Abstract
In an attempt to identify genes that control or encode the targets of general anesthetics, we have chemically mutagenized fruit flies and selected four lines that show an abnormal response to the volatile anesthetic halothane. Specifically, about 2-fold higher concentrations of halothane are required to induce the loss of motor control in the mutant flies. Fine mapping of two isolates indicates that they alter a previously uncharacterized gene of Drosophila. In the absence of anesthetics, these mutants display alterations of behavior that imply changes in the adult and the larval neuromuscular system.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrecht R. F., Miletich D. J. Speculations on the molecular nature of anesthesia. Gen Pharmacol. 1988;19(3):339–346. doi: 10.1016/0306-3623(88)90026-2. [DOI] [PubMed] [Google Scholar]
- Bangham A. D., Hill M. W. The proton pump/leak mechanism of unconsciousness. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):189–205. doi: 10.1016/0009-3084(86)90070-8. [DOI] [PubMed] [Google Scholar]
- Benzer S. BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1112–1119. doi: 10.1073/pnas.58.3.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dudai Y., Sher B., Segal D., Yovell Y. Defective responsiveness of adenylate cyclase to forskolin in the Drosophila memory mutant rutabaga. J Neurogenet. 1985 Dec;2(6):365–380. doi: 10.3109/01677068509101423. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984 Aug 16;310(5978):599–601. doi: 10.1038/310599a0. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Molecular mechanisms of general anaesthesia. Nature. 1982 Dec 9;300(5892):487–493. doi: 10.1038/300487a0. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Volatile general anaesthetics activate a novel neuronal K+ current. Nature. 1988 Jun 16;333(6174):662–664. doi: 10.1038/333662a0. [DOI] [PubMed] [Google Scholar]
- Gamo S., Ogaki M., Nakashima-Tanaka E. Strain differences in minimum anesthetic concentrations in Drosophila melanogaster. Anesthesiology. 1981 Apr;54(4):289–293. doi: 10.1097/00000542-198104000-00006. [DOI] [PubMed] [Google Scholar]
- Kaplan W. D., Trout W. E., 3rd The behavior of four neurological mutants of Drosophila. Genetics. 1969 Feb;61(2):399–409. doi: 10.1093/genetics/61.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirschfeld K., Baier-Rogowski V. The neuronal basis of the anesthetic state: a comparative physiological approach. II. The influence of anesthetics on various reactions in flies. Biol Cybern. 1988;58(1):1–11. doi: 10.1007/BF00363951. [DOI] [PubMed] [Google Scholar]
- Koblin D. D., Lurz F. W., O'Connor B., Nelson N. T., Eger E. I., 2nd, Bainton C. R. Potencies of barbiturates in mice selectively bred for resistance or susceptibility to nitrous oxide anesthesia. Anesth Analg. 1984 Jan;63(1):35–39. [PubMed] [Google Scholar]
- Lilly M., Carlson J. smellblind: a gene required for Drosophila olfaction. Genetics. 1990 Feb;124(2):293–302. doi: 10.1093/genetics/124.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livingstone M. S. Genetic dissection of Drosophila adenylate cyclase. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5992–5996. doi: 10.1073/pnas.82.17.5992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moody E. J., Suzdak P. D., Paul S. M., Skolnick P. Modulation of the benzodiazepine/gamma-aminobutyric acid receptor chloride channel complex by inhalation anesthetics. J Neurochem. 1988 Nov;51(5):1386–1393. doi: 10.1111/j.1471-4159.1988.tb01102.x. [DOI] [PubMed] [Google Scholar]
- Morgan P. G., Cascorbi H. F. Effect of anesthetics and a convulsant on normal and mutant Caenorhabditis elegans. Anesthesiology. 1985 Jun;62(6):738–744. doi: 10.1097/00000542-198506000-00007. [DOI] [PubMed] [Google Scholar]
- Morgan P. G., Sedensky M. M., Meneely P. M., Cascorbi H. F. The effect of two genes on anesthetic response in the nematode Caenorhabditis elegans. Anesthesiology. 1988 Aug;69(2):246–251. doi: 10.1097/00000542-198808000-00015. [DOI] [PubMed] [Google Scholar]
- Ori C., Ford-Rice F., London E. D. Effects of nitrous oxide and halothane on mu and kappa opioid receptors in guinea-pig brain. Anesthesiology. 1989 Mar;70(3):541–544. doi: 10.1097/00000542-198903000-00027. [DOI] [PubMed] [Google Scholar]
- Royden C. S., Pirrotta V., Jan L. Y. The tko locus, site of a behavioral mutation in D. melanogaster, codes for a protein homologous to prokaryotic ribosomal protein S12. Cell. 1987 Oct 23;51(2):165–173. doi: 10.1016/0092-8674(87)90144-9. [DOI] [PubMed] [Google Scholar]
- Sedensky M. M., Meneely P. M. Genetic analysis of halothane sensitivity in Caenorhabditis elegans. Science. 1987 May 22;236(4804):952–954. doi: 10.1126/science.3576211. [DOI] [PubMed] [Google Scholar]
- Segal I. S., Vickery R. G., Walton J. K., Doze V. A., Maze M. Dexmedetomidine diminishes halothane anesthetic requirements in rats through a postsynaptic alpha 2 adrenergic receptor. Anesthesiology. 1988 Dec;69(6):818–823. doi: 10.1097/00000542-198812000-00004. [DOI] [PubMed] [Google Scholar]
- Ueda I., Kamaya H. Molecular mechanisms of anesthesia. Anesth Analg. 1984 Oct;63(10):929–945. [PubMed] [Google Scholar]