Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1964 Mar;39(2):220–226. doi: 10.1104/pp.39.2.220

Studies of Chloroplast Development in Euglena. V. Pigment Biosynthesis, Photosynthetic Oxygen Evolution and Carbon Dioxide Fixation during Chloroplast Development 1,2

Arthur I Stern 1,3, Jerome A Schiff 1, H T Epstein 1
PMCID: PMC550058  PMID: 16655901

Full text

PDF
220

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLAAUW-JANSEN G., KOMEN J. G., THOMAS J. B. On the relation between the formation of assimilatory pigments and the rate of photosynthesis in etiolated oat seedlings. Biochim Biophys Acta. 1950 Apr;5(2):179–185. [PubMed] [Google Scholar]
  2. Ben-Shaul Y., Schiff J. A., Epstein H. T. Studies of Chloroplast Development in Euglena. VII. Fine Structure of the Developing Plastid. Plant Physiol. 1964 Mar;39(2):231–240. doi: 10.1104/pp.39.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DE DEKEN-GRENSON M. Grana formation and synthesis of chloroplastic proteins induced by light in portions of etiolated leaves. Biochim Biophys Acta. 1954 Jun;14(2):203–211. doi: 10.1016/0006-3002(54)90159-6. [DOI] [PubMed] [Google Scholar]
  4. HODGE A. J., MCLEAN J. D., MERCER F. V. A possible mechanism for the morphogenesis of lamellar systems in plant cells. J Biophys Biochem Cytol. 1956 Sep 25;2(5):597–608. doi: 10.1083/jcb.2.5.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KOSKI V. M. Chlorophyll formation in seedlings of Zea mays L. Arch Biochem. 1950 Dec;29(2):339–343. [PubMed] [Google Scholar]
  6. KREGER D. R., MEEUSE B. J. D. X-ray diagrams of Euglena-paramylon, of the acid-insoluble glucan of yeast cell walls and of laminarin. Biochim Biophys Acta. 1952 Dec;9(6):699–700. [PubMed] [Google Scholar]
  7. LYMAN H., EPSTEIN H. T., SCHIFF J. A. Studies of chloroplast development in Euglena. I. Inactivation of green colony formation by u.v. light. Biochim Biophys Acta. 1961 Jun 24;50:301–309. doi: 10.1016/0006-3002(61)90328-6. [DOI] [PubMed] [Google Scholar]
  8. MUEHLETHALER K., FREY-WYSSLING A. [Development and structure of proplastids]. J Biophys Biochem Cytol. 1959 Dec;6:507–512. [PMC free article] [PubMed] [Google Scholar]
  9. SCHIFF J. A., LYMAN H., EPSTEIN H. T. Studids of chloroplast development in Euglena. III. Experimental separation of chloroplast development and chloroplast replication. Biochim Biophys Acta. 1961 Aug 5;51:340–346. doi: 10.1016/0006-3002(61)90175-5. [DOI] [PubMed] [Google Scholar]
  10. SCHIFF J. A., LYMAN H., EPSTEIN H. T. Studies of chloroplast development in Euglena. II. Photoreversal of the u.v. inhibition of green colony formation. Biochim Biophys Acta. 1961 Jun 24;50:310–318. doi: 10.1016/0006-3002(61)90329-8. [DOI] [PubMed] [Google Scholar]
  11. Smith J. H., French C. S., Koski V. M. The Hill Reaction: Development of Chloroplast Activity During Greening of Etiolated Barley Leaves. Plant Physiol. 1952 Jan;27(1):212–213. doi: 10.1104/pp.27.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Smith J. H. The Development of Chlorophyll and Oxygen-evolving Power in Etiolated Barley Leaves When Illuminated. Plant Physiol. 1954 Mar;29(2):143–148. doi: 10.1104/pp.29.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stern A. I., Epstein H. T., Schiff J. A. Studies of Chloroplast Development in Euglena. VI. Light Intensity as a Controlling Factor in Development. Plant Physiol. 1964 Mar;39(2):226–231. doi: 10.1104/pp.39.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tolbert N. E., Gailey F. B. Carbon Dioxide Fixation by Etiolated Plants after Exposure to White Light. Plant Physiol. 1955 Nov;30(6):491–499. doi: 10.1104/pp.30.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES