Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2007 Dec 15;23(1):1–8. doi: 10.1007/s12264-007-0001-6

Microinjection of M5 muscarinic receptor antisense oligonucleotide into VTA inhibits FosB expression in the NAc and the hippocampus of heroin sensitized rats

中脑腹侧被盖区注射M5 受体反义寡核苷酸抑制海洛因敏化大鼠伏隔核和海马中FosB 表达

Hui-Fen Liu 1,, Wen-Hua Zhou 1, Hua-Qiang Zhu 1, Miao-Jun Lai 1, Wei-Sheng Chen 1
PMCID: PMC5500770  PMID: 17592519

Abstract

Objective

To investigate the effect of M5 muscarinic receptor subtype on the locomotor sensitization induced by heroin priming, and it’s effect on the FosB expression in the nucleus accumbens (NAc) and the hippocampus in the heroin sensitized rats.

Methods

Locomotor activity was measured every 10 min for 1 h after subcutaneous injection of heroin. FosB expression was assayed by immunohistochemistry, and the antisense oligonucleotides (AS-ONs) targeting M5 muscarinic receptor was transferred with the lipofectin.

Results

Microinjection of AS-ONs targeting M5 muscarinic receptor in the ventral tegmental area (VTA) blocked the expression of behavioral sensitization induced by heroin priming in rats. Meanwhile, the expression of FosB-positive neurons in either the NAc or the dentate gyrus (DG) of the hippocampus increased in heroin-induced locomotor sensitized rats. The enhancement of FosB-positive neurons in the NAc or DG could be inhibited by microinjection of M5 muscarinic receptor AS-ONs into the VTA before the heroin-induced locomotor sensitization was performed. In contrast, microinjection of M5 muscarinic receptor sense oligonucleotide (S-ONs) into the VTA did not block the expression of behavioral sensitization or the expression of FosB in the NAc or DG in the heroin sensitized rats.

Conclusion

Blocking M5 muscarinic receptor in the VTA inhibits the expression of heroin-induced locomotor sensitization, which is associated with the regulation of FosB expression in the NAc and hippocampus neurons. M5 muscarinic receptor may be a useful pharmacological target for the treatment of heroin addiction.

Keywords: Heroin, locomotor activity, muscarinic receptor, FosB, nucleus accumbens, hippocampus

References

  • [1].Robinson T.E., Berridge K.C. The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction. 2000;95(Suppl2):S91–S117. doi: 10.1080/09652140050111681. [DOI] [PubMed] [Google Scholar]
  • [2].Vanderschuren L.J.M.J., Kalivas P.W. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 2000;151:99–120. doi: 10.1007/s002130000493. [DOI] [PubMed] [Google Scholar]
  • [3].Vilaro M.T., Palacios J.M., Mengod G. Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett. 1990;114:154–159. doi: 10.1016/0304-3940(90)90064-G. [DOI] [PubMed] [Google Scholar]
  • [4].Yamada M., Basile A.S., Fedorova I., Zhang W., Duttaroy A., Cui Y., et al. Novel insights into M5 muscarinic acetylcholine receptor function by the use of gene targeting technology. Life Sci. 2003;74:345–353. doi: 10.1016/j.lfs.2003.09.022. [DOI] [PubMed] [Google Scholar]
  • [5].Liu H.F., Zhou W.H., Xie X.H., Cao J.L., Gu J., Yang G.D. Muscarinic receptors modulate the mRNA expression of NMDA receptors in brainstem and the release of glutamate in periaqueductal grey during morphine withdrawal in rats. Acta Physiol Sin. 2004;56:95–100. [PubMed] [Google Scholar]
  • [6].Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. 4th ed. San Diego: Academic Press; 1998. [Google Scholar]
  • [7].Bechara A., van der Kooy D. The tegmental pedunculopontine nucleus: a brain-stem output of the limbic system critical for the conditioned place preferences produced by morphine and amphetamine. J Neurosci. 1989;9:3400–3409. doi: 10.1523/JNEUROSCI.09-10-03400.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Weiner D.M., Levey A.I., Brann M.R. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA. 1990;87:7050–7054. doi: 10.1073/pnas.87.18.7050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Forster G.L., Blaha C.D. Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci. 2000;12:3596–3604. doi: 10.1046/j.1460-9568.2000.00250.x. [DOI] [PubMed] [Google Scholar]
  • [10].Forster G.L., Blaha C.D. Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci. 2003;17:751–762. doi: 10.1046/j.1460-9568.2003.02511.x. [DOI] [PubMed] [Google Scholar]
  • [11].Forster G.L., Yeomans J.S., Takeuchi J., Blaha C.D. M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci. 2002;22:RC190. doi: 10.1523/JNEUROSCI.22-01-j0001.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Basile A.S., Fedorova I., Zapata A., Liu X., Shippenberg T., Duttaroy A., et al. Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci USA. 2002;99:11452–11457. doi: 10.1073/pnas.162371899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Fink-Jensen A., Fedorova I., Wortwein G., Woldbye D.P., Rasmussen T., Thomsen M., et al. Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res. 2003;74:91–96. doi: 10.1002/jnr.10728. [DOI] [PubMed] [Google Scholar]
  • [14].Thomsen M., Woldbye D.P., Wortwein G., Fink-Jensen A., Wess J., Caine S.B. Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci. 2005;25:8141–8149. doi: 10.1523/JNEUROSCI.2077-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Morgan J.I., Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci. 1991;14:421–451. doi: 10.1146/annurev.ne.14.030191.002225. [DOI] [PubMed] [Google Scholar]
  • [16].Nestler E.J., Kelz M.B., Chen J. ΔFosB: a molecular mediator of long-term neural and behavioral plasticity. Brain Res. 1999;835:10–17. doi: 10.1016/S0006-8993(98)01191-3. [DOI] [PubMed] [Google Scholar]
  • [17].Chaudhuri A. Neural activity mapping with inducible transcription factors. Neuroreport. 1997;8:iii–vii. doi: 10.1097/00001756-199709080-00002. [DOI] [PubMed] [Google Scholar]
  • [18].Labiner D.M., Butler L.S., Cao Z., Hosford D.A., Shin C., McNamara J.O. Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J Neurosci. 1993;13:744–751. doi: 10.1523/JNEUROSCI.13-02-00744.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Chen J., Kelz M.B., Hope B.T., Nakabeppu Y., Nestler E.J. Chronic Fos-related antigens: stable variants of ΔFosB induced in brain by chronic treatments. J Neurosci. 1997;17:4933–4941. doi: 10.1523/JNEUROSCI.17-13-04933.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Atkins J.B., Chlan-Fourney J., Nye H.E., Hiroi N., Carlezon W.A., Jr, Nestler E.J. Region-specific induction of deltaFosB by repeated administration of typical versus atypical antipsychotic drugs. Synapse. 1999;33:118–128. doi: 10.1002/(SICI)1098-2396(199908)33:2<118::AID-SYN2>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  • [21].Nye H.E., Nestler E.J. Induction of chronic Fos-related antigens in rat brain by chronic morphine administration. Mol Pharmacol. 1996;49:636–645. [PubMed] [Google Scholar]
  • [22].Nestler E.J., Barrot M., Self D.W. ΔFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci USA. 2001;98:11042–11046. doi: 10.1073/pnas.191352698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Cenci M.A., Tranberg A., Andersson M., Hilbertson A. Changes in the regional and compartmental distribution of FosB-and JunB-like immunoreactivity induced in the dopamine-denervated rat striatum by acute or chronic L-dopa treatment. Neuroscience. 1999;94:515–527. doi: 10.1016/S0306-4522(99)00294-8. [DOI] [PubMed] [Google Scholar]
  • [24].Kelz M.B., Chen J., Carlezon W.A., Jr, Whisler K., Gilden L., Beckmann A.M., et al. Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature. 1999;401:272–276. doi: 10.1038/45790. [DOI] [PubMed] [Google Scholar]
  • [25].Kalivas P.W., Duffy P. Sensitization to repeated morphine injection in the rat: possible involvement of A10 dopamine neurons. J Pharmacol Exp Ther. 1987;241:204–212. [PubMed] [Google Scholar]
  • [26].Pierce R.C., Kalivas P.W. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev. 1997;25:192–216. doi: 10.1016/S0165-0173(97)00021-0. [DOI] [PubMed] [Google Scholar]
  • [27].Xu Y., Sun S.G., Cao X.B. Study on plasticity of striatal neurons of levodopa-induced dyskinesia in rat. Chin J Neurosci. 2004;20:252–256. [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES