Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Nov;87(22):8736–8740. doi: 10.1073/pnas.87.22.8736

Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy.

S J Szilvassy 1, R K Humphries 1, P M Lansdorp 1, A C Eaves 1, C J Eaves 1
PMCID: PMC55034  PMID: 2247442

Abstract

Although hematopoiesis is known to originate in a population of very primitive cells with both lymphopoietic and myelopoietic potential, a procedure for enumerating such cells has to date not been available. We now describe a quantitative assay for long-term repopulating stem cells with the potential for reconstituting all hematopoietic lineages. This assay has two key features. The first is the use of competitive repopulation conditions that ensure not only the detection of a very primitive class of hematopoietic stem cells but also the survival of lethally irradiated mice transplanted with very low numbers of such cells. The second is the use of a limiting-dilution experimental design to allow stem cell quantitation. The assay involves transplanting limiting numbers of male "test" cells into lethally irradiated syngeneic female recipients together with 1-2 x 10(5) syngeneic female marrow cells whose long-term repopulating ability has been compromised by two previous cycles of marrow transplantation. The proportion of assay recipients whose regenerated hematopoietic tissues are determined to contain greater than or equal to 5% cells of test cell origin (male) greater than or equal to 5 weeks later is then used to calculate the frequency of competitive repopulating units (CRU) in the original male test cell suspension (based on Poisson statistics). Investigation of this assay system has shown that all three potential sources of stem cells (test cells, compromised cells, and the host) can under appropriate circumstances contribute to long-term hematopoietic regeneration, thus establishing both the competitive pressure of hematopoietic stem cells in the cotransplanted compromised population and in the host, and the need to use genetic markers to track the specific contribution of the injected test cells. Analysis of the frequency of CRU in test marrow suspensions that varied widely in their CRU content gave similar values when endpoints of either 5 or 10 weeks posttransplantation were used and when either recipient marrow or thymus was used to identify progeny populations. In addition, repopulation of marrow and thymus was found to be associated in most mice injected with limiting numbers of test cells. These findings are consistent with the conclusion that the assay is highly selective for a very primitive, totipotent, reconstituting hematopoietic stem cell and should therefore be particularly useful in future gene therapy-oriented research as well as for more basic studies of hematopoietic stem cell regulation and differentiation.

Full text

PDF
8736

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson S., Miller R. G., Phillips R. A. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med. 1977 Jun 1;145(6):1567–1579. doi: 10.1084/jem.145.6.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boggs D. R., Boggs S. S., Saxe D. F., Gress L. A., Canfield D. R. Hematopoietic stem cells with high proliferative potential. Assay of their concentration in marrow by the frequency and duration of cure of W/Wv mice. J Clin Invest. 1982 Aug;70(2):242–253. doi: 10.1172/JCI110611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Capel B., Hawley R., Covarrubias L., Hawley T., Mintz B. Clonal contributions of small numbers of retrovirally marked hematopoietic stem cells engrafted in unirradiated neonatal W/Wv mice. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4564–4568. doi: 10.1073/pnas.86.12.4564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dick J. E., Magli M. C., Huszar D., Phillips R. A., Bernstein A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell. 1985 Aug;42(1):71–79. doi: 10.1016/s0092-8674(85)80102-1. [DOI] [PubMed] [Google Scholar]
  5. Harrison D. E., Astle C. M., Delaittre J. A. Loss of proliferative capacity in immunohemopoietic stem cells caused by serial transplantation rather than aging. J Exp Med. 1978 May 1;147(5):1526–1531. doi: 10.1084/jem.147.5.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hodgson G. S., Bradley T. R., Radley J. M. The organization of hemopoietic tissue as inferred from the effects of 5-fluorouracil. Exp Hematol. 1982 Jan;10(1):26–35. [PubMed] [Google Scholar]
  7. Jones R. J., Celano P., Sharkis S. J., Sensenbrenner L. L. Two phases of engraftment established by serial bone marrow transplantation in mice. Blood. 1989 Feb;73(2):397–401. [PubMed] [Google Scholar]
  8. Keller G., Paige C., Gilboa E., Wagner E. F. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature. 1985 Nov 14;318(6042):149–154. doi: 10.1038/318149a0. [DOI] [PubMed] [Google Scholar]
  9. Lemischka I. R., Raulet D. H., Mulligan R. C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell. 1986 Jun 20;45(6):917–927. doi: 10.1016/0092-8674(86)90566-0. [DOI] [PubMed] [Google Scholar]
  10. MCCULLOCH E. A., TILL J. E. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res. 1960 Jul;13:115–125. [PubMed] [Google Scholar]
  11. Magli M. C., Iscove N. N., Odartchenko N. Transient nature of early haematopoietic spleen colonies. Nature. 1982 Feb 11;295(5849):527–529. doi: 10.1038/295527a0. [DOI] [PubMed] [Google Scholar]
  12. Micklem H. S., Lennon J. E., Ansell J. D., Gray R. A. Numbers and dispersion of repopulating hematopoietic cell clones in radiation chimeras as functions of injected cell dose. Exp Hematol. 1987 Mar;15(3):251–257. [PubMed] [Google Scholar]
  13. Ploemacher R. E., Brons R. H. Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: evidence for a pre-CFU-S cell. Exp Hematol. 1989 Mar;17(3):263–266. [PubMed] [Google Scholar]
  14. Snodgrass R., Keller G. Clonal fluctuation within the haematopoietic system of mice reconstituted with retrovirus-infected stem cells. EMBO J. 1987 Dec 20;6(13):3955–3960. doi: 10.1002/j.1460-2075.1987.tb02737.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Spangrude G. J., Heimfeld S., Weissman I. L. Purification and characterization of mouse hematopoietic stem cells. Science. 1988 Jul 1;241(4861):58–62. doi: 10.1126/science.2898810. [DOI] [PubMed] [Google Scholar]
  16. Szilvassy S. J., Fraser C. C., Eaves C. J., Lansdorp P. M., Eaves A. C., Humphries R. K. Retrovirus-mediated gene transfer to purified hemopoietic stem cells with long-term lympho-myelopoietic repopulating ability. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8798–8802. doi: 10.1073/pnas.86.22.8798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Szilvassy S. J., Lansdorp P. M., Humphries R. K., Eaves A. C., Eaves C. J. Isolation in a single step of a highly enriched murine hematopoietic stem cell population with competitive long-term repopulating ability. Blood. 1989 Aug 15;74(3):930–939. [PubMed] [Google Scholar]
  18. TILL J. E., MCCULLOCH E. A., SIMINOVITCH L. A STOCHASTIC MODEL OF STEM CELL PROLIFERATION, BASED ON THE GROWTH OF SPLEEN COLONY-FORMING CELLS. Proc Natl Acad Sci U S A. 1964 Jan;51:29–36. doi: 10.1073/pnas.51.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
  20. Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol. 1981 Apr;126(4):1614–1619. [PubMed] [Google Scholar]
  21. Visser J. W., Bauman J. G., Mulder A. H., Eliason J. F., de Leeuw A. M. Isolation of murine pluripotent hemopoietic stem cells. J Exp Med. 1984 Jun 1;159(6):1576–1590. doi: 10.1084/jem.159.6.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Visser J. W., de Vries P. Isolation of spleen-colony forming cells (CFU-s) using wheat germ agglutinin and rhodamine 123 labeling. Blood Cells. 1988;14(2-3):369–384. [PubMed] [Google Scholar]
  23. Wu A. M., Till J. E., Siminovitch L., McCulloch E. A. Cytological evidence for a relationship between normal hemotopoietic colony-forming cells and cells of the lymphoid system. J Exp Med. 1968 Mar 1;127(3):455–464. doi: 10.1084/jem.127.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES