Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1966 Sep;41(7):1200–1208. doi: 10.1104/pp.41.7.1200

Partial Purification and Kinetics of Indoleacetic Acid Oxidase from Tobacco Roots 1,2

Luis Sequeira 1, Lorraine Mineo 1
PMCID: PMC550498  PMID: 16656384

Abstract

Extracts from roots of Nicotiana tabacum L var. Bottom Special contain oxidative enzymes capable of rapid degradation of indoleacetic acid (IAA) in the presence of Mn2+ and 2, 4-dichlorophenol. Purification of IAA oxidase was attempted by means of ammonium sulfate fractionation and elution through a column of SE-Sephadex. Two distinct fractions, both causing rapid oxidation of IAA in the absence of H2O2, were obtained. One fraction exhibited high peroxidase activity when guaiacol was used as the electron donor; the other did not oxidase guaiacol. Both enzyme fractions caused similar changes in the UV spectrum of IAA; absorption at 280 mμ was reduced, while major absorption peaks appeared at 254 and 247 mμ. The kinetics of IAA oxidation by both fractions were followed by measuring the increase in absorption at 247 mμ. The peroxidase-containing fraction showed no lag or a slight lag which could be eliminated by addition of H2O2 (3 μmoles/ml). The peroxidase-free fraction showed a longer lag, but addition of similar amounts of H2O2 inhibited the rate of IAA oxidation and did not remove the lag. With purified preparations, IAA oxidation was stimulated only at low concentrations of H2O2 (0.03 μmole/ml). A comparison of Km values for IAA oxidation by the peroxidase-containing and peroxidase-free fractions suggests that tobacco roots contain an IAA oxidase which may have higher affinity for IAA and may be more specific than the general peroxidase system previously described from other plant sources. A similar oxidase is present in commercial preparations of horseradish peroxidase. It is suggested that oxidation of IAA by horseradish peroxidase may be due to a more specific component.

Full text

PDF
1200

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. FRIEDEN C. TREATMENT OF ENZYME KINETIC DATA. I. THE EFFECT OF MODIFIERS ON THE KINETIC PARAMETERS OF SINGLE SUBSTRATE ENZYMERS. J Biol Chem. 1964 Oct;239:3522–3531. [PubMed] [Google Scholar]
  2. Fox L. R., Purves W. K., Nakada H. I. The role of horseradish peroxidase in indole-3-acetic acid oxidation. Biochemistry. 1965 Dec;4(12):2754–2763. doi: 10.1021/bi00888a028. [DOI] [PubMed] [Google Scholar]
  3. HINMAN R. L., LANG J. PEROXIDASE-CATALYZED OXIDATION OF INDOLE-3-ACETIC ACID. Biochemistry. 1965 Jan;4:144–158. doi: 10.1021/bi00877a023. [DOI] [PubMed] [Google Scholar]
  4. KLAPPER M. H., HACKETT D. P. INVESTIGATIONS ON THE MULTIPLE COMPONENTS OF COMMERCIAL HORSERADISH PEROXIDASE. Biochim Biophys Acta. 1965 Feb 22;96:272–282. [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Lockhart J. A. The Role of 2,4-Dichlorophenol in the Destruction of Indoleacetic Acid by Peroxidase. Plant Physiol. 1955 Jan;30(1):86–88. doi: 10.1104/pp.30.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. RAY P. M. Destruction of indoleacetic acid. IV. Kinetics of enzymic oxidation. Arch Biochem Biophys. 1962 Feb;96:199–209. doi: 10.1016/0003-9861(62)90399-5. [DOI] [PubMed] [Google Scholar]
  8. RAY P. M. The destruction of indoleacetic acid. II. Spectrophotometric study of the enzymatic reaction. Arch Biochem Biophys. 1956 Sep;64(1):193–216. doi: 10.1016/0003-9861(56)90254-5. [DOI] [PubMed] [Google Scholar]
  9. RAY P. M. The destruction of indoleacetic acid. III. Relationships between peroxidase action and indoleacetic acid oxidation. Arch Biochem Biophys. 1960 Mar;87:19–30. doi: 10.1016/0003-9861(60)90118-1. [DOI] [PubMed] [Google Scholar]
  10. Stutz R. E. The Indole-3-Acetic Acid Oxidase of Lupinus albus L. Plant Physiol. 1957 Jan;32(1):31–39. doi: 10.1104/pp.32.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. YAMAZAKI I., SOUZU H. The mechanism of indoleacetic acid oxidase reaction catalyzed by turnip peroxidase. Arch Biochem Biophys. 1960 Feb;86:294–301. doi: 10.1016/0003-9861(60)90421-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES