google Scholar]
  13. UMBARGER H. E., BROWN B. Isoleucine and valine metabolism in Escherichia coli. VIII. The formation of acetolactate. J Biol Chem. 1958 Nov;233(5):1156–1160. [PubMed] [Google Scholar]
  14. WADDELL W. J. A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med. 1956 Aug;48(2):311–314. [PubMed] [Google Scholar]
  15. WAGNER R. P., BERGQUIST A., FORREST H. S. The accumulation of acetylmethylcarbinol and acetylethylcarbinol by a mutant of Neurospora crassa and its significance in the biosynthesis of isoleucine and valine. J Biol Chem. 1959 Jan;234(1):99–104. [PubMed] [Google Scholar]
  16. Wagner R. P., Radhakrishnan A. N., Snell E. E. THE BIOSYNTHESIS OF ISOLEUCINE AND VALINE IN NEUROSPORA CRASSA. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1047–1053. doi: 10.1073/pnas.44.10.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES