Abstract
Nasopharyngeal carcinoma (NPC) carries a high potential for metastasis and immune escape, with a great risk of relapse after primary treatment. Through analysis of whole genome expression profiling data in NPC samples, we found that the expression of a long non-coding RNA (lncRNA), actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1), is significantly correlated with the immune escape marker programmed death 1 (PD-1). We therefore assessed the expression of AFAP1-AS1 and PD-1 in a cohort of 96 paraffin-embedded NPC samples and confirmed that AFAP1-AS1 and PD-1 are co-expressed in infiltrating lymphocytes in NPC tissue. Moreover, patients with high expression of AFAP1-AS1 or PD-1 in infiltrating lymphocytes were more prone to distant metastasis, and NPC patients with positive expression of both AFAP1-AS1 and PD-1 had the poorest prognosis. This study suggests that AFAP1-AS1 and PD-1 may be potential therapeutic targets in NPC and that patients with co-expression of AFAP1-AS1 and PD-1 may be ideal candidates for future clinical trials of anti-PD-1 immune therapy.
Keywords: long non-coding RNA, AFAP1-AS1, programmed death 1 (PD-1), prognosis, nasopharyngeal carcinoma (NPC)
INTRODUCTION
Long non-coding RNAs (lncRNAs) are a group of RNA transcripts that exceed 200 nt in length yet lack significant open reading frames (ORFs) [1]. They regulate gene expression through transcriptional, post-transcriptional and epigenetic effects [2–8]. Tens of thousands of lncRNAs have been identified in the human genome [9], many of which are abnormally expressed in a variety of human tumors, and are involved in various stages of carcinogenesis, including tumor initiation, progression and metastasis [10–17]. However, the function of the vast majority of these lncRNAs is still unclear.
In a previous study, we performed gene expression profile (GEP) analysis by microarray and found that one lncRNA named actin filament-associated protein 1 antisense RNA1 (AFAP1-AS1) was significantly upregulated in nasopharyngeal carcinoma (NPC), and promoted invasion and metastasis of cancer cells by regulating the expression of several small GTPase family members and molecules in the actin cytokeratin signaling pathway [18]. However, it is not yet known whether there is any other biological function of AFAP1-AS1 in the tumorigenesis of NPC.
In this study, using GEP dataset, we found that a key molecular maker of tumor immune evasion, programmed death 1 (PD-1), was positively correlated with the expression of AFAP1-AS1. Therefore, we used in situ hybridization to detect the expression of AFAP1-AS1 and immunohistochemical staining to detect the expression of PD-1 in a cohort of 96 NPC biopsies, and we analyzed co-expression of AFAP1-AS1 and PD-1 and its relevance in clinical outcomes and prognosis. The results suggest that AFAP1-AS1 might be involved in the PD-1 immune checkpoint pathway and that PD-1 and AFAP1-AS1 might jointly promote the formation and development of NPC.
RESULTS
The expression of AFAP1-AS1 is positively correlated with PD-1 in NPC
The Gene Expression Omnibus (GEO) database [19] is a public gene expression data repository that serves as a valuable data repository for biomedical research and has collected a large amount of gene expression data for data mining [20]. Mining of published high-throughput data is a commonly used and low-cost method for identifying novel biomarkers and gaining insight into the biological functions of novel genes [21–23]. To identify potential novel functions of AFAP1-AS1, we downloaded a GEP dataset, GSE12452, from the GEO database; this dataset consists of 41 samples of whole-genome GEP data, including 10 samples of non-tumor nasopharyngeal epithelial (NPE) biopsies and 31 cases of NPC [24]. We found that there were 4196 differentially expressed genes in the GSE12452 dataset. Among these differentially expressed genes, AFAP1-AS1 was highly expressed in NPC cells and was positively correlated with the expression of PD-1, a key molecular marker of tumor immune evasion (Figure 1, P=0.05).
AFAP1-AS1 and PD-1 are co-expressed in infiltrating lymphocytes in NPC tissue
Since PD-1 is a membrane protein and mainly expressed on the lymphocyte cell surface [25]; and tumor-infiltrating lymphocytes are associated with the development and progression of NPC [26]. we set out to assess AFAP1-AS1 and PD-1 expression in a cohort of 96 paraffin-embedded NPC samples via in situ hybridization and immunohistochemical staining, respectively (Supplementary Table 1). Expression of AFAP1-AS1 was absent or very low in adjacent non-tumor NPE (Figure 2A) but high in NPC cells and infiltrating lymphocytes in 68 of 96 cases (70.8%, Figure 2B). Similarly, the expression of PD-1 was low or negative in non-tumor NPE (Figure 2C) but high in infiltrating lymphocytes surrounding NPC cells (36 of 96 cases, 37.5%, Figure 2D).
High expression of AFAP1-AS1 or PD-1 is correlated with distant metastasis at relapse
We then analyzed the correlation between the expression of AFAP1-AS1 and PD-1 and clinicopathological features of these 96 NPC patients. There was no significant correlation between the expression of AFAP1-AS1 or PD-1 and patients' gender, age at diagnosis, tumor size (T stage), lymphatic invasion (N stage), distant metastasis at diagnosis (M stage) and overall clinical staging (Supplementary Table 2), but patients with high expression of AFAP1-AS1 or PD-1 in NPC-infiltrating lymphocytes were more likely to have distant metastasis when they relapsed (Figure 3A and 3B, P=0.005 and P=0.020, respectively).
Co-expression of AFAP1-AS1 and PD-1 predicts poor prognosis of NPC
Finally, we analyzed the association of AFAP1-AS1 and PD-1 expression with NPC patients' outcomes. Patients with positive expression of AFAP1-AS1 or PD-1 in NPC biopsies had a poor prognosis, with shorter overall survival (47.7% five-year survival with positive expression of AFAP1-AS1 vs. 92.8% with negative expression, P=0.001, Figure 4A; 52.8% five-year survival with positive PD-1 expression vs. 65.0% with negative expression, P=0.049, Figure 4B). NPC patients with positive expression of both AFAP1-AS1 and PD-1 had much shorter overall survival (38.5% five-year survival, P=0.002, Figure 5).
DISCUSSION
NPC is an Epstein-Barr Virus (EBV)-associated malignancy and is the most common malignant head and neck tumor, originating in the nasopharyngeal epithelium [27–31]. High incidences of NPC are observed in Southeast Asia and southern China, resulting in serious healthcare problems in these regions [32–34]. NPC is highly metastatic and heterogeneous compared with other head and neck tumors [35–40]. Radiotherapy has been used as the primary clinical treatment for all stages of NPC over the past several decades, but many patients eventually die due to recurrence and distant metastasis [41–43]. Although recent studies have shown that induction chemotherapy plus concurrent chemoradiotherapy significantly improves failure-free survival in locally or regionally advanced NPC with acceptable toxicity, long-term efficacy and toxicities remain unclear [44]. Management of advanced NPC is therefore a highly challenging issue, and novel and effective therapies for NPC are urgently needed.
Recently, tumor immune evasion has emerged as a hallmark of cancer progression [45–47]. Immune surveillance is an important mechanism in preventing the development of cancer and inhibiting tumor growth and metastasis [48–50]. There are many immunosuppressive mechanisms in the tumor microenvironment that can decrease the activity of tumor-infiltrating lymphocytes and increase the risk of tumor metastasis and recurrence [51]. Among these mechanisms, T cell-mediated immune responses, especially CD8+ cytotoxic T lymphocytes, play an important role in tumor immunity [52, 53].
PD-1 is a transmembrane receptor that is mainly expressed on T cells. It was first cloned in T cell hybridomas and was named “programmed death receptor” because of its involvement in T cell apoptosis [25]. In tumor tissues, PD-1 is mainly expressed in tumor-infiltrating lymphocytes (TILs) [54, 55]. High expression of PD-1 in TILs led to depletion and deactivation of T cells [56–60]. PD-1 also interacts with programmed death ligand-1 (PD-L1) and programmed death ligand-2 (PD-L2), which are mainly expressed on the surface of tumor cells or in the tumor matrix [61, 62]; these ligands activate PD-1, which then inhibits the proliferation of T cells and promotes the immune escape of tumor cells, playing an important role in immune suppression and cancer progression [63–65]. The blockade of immune checkpoints has been the most promising approach to activating antitumor immunity. A tumor immunotherapy treatment strategy using a combined PD-1/PD-L1 antibody has entered the stage of clinical trials and shown good performance [66, 67].
It has been reported that local infiltration of T cells is a favorable indicator of survival in NPC patients, but many studies have indicated that NPC can escape immune surveillance through various mechanisms [68–75]. Recent studies have shown that NPC has high levels of PD-L1 and PD-1, indicating that NPC may be a candidate for PD-1/PD-L1-dericted therapies [76–78]. However, the underlying mechanism of PD-1 regulation in NPC is undetermined.
In a previous study, we found that the lncRNA AFAP1-AS1 is significantly upregulated in NPC and promotes invasion and metastasis of cancer cells [18]. Interestingly, using the GEO database, we found and confirmed that the expression of AFAP1-AS1 is positively correlated with PD-1, that high expression of PD-1 and AFAP1-AS1 predicts high incidence of recurrence or metastasis and that co-expression of AFAP1-AS1 and PD-1 in NPC biopsies predicted the poorest prognosis.
However, there are still several relevant mechanism-related questions to be solved urgently. For example, is there a regulatory relationship between AFAP1-AS1 and PD-1? Does AFAP1-AS1 promote the expression of PD-1? And how does AFAP1-AS1 regulate PD-1? We speculate that AFAP1-AS1 may regulate PD-1 expression through the following mechanisms. First, AFAP1-AS1 may act as a competing endogenous RNA (ceRNAs) [79–81] to regulate PD-1 expression. Second, AFAP1-AS1 may bind to certain transcriptional complexes to regulate PD-1 transcription. Third, AFAP1-AS1 may affect epigenetic modification of PD-1. These questions warrant in-depth exploration in future studies.
In conclusion, to our knowledge, this is the first study to explore the co- expression of a lncRNA, AFAP1-AS1, and an immune escape marker, PD-1, in tumor-infiltrating lymphocytes among NPC patients, as well as their synergistic effect on prognosis. This study provides two potential therapeutic targets for NPC, AFAP1-AS1 and PD-1, to inhibit tumor metastasis and stimulate anti-tumor immunity. Patients with higher expression of both AFAP1-AS1 and PD-1 might be ideal candidates for future clinical trials of anti-PD-1 therapy. Our study is limited by its retrospective nature, with a relatively small sample size. Further studies with larger sample sizes are warranted.
MATERIALS AND METHODS
Tissue samples
A total of 96 samples of paraffin-embedded NPC tissue were collected from newly diagnosed NPC patients at the Xiangya Hospital and the Affiliated Cancer Hospital of Central South University (Changsha China). All specimens were confirmed by histopathological examination. All of the patients had received routine radiotherapy. This study was approved by the Research Ethics Board of Xiangya Hospital and the Affiliated Cancer Hospital of Central South University, and signed informed consent was obtained from each participant before they were enrolled in the study. Clinicopathological data were collected from patient medical records and are reported in Supplementary Table 1.
In situ hybridization
In situ hybridization was performed to detect the expression of AFAP1-AS1 in tissue specimens using three 30-nucleotide probes from different regions of AFAP1-AS1. GAPDH was used as a positive control. The probe sequences were as follows.
AFAP1-AS1 probes:
Probe 1: 5′- ATTCCTTTATTTTATGGGATGTTCTGTAGGGAGTT-3′,
Probe 2: 5′-TAGAAATGAGAAAAGAATCACCAAGAGAGTAAGCA -3′,
Probe 3: 5′-CCCTACAGCTAGTTTCCTCTTCATTTATTCATTT-3′
GAPDH probes:
Probe 1: 5′-CCACTTTACCAGAGTTAAAAGCAGCCCTGG-3′
Probe 2: 5′-CAGTAGAGGCAGGGATGATGTTCTGGAGAG-3′
Probe 3: 5′-GTCAGAG GAGACCACCTGGTG CTCAGTGTA-3′
The probes were synthesized and labeled with DIG-dUTP at the 3′ end using a kit from Invitrogen (Shanghai, China) [82–84]. The in situ hybridization results were independently scored manually by two pathologists who counted 20 sequential high-power fields judged to be representative of the tumor, while remaining blinded to clinical information.
Immunohistochemistry
Paraffin-embedded sections (3 μm) were used for PD-1 staining. Paraffin sections were dewaxed using turpentine and gradient alcohol, immersed in 3% H2O2 at room temperature for 10 min and then treated with citric acid buffer [85, 86]. Staining for PD-1 (Proteintech, Wuhan, China) was observed under the microscope. Samples were divided into a PD-1-negative group and a PD-1-positive group by double-blind scoring by two pathologists.
Data analysis
We downloaded an NPC gene expression dataset from the GEO database (accession number GSE12452). The GSE12452 microarray consists of 10 non-tumor NPE biopsies and 31 cases of NPC [24]. We used Significant Analysis of Microarray (SAM) software [87] to analyze the microarray expression profiles(cut-off=1.5, FDR<0.05 lncRNA expression) and selected differentially expressed molecules of interest for the subsequent Pearson correlation analysis.
Pearson correlation analysis was used to evaluate the expression levels of AFAP1-AS1 and PD-1. The Chi-squared test was used to evaluate the expression of AFAP1-AS1, PD-1 and clinicopathological features such as gender, age at diagnosis, TNM staging, and metastasis, among others. Survival analysis was performed using the Kaplan-Meier test. A threshold of P<0.05 was used to indicate statistical significance, and all tested P values were two-sided. Statistical analysis was performed using SPSS 13 and GraphPad 5 software
SUPPLEMENTARY TABLES
Abbreviations
- NPC
nasopharyngeal carcinoma
- LncRNAs
Long noncoding RNAs
- AFAP1-AS1
actin lament associated protein 1 antisense RNA1
- PD-1
programmed death 1
- ORF
open reading frame
- GEP
gene expression profile
- GEO
Gene Expression Omnibus
- NPE
nasopharyngeal epithelial
- EBV
Epstein-Barr Virus
- TILs
tumor infiltrating lymphocytes
- PD-L1
programmed death ligand-1
- PD-L2
programmed death ligand-2
- ceRNAs
Competing Endogenous RNAs
- SAM
Significant Analysis of Microarray.
Footnotes
Author contributions
Z.Z. and S.L. designed the project and revised the manuscript. Y.T., W.X. and Z.Z drafted the manuscript. Y.T., Y.H., S.L., L.Y., J.W., Y.L., C.F., P.Z. C.G., S.Z., Z.G. X.L. and F.X. conducted the experiments and analyzed the data. X.L., G.L., Y.L. and W.X. participated in designing the experiments, analyzing the data and revising the manuscript. All the authors read and approved the final version of the paper.
CONFLICTS OF INTEREST
The authors declare that there are no conflicts of interest in this work.
FUNDING
This work was supported in part by the National Natural Science Foundation of China (81201523, 81372907, 81301757, 81472531, 81402009, 81572787, 81672683 and 81672993), the Natural Science Foundation of Hunan Province (14JJ1010, 2015JJ1022 and 2016JC2035), the Mittal Innovation Foundation of Central South University (15MX46 and MX2016442), and the Fundamental Research Funds for Central Universities of Central South University (2014zzts066 and 2016zzts478).
REFERENCES
- 1.Gong Z, Zhang S, Zhang W, Huang H, Li Q, Deng H, Ma J, Zhou M, Xiang J, Wu M, Li X, Xiong W, Li X, et al. Long non-coding RNAs in cancer. Sci China Life Sci. 2012;55:1120–24. doi: 10.1007/s11427-012-4413-9. [DOI] [PubMed] [Google Scholar]
- 2.Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, McDonel PE, Guttman M, Lander ES. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016;539:452–55. doi: 10.1038/nature20149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Gong Z, Yang Q, Zeng Z, Zhang W, Li X, Zu X, Deng H, Chen P, Liao Q, Xiang B, Zhou M, Li X, Li Y, et al. An integrative transcriptomic analysis reveals p53 regulated miRNA, mRNA, and lncRNA networks in nasopharyngeal carcinoma. Tumour Biol. 2016;37:3683–95. doi: 10.1007/s13277-015-4156-x. [DOI] [PubMed] [Google Scholar]
- 4.Lian Y, Li XY, Tang YY, Yang LT, Li XL, Xiong W, Li GY, Zeng ZY. Long Non-coding RNAs Function as Competing Endogenous RNAs to Regulate Cancer Progression. Prog Biochem Biophys. 2016;43:219–25. [Google Scholar]
- 5.Gong Z, Zhang S, Zeng Z, Wu H, Yang Q, Xiong F, Shi L, Yang J, Zhang W, Zhou Y, Zeng Y, Li X, Xiang B, et al. LOC401317, a p53-regulated long non-coding RNA, inhibits cell proliferation and induces apoptosis in the nasopharyngeal carcinoma cell line HNE2. PLoS One. 2014;9:e110674. doi: 10.1371/journal.pone.0110674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Xu K, Xiong W, Zhou M, Wang H, Yang J, Li X, Chen P, Liao Q, Deng H, Li X, Li G, Zeng Z. Integrating ChIP-sequencing and digital gene expression profiling to identify BRD7 downstream genes and construct their regulating network. Mol Cell Biochem. 2016;411:57–71. doi: 10.1007/s11010-015-2568-y. [DOI] [PubMed] [Google Scholar]
- 7.Wang Y, Mo Y, Gong Z, Yang X, Yang M, Zhang S, Xiong F, Xiang B, Zhou M, Liao Q, Zhang W, Li X, Li X, et al. Circular RNAs in human cancer. Mol Cancer. 2017;16:25. doi: 10.1186/s12943-017-0598-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Tang Y, Wang J, Lian Y, Fan C, Zhang P, Wu Y, Li X, Xiong F, Li X, Li G, Xiong W, Zeng Z. Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Mol Cancer. 2017;16:42. doi: 10.1186/s12943-017-0612-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Tang K, Wei F, Bo H, Huang HB, Zhang WL, Gong ZJ, Li XY, Song YL, Liao QJ, Peng SP, Xiang JJ, Zhou M, Ma J, et al. Cloning and Functional Characterization of a Novel Long Non-coding RNA Gene Associated With Hepatocellular Carcinoma. Prog Biochem Biophys. 2014;41:153–62. [Google Scholar]
- 10.Yu J, Liu Y, Gong Z, Zhang S, Guo C, Li X, Tang Y, Yang L, He Y, Wei F, Wang Y, Liao Q, Zhang W, et al. Overexpression long non-coding RNA LINC00673 is associated with poor prognosis and promotes invasion and metastasis in tongue squamous cell carcinoma. Oncotarget. 2017;8:16621–32. doi: 10.18632/oncotarget.14200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Yang L, Tang Y, He Y, Wang Y, Lian Y, Xiong F, Shi L, Zhang S, Gong Z, Zhou Y, Liao Q, Zhou M, Li X, et al. High Expression of LINC01420 indicates an unfavorable prognosis and modulates cell migration and invasion in nasopharyngeal carcinoma. J Cancer. 2017;8:97–103. doi: 10.7150/jca.16819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Zeng Z, Bo H, Gong Z, Lian Y, Li X, Li X, Zhang W, Deng H, Zhou M, Peng S, Li G, Xiong W. AFAP1-AS1, a long noncoding RNA upregulated in lung cancer and promotes invasion and metastasis. Tumour Biol. 2016;37:729–37. doi: 10.1007/s13277-015-3860-x. [DOI] [PubMed] [Google Scholar]
- 13.He B, Li W, Wu Y, Wei F, Gong Z, Bo H, Wang Y, Li X, Xiang B, Guo C, Liao Q, Chen P, Zu X, et al. Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell metastasis and invasion by targeting long non-coding RNA LOC553103. Cell Death Dis. 2016;7:e2353. doi: 10.1038/cddis.2016.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Li YW, Wang YM, Zhang XY, Xue D, Kuang B, Pan XY, Jing YZ, Li XL, Zhou M, Xiong W, Zeng ZY, Li GY. Progress of Long Noncoding RNA HOTAIR in Human Cancer. Prog Biochem Biophys. 2015;42:228–35. [Google Scholar]
- 15.Zhang W, Huang C, Gong Z, Zhao Y, Tang K, Li X, Fan S, Shi L, Li X, Zhang P, Zhou Y, Huang D, Liang F, et al. Expression of LINC00312, a long intergenic non-coding RNA, is negatively correlated with tumor size but positively correlated with lymph node metastasis in nasopharyngeal carcinoma. J Mol Histol. 2013;44:545–54. doi: 10.1007/s10735-013-9503-x. [DOI] [PubMed] [Google Scholar]
- 16.Yu J, Liu Y, Guo C, Zhang S, Gong Z, Tang Y, Yang L, He Y, Lian Y, Li X, Deng H, Liao Q, Li X, et al. Upregulated long non-coding RNA LINC00152 expression is associated with progression and poor prognosis of tongue squamous cell carcinoma. J Cancer. 2017;8:523–30. doi: 10.7150/jca.17510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Zeng Z, Fan S, Zhang X, Li S, Zhou M, Xiong W, Tan M, Zhang W, Li G. Epstein-Barr virus-encoded small RNA 1 (EBER-1) could predict good prognosis in nasopharyngeal carcinoma. Clin Transl Oncol. 2016;18:206–11. doi: 10.1007/s12094-015-1354-3. [DOI] [PubMed] [Google Scholar]
- 18.Bo H, Gong Z, Zhang W, Li X, Zeng Y, Liao Q, Chen P, Shi L, Lian Y, Jing Y, Tang K, Li Z, Zhou Y, et al. Upregulated long non-coding RNA AFAP1-AS1 expression is associated with progression and poor prognosis of nasopharyngeal carcinoma. Oncotarget. 2015;6:20404–18. doi: 10.18632/oncotarget.4057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10. doi: 10.1093/nar/30.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Wang Y, Xue D, Li Y, Pan X, Zhang X, Kuang B, Zhou M, Li X, Xiong W, Li G, Zeng Z, Yang T. The Long Noncoding RNA MALAT-1 is A Novel Biomarker in Various Cancers: A Meta-analysis Based on the GEO Database and Literature. J Cancer. 2016;7:991–1001. doi: 10.7150/jca.14663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Huang HB, Liang F, Xiong W, Li XL, Zeng ZY, Li GY. Bioinformatics Accelerates Drug Repositioning. Prog Biochem Biophys. 2012;39:35–44. [Google Scholar]
- 22.Liang F, Li Q, Li X, Li Z, Gong Z, Deng H, Xiang B, Zhou M, Li X, Li G, Zeng Z, Xiong W. TSC22D2 interacts with PKM2 and inhibits cell growth in colorectal cancer. Int J Oncol. 2016;49:1046–56. doi: 10.3892/ijo.2016.3599. [DOI] [PubMed] [Google Scholar]
- 23.Li Q, Chen P, Zeng Z, Liang F, Song Y, Xiong F, Li X, Gong Z, Zhou M, Xiang B, Peng C, Li X, Chen X, et al. Yeast two-hybrid screening identified WDR77 as a novel interacting partner of TSC22D2. Tumour Biol. 2016;37:12503–12. doi: 10.1007/s13277-016-5113-z. [DOI] [PubMed] [Google Scholar]
- 24.Sengupta S, den Boon JA, Chen IH, Newton MA, Dahl DB, Chen M, Cheng YJ, Westra WH, Chen CJ, Hildesheim A, Sugden B, Ahlquist P. Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res. 2006;66:7999–8006. doi: 10.1158/0008-5472.CAN-05-4399. [DOI] [PubMed] [Google Scholar]
- 25.Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887–95. doi: 10.1002/j.1460-2075.1992.tb05481.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Liao Q, Zeng Z, Guo X, Li X, Wei F, Zhang W, Li X, Chen P, Liang F, Xiang B, Ma J, Wu M, Tang H, et al. LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the Stat3 activation. Oncogene. 2014;33:2098–109. doi: 10.1038/onc.2013.161. [DOI] [PubMed] [Google Scholar]
- 27.Zeng Z, Huang H, Zhang W, Xiang B, Zhou M, Zhou Y, Ma J, Yi M, Li X, Li X, Xiong W, Li G. Nasopharyngeal carcinoma: advances in genomics and molecular genetics. Sci China Life Sci. 2011;54:966–75. doi: 10.1007/s11427-011-4223-5. [DOI] [PubMed] [Google Scholar]
- 28.Zeng Z, Huang H, Huang L, Sun M, Yan Q, Song Y, Wei F, Bo H, Gong Z, Zeng Y, Li Q, Zhang W, Li X, et al. Regulation network and expression profiles of Epstein-Barr virus-encoded microRNAs and their potential target host genes in nasopharyngeal carcinomas. Sci China Life Sci. 2014;57:315–26. doi: 10.1007/s11427-013-4577-y. [DOI] [PubMed] [Google Scholar]
- 29.Yan Q, Zeng Z, Gong Z, Zhang W, Li X, He B, Song Y, Li Q, Zeng Y, Liao Q, Chen P, Shi L, Fan S, et al. EBV-miR-BART10-3p facilitates epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma by targeting BTRC. Oncotarget. 2015;6:41766–82. doi: 10.18632/oncotarget.6155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Song Y, Li X, Zeng Z, Li Q, Gong Z, Liao Q, Li X, Chen P, Xiang B, Zhang W, Xiong F, Zhou Y, Zhou M, et al. Epstein-Barr virus encoded miR-BART11 promotes inflammation-induced carcinogenesis by targeting FOXP1. Oncotarget. 2016;7:36783–99. doi: 10.18632/oncotarget.9170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Xiao K, Yu Z, Li X, Li X, Tang K, Tu C, Qi P, Liao Q, Chen P, Zeng Z, Li G, Xiong W. Genome-wide Analysis of Epstein-Barr Virus (EBV) Integration and Strain in C666-1 and Raji Cells. J Cancer. 2016;7:214–24. doi: 10.7150/jca.13150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Zeng Z, Zhou Y, Zhang W, Li X, Xiong W, Liu H, Fan S, Qian J, Wang L, Li Z, Shen S, Li G. Family-based association analysis validates chromosome 3p21 as a putative nasopharyngeal carcinoma susceptibility locus. Genet Med. 2006;8:156–60. doi: 10.1097/01.gim.0000196821.87655.d0. [DOI] [PubMed] [Google Scholar]
- 33.Xiong W, Zeng ZY, Xia JH, Xia K, Shen SR, Li XL, Hu DX, Tan C, Xiang JJ, Zhou J, Deng H, Fan SQ, Li WF, et al. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res. 2004;64:1972–74. doi: 10.1158/0008-5472.can-03-3253. [DOI] [PubMed] [Google Scholar]
- 34.Zhou Y, Liao Q, Li X, Wang H, Wei F, Chen J, Yang J, Zeng Z, Guo X, Chen P, Zhang W, Tang K, Li X, et al. HYOU1, Regulated by LPLUNC1, Is Up-Regulated in Nasopharyngeal Carcinoma and Associated with Poor Prognosis. J Cancer. 2016;7:367–76. doi: 10.7150/jca.13695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Tu CF, Qi P, Li XY, Mo YZ, Li XL, Xiong W, Zeng ZY, Li GY. Tumor Heterogeneity: The Challenge of Precision Medicine. Prog Biochem Biophys. 2015;42:881–90. [Google Scholar]
- 36.Zhang W, Fan S, Zou G, Shi L, Zeng Z, Ma J, Zhou Y, Li X, Zhang X, Li X, Tan M, Xiong W, Li G. Lactotransferrin could be a novel independent molecular prognosticator of nasopharyngeal carcinoma. Tumour Biol. 2015;36:675–83. doi: 10.1007/s13277-014-2650-1. [DOI] [PubMed] [Google Scholar]
- 37.Liao Q, Guo X, Li X, Xiong W, Li X, Yang J, Chen P, Zhang W, Yu H, Tang H, Deng M, Liang F, Wu M, et al. Prohibitin is an important biomarker for nasopharyngeal carcinoma progression and prognosis. Eur J Cancer Prev. 2013;22:68–76. doi: 10.1097/CEJ.0b013e328354d351. [DOI] [PubMed] [Google Scholar]
- 38.Liu Y, Zhao R, Wang H, Luo Y, Wang X, Niu W, Zhou Y, Wen Q, Fan S, Li X, Xiong W, Ma J, Li X, et al. miR-141 is involved in BRD7-mediated cell proliferation and tumor formation through suppression of the PTEN/AKT pathway in nasopharyngeal carcinoma. Cell Death Dis. 2016;7:e2156. doi: 10.1038/cddis.2016.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Wang W, Yi M, Chen S, Li J, Li G, Yang J, Zheng P, Zhang H, Xiong W, McCarthy JB, Li G, Li X, Xiang B. Significance of the NOR1-FOXA1/HDAC2-Slug regulatory network in epithelial-mesenchymal transition of tumor cells. Oncotarget. 2016;7:16745–59. doi: 10.18632/oncotarget.7778. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Wang W, Yi M, Chen S, Li J, Zhang H, Xiong W, Li G, Li X, Xiang B. NOR1 Suppresses Cancer Stem-Like Cells Properties of Tumor Cells via the Inhibition of the AKT-GSK-3β-Wnt/β-catenin-ALDH1A1 Signal Circuit. J Cell Physiol. 2016 doi: 10.1002/jcp.25706. [Epub ahead of print] [DOI] [PubMed] [Google Scholar]
- 41.Zhou Y, Zeng Z, Zhang W, Xiong W, Wu M, Tan Y, Yi W, Xiao L, Li X, Huang C, Cao L, Tang K, Li X, et al. Lactotransferrin: a candidate tumor suppressor-Deficient expression in human nasopharyngeal carcinoma and inhibition of NPC cell proliferation by modulating the mitogen-activated protein kinase pathway. Int J Cancer. 2008;123:2065–72. doi: 10.1002/ijc.23727. [DOI] [PubMed] [Google Scholar]
- 42.Yang Y, Liao Q, Wei F, Li X, Zhang W, Fan S, Shi L, Li X, Gong Z, Ma J, Zhou M, Xiang J, Peng S, et al. LPLUNC1 inhibits nasopharyngeal carcinoma cell growth via down-regulation of the MAP kinase and cyclin D1/E2F pathways. PLoS One. 2013;8:e62869. doi: 10.1371/journal.pone.0062869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Huang HB, Deng M, Zheng Y, Zhou YH, Zhang WL, Ma J, Liao QJ, Xiong W, Li XL, Zeng ZY, Li GY. Innate immune protein lactotransferrin prevents initiation and arrests progression of nasopharyngeal carcinoma. Prog Biochem Biophys. 2013;40:319–24. [Google Scholar]
- 44.Sun Y, Li WF, Chen NY, Zhang N, Hu GQ, Xie FY, Sun Y, Chen XZ, Li JG, Zhu XD, Hu CS, Xu XY, Chen YY, et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase 3, multicentre, randomised controlled trial. Lancet Oncol. 2016;17:1509–20. doi: 10.1016/S1470-2045(16)30410-7. [DOI] [PubMed] [Google Scholar]
- 45.Tindle RW. Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer. 2002;2:59–65. doi: 10.1038/nrc700. [DOI] [PubMed] [Google Scholar]
- 46.Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grüssel S, Sipos B, Grützmann R, Pilarsky C, Ungefroren H, Saeger HD, Klöppel G, Kabelitz D, Kalthoff H. Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res. 2007;67:8344–50. doi: 10.1158/0008-5472.CAN-06-3304. [DOI] [PubMed] [Google Scholar]
- 47.Noh KH, Kim BW, Song KH, Cho H, Lee YH, Kim JH, Chung JY, Kim JH, Hewitt SM, Seong SY, Mao CP, Wu TC, Kim TW. Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J Clin Invest. 2012;122:4077–93. doi: 10.1172/JCI64057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HM, Signori E, Honoki K, Georgakilas AG, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35:S185–98. doi: 10.1016/j.semcancer.2015.03.004. [DOI] [PubMed] [Google Scholar]
- 49.Stelloo E, Versluis MA, Nijman HW, de Bruyn M, Plat A, Osse EM, van Dijk RH, Nout RA, Creutzberg CL, de Bock GH, Smit VT, Bosse T, Hollema H. Microsatellite instability derived JAK1 frameshift mutations are associated with tumor immune evasion in endometrioid endometrial cancer. Oncotarget. 2016;7:39885–93. doi: 10.18632/oncotarget.9414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJ. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16:219–33. doi: 10.1038/nrc.2016.16. [DOI] [PubMed] [Google Scholar]
- 51.Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8:761–73. doi: 10.7150/jca.17648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Granier C, Dariane C, Combe P, Verkarre V, Urien S, Badoual C, Roussel H, Mandavit M, Ravel P, Sibony M, Biard L, Radulescu C, Vinatier E, et al. Tim-3 expression on tumor-infiltrating PD-1 CD8 T cells correlates with poor clinical outcome in renal cell carcinoma. Cancer Res. 2017(77):1075–1082. doi: 10.1158/0008-5472.CAN-16-0274. [DOI] [PubMed] [Google Scholar]
- 53.Nowicki TS, Akiyama R, Huang RR, Shintaku IP, Wang X, Tumeh PC, Singh A, Chmielowski B, Denny C, Federman N, Ribas A. Infiltration of CD8 T Cells and Expression of PD-1 and PD-L1 in Synovial Sarcoma. Cancer Immunol Res. 2017;5:118–26. doi: 10.1158/2326-6066.CIR-16-0148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Wang X, Schoenhals JE, Li A, Valdecanas DR, Ye H, Zang F, Tang C, Tang M, Liu CG, Liu X, Krishnan S, Allison JP, Sharma P, et al. Suppression of type I IFN signaling in tumors mediates resistance to anti-PD-1 treatment that can be overcome by radiotherapy. Cancer Res. 2017;77:839–50. doi: 10.1158/0008-5472.CAN-15-3142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Ohashi PS. Zeroing in on Tumor-Reactive TILs. Cancer Immunol Res. 2016;4:719. doi: 10.1158/2326-6066.CIR-16-0179. [DOI] [PubMed] [Google Scholar]
- 56.Pedoeem A, Azoulay-Alfaguter I, Strazza M, Silverman GJ, Mor A. Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol. 2014;153:145–52. doi: 10.1016/j.clim.2014.04.010. [DOI] [PubMed] [Google Scholar]
- 57.Zhang Y, Huang S, Gong D, Qin Y, Shen Q. Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+ T lymphocytes in human non-small cell lung cancer. Cell Mol Immunol. 2010;7:389–95. doi: 10.1038/cmi.2010.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Thompson RH, Dong H, Lohse CM, Leibovich BC, Blute ML, Cheville JC, Kwon ED. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res. 2007;13:1757–61. doi: 10.1158/1078-0432.CCR-06-2599. [DOI] [PubMed] [Google Scholar]
- 59.Chapon M, Randriamampita C, Maubec E, Badoual C, Fouquet S, Wang SF, Marinho E, Farhi D, Garcette M, Jacobelli S, Rouquette A, Carlotti A, Girod A, et al. Progressive upregulation of PD-1 in primary and metastatic melanomas associated with blunted TCR signaling in infiltrating T lymphocytes. J Invest Dermatol. 2011;131:1300–07. doi: 10.1038/jid.2011.30. [DOI] [PubMed] [Google Scholar]
- 60.Muenst S, Soysal SD, Gao F, Obermann EC, Oertli D, Gillanders WE. The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat. 2013;139:667–76. doi: 10.1007/s10549-013-2581-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Sznol M, Chen L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res. 2013;19:1021–34. doi: 10.1158/1078-0432.CCR-12-2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Obeid JM, Erdag G, Smolkin ME, Deacon DH, Patterson JW, Chen L, Bullock TN, Slingluff CL. PD-L1, PD-L2 and PD-1 expression in metastatic melanoma: correlation with tumor-infiltrating immune cells and clinical outcome. OncoImmunology. 2016;5:e1235107. doi: 10.1080/2162402X.2016.1235107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Chatterjee J, Dai W, Aziz NH, Teo PY, Wahba J, Phelps DL, Maine CJ, Whilding LM, Dina R, Trevisan G, Flower KJ, George AJ, Ghaem-Maghami S. Clinical use of programmed cell death-1 (PD-1) and its ligand (PD-L1) expression as discriminatory and predictive markers in ovarian cancer. Clin Cancer Res. 2016 doi: 10.1158/1078-0432.CCR-16-2366. [Epub ahead of print] [DOI] [PubMed] [Google Scholar]
- 64.Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, Tu HY, Chen HJ, Sun YL, Zhou Q, Yang JJ, Yang XN, Lin JX, et al. Potential Predictive Value of TP53 and KRAS Mutation Status for Response to PD-1 Blockade Immunotherapy in Lung Adenocarcinoma. Clin Cancer Res. 2016 doi: 10.1158/1078-0432.CCR-16-2554. [Epub ahead of print] [DOI] [PubMed] [Google Scholar]
- 65.Mathios D, Kim JE, Mangraviti A, Phallen J, Park CK, Jackson CM, Garzon-Muvdi T, Kim E, Theodros D, Polanczyk M, Martin AM, Suk I, Ye X, et al. Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Sci Transl Med. 2016;8:370ra180. doi: 10.1126/scitranslmed.aag2942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.van der Kooij MK, Joosse A, Speetjens FM, Hospers GA, Bisschop C, de Groot JW, Koornstra R, Blank CU, Kapiteijn E. Anti-PD1 treatment in metastatic uveal melanoma in the Netherlands. Acta Oncol. 2017;56:101–03. doi: 10.1080/0284186X.2016.1260773. [DOI] [PubMed] [Google Scholar]
- 67.Brustugun OT, Sprauten M, Helland A. Real-world data on nivolumab treatment of non-small cell lung cancer. Acta Oncol. 2017;56:438–40. doi: 10.1080/0284186X.2016.1253865. [DOI] [PubMed] [Google Scholar]
- 68.Duan Z, Zheng H, Xu S, Jiang Y, Liu H, Li M, Hu D, Li W, Bode AM, Dong Z, Cao Y. Activation of the Ig Iα1 promoter by the transcription factor Ets-1 triggers Ig Iα1-Cα1 germline transcription in epithelial cancer cells. Cell Mol Immunol. 2014;11:197–205. doi: 10.1038/cmi.2013.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Hu D, Duan Z, Li M, Jiang Y, Liu H, Zheng H, Li L, Bode AM, Dong Z, Cao Y. Heterogeneity of aberrant immunoglobulin expression in cancer cells. Cell Mol Immunol. 2011;8:479–85. doi: 10.1038/cmi.2011.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Hu D, Zheng H, Liu H, Li M, Ren W, Liao W, Duan Z, Li L, Cao Y. Immunoglobulin expression and its biological significance in cancer cells. Cell Mol Immunol. 2008;5:319–24. doi: 10.1038/cmi.2008.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Li M, Zheng H, Duan Z, Liu H, Hu D, Bode A, Dong Z, Cao Y. Promotion of cell proliferation and inhibition of ADCC by cancerous immunoglobulin expressed in cancer cell lines. Cell Mol Immunol. 2012;9:54–61. doi: 10.1038/cmi.2011.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Zhao R, Liu Y, Wang H, Yang J, Niu W, Fan S, Xiong W, Ma J, Li X, Phillips JB, Tan M, Qiu Y, Li G, Zhou M. BRD7 plays an anti-inflammatory role during early acute inflammation by inhibiting activation of the NF-κB signaling pathway. Cell Mol Immunol. 2016 doi: 10.1038/cmi.2016.31. [Epub ahead of print] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Yang Y, Zhou H, Yang Y, Li W, Zhou M, Zeng Z, Xiong W, Wu M, Huang H, Zhou Y, Peng C, Huang C, Li X, Li G. Lipopolysaccharide (LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5-8F via NFkappaB and MAPKs signaling pathways. Mol Immunol. 2007;44:984–92. doi: 10.1016/j.molimm.2006.03.013. [DOI] [PubMed] [Google Scholar]
- 74.Zheng H, Li M, Ren W, Zeng L, Liu HD, Hu D, Deng X, Tang M, Shi Y, Gong J, Cao Y. Expression and secretion of immunoglobulin alpha heavy chain with diverse VDJ recombinations by human epithelial cancer cells. Mol Immunol. 2007;44:2221–27. doi: 10.1016/j.molimm.2006.11.010. [DOI] [PubMed] [Google Scholar]
- 75.Zhang W, Zeng Z, Fan S, Wang J, Yang J, Zhou Y, Li X, Huang D, Liang F, Wu M, Tang K, Cao L, Li X, et al. Evaluation of the prognostic value of TGF-β superfamily type I receptor and TGF-β type II receptor expression in nasopharyngeal carcinoma using high-throughput tissue microarrays. J Mol Histol. 2012;43:297–306. doi: 10.1007/s10735-012-9392-4. [DOI] [PubMed] [Google Scholar]
- 76.Zhang J, Fang W, Qin T, Yang Y, Hong S, Liang W, Ma Y, Zhao H, Huang Y, Xue C, Huang P, Hu Z, Zhao Y, Zhang L. Co-expression of PD-1 and PD-L1 predicts poor outcome in nasopharyngeal carcinoma. Med Oncol. 2015;32:86. doi: 10.1007/s12032-015-0501-6. [DOI] [PubMed] [Google Scholar]
- 77.Hsu MC, Hsiao JR, Chang KC, Wu YH, Su IJ, Jin YT, Chang Y. Increase of programmed death-1-expressing intratumoral CD8 T cells predicts a poor prognosis for nasopharyngeal carcinoma. Mod Pathol. 2010;23:1393–403. doi: 10.1038/modpathol.2010.130. [DOI] [PubMed] [Google Scholar]
- 78.Fang W, Zhang J, Hong S, Zhan J, Chen N, Qin T, Tang Y, Zhang Y, Kang S, Zhou T, Wu X, Liang W, Hu Z, et al. EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: implications for oncotargeted therapy. Oncotarget. 2014;5:12189–202. doi: 10.18632/oncotarget.2608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Wang P, Guo Q, Gao Y, Zhi H, Zhang Y, Liu Y, Zhang J, Yue M, Guo M, Ning S, Zhang G, Li X. Improved method for prioritization of disease associated lncRNAs based on ceRNA theory and functional genomics data. Oncotarget. 2017;8:4642–55. doi: 10.18632/oncotarget.13964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Sun Y, Cheng H, Wang G, Yu G, Zhang D, Wang Y, Fan W, Yang W. Deregulation of miR-183 promotes melanoma development via lncRNA MALAT1 regulation and ITGB1 signal activation. Oncotarget. 2017;8:3509–18. doi: 10.18632/oncotarget.13862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Yang S, Ning Q, Zhang G, Sun H, Wang Z, Li Y. Construction of differential mRNA-lncRNA crosstalk networks based on ceRNA hypothesis uncover key roles of lncRNAs implicated in esophageal squamous cell carcinoma. Oncotarget. 2016;7:85728–40. doi: 10.18632/oncotarget.13828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Zeng Z, Zhou Y, Xiong W, Luo X, Zhang W, Li X, Fan S, Cao L, Tang K, Wu M, Li G. Analysis of gene expression identifies candidate molecular markers in nasopharyngeal carcinoma using microdissection and cDNA microarray. J Cancer Res Clin Oncol. 2007;133:71–81. doi: 10.1007/s00432-006-0136-2. [DOI] [PubMed] [Google Scholar]
- 83.Zeng ZY, Zhou YH, Zhang WL, Xiong W, Fan SQ, Li XL, Luo XM, Wu MH, Yang YX, Huang C, Cao L, Tang K, Qian J, et al. Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol. 2007;38:120–33. doi: 10.1016/j.humpath.2006.06.023. [DOI] [PubMed] [Google Scholar]
- 84.Zhang W, Zeng Z, Zhou Y, Xiong W, Fan S, Xiao L, Huang D, Li Z, Li D, Wu M, Li X, Shen S, Wang R, et al. Identification of aberrant cell cycle regulation in Epstein-Barr virus-associated nasopharyngeal carcinoma by cDNA microarray and gene set enrichment analysis. Acta Biochim Biophys Sin (Shanghai) 2009;41:414–28. doi: 10.1093/abbs/gmp025. [DOI] [PubMed] [Google Scholar]
- 85.Li H, Li X, Ge X, Jia L, Zhang Z, Fang R, Yang J, Liu J, Peng S, Zhou M, Xiang J, Zeng Z, Zhou W, et al. MiR-34b-3 and miR-449a inhibit malignant progression of nasopharyngeal carcinoma by targeting lactate dehydrogenase. A. Oncotarget. 2016;7:54838–51. doi: 10.18632/oncotarget.10761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Wang H, Zhao R, Guo C, Jiang S, Yang J, Xu Y, Liu Y, Fan L, Xiong W, Ma J, Peng S, Zeng Z, Zhou Y, et al. Knockout of BRD7 results in impaired spermatogenesis and male infertility. Sci Rep. 2016;6:21776. doi: 10.1038/srep21776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Xiong W, Wu X, Starnes S, Johnson SK, Haessler J, Wang S, Chen L, Barlogie B, Shaughnessy JD, Jr, Zhan F. An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood. 2008;112:4235–46. doi: 10.1182/blood-2007-10-119123. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.