Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1966 Oct;41(8):1257–1264. doi: 10.1104/pp.41.8.1257

Effect of Purine and Pyrimidine Analogues on Growth and RNA Metabolism in the Soybean Hypocotyl-the Selective Action of 5-Fluorouracil 1,2

Joe L Key 1
PMCID: PMC550513  PMID: 5978545

Abstract

The effects of several base analogues and cycloheximide on RNA synthesis, protein synthesis, and cell elongation were studied in excised soybean hypocotyl. None of the pyrimidine analogues tested affected growth or protein synthesis; only 5-fluorouracil appreciably inhibited RNA synthesis. 8-Azaguanine and 6-methylpurine markedly inhibited RNA and protein synthesis and cell elongation. Cycloheximide effectively inhibited both cell elongation and protein synthesis.

The results show that 5-fluorouracil selectively inhibited ribosomal and soluble RNA synthesis without affecting the synthesis of D-RNA. These results indicate that the requirement for RNA synthesis to support continued protein synthesis and cell elongation is restricted to the synthesis of D-RNA.

5-Fluorouracil was incorporated into all classes of RNA in a form believed to be 5-fluorouridylic acid.

Cycloheximide markedly inhibited the accumulation of ribosomal RNA, but the results indicate that CH did not inhibit, per se, the synthesis of ribosomal RNA. The accumulation of newly synthesized D-RNA was only slightly affected by cycloheximide. These results show that the inhibition of cell elongation by cycloheximide correlates with the inhibition of protein synthesis, but not with the effect on RNA metabolism.

Full text

PDF
1257

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARONSON A. I. The effect of 5-fluorouracil on bacterial protein and ribonucleic acid synthesis. Biochim Biophys Acta. 1961 Apr 29;49:98–107. doi: 10.1016/0006-3002(61)90873-3. [DOI] [PubMed] [Google Scholar]
  2. Andoh T., Chargaff E. Formation and fate of abnormal ribosomes of E. coli cells treated with 5-fluorouracil. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1181–1189. doi: 10.1073/pnas.54.4.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHAMPE S. P., BENZER S. Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA. Proc Natl Acad Sci U S A. 1962 Apr 15;48:532–546. doi: 10.1073/pnas.48.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cherry J. H., Van Huystee R. Effects of 5-fluorouracil on photoperiodic induction and nucleic acid metabolism of xanthium. Plant Physiol. 1965 Nov;40(6):987–993. doi: 10.1104/pp.40.6.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ecker R. E. The role of ribosomal RNA in the control of ribosomal protein synthesis. Proc Natl Acad Sci U S A. 1965 Nov;54(5):1465–1470. doi: 10.1073/pnas.54.5.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HOLOUBEK V. The composition of tobacco mosaic virus protein after the incorporation of 5-fluorouracil into the virus. J Mol Biol. 1963 Feb;6:164–166. doi: 10.1016/s0022-2836(63)80133-3. [DOI] [PubMed] [Google Scholar]
  7. HOROWITZ J., SAUKKONEN J. J., CHARGAFF E. Effects of fluoropyrimidines on the synthesis of bacterial proteins and nucleic acids. J Biol Chem. 1960 Nov;235:3266–3272. [PubMed] [Google Scholar]
  8. INGLE J., KEY J. L., HOLM R. E. DEMONSTRATION AND CHARACTERIZATION OF A DNA-LIKE RNA IN EXCISED PLANT TISSUE. J Mol Biol. 1965 Apr;11:730–746. doi: 10.1016/s0022-2836(65)80031-6. [DOI] [PubMed] [Google Scholar]
  9. Ingle J., Key J. L. A comparative evaluation of the synthesis of DNA-like RNA in excised and intact plant tissues. Plant Physiol. 1965 Nov;40(6):1212–1219. doi: 10.1104/pp.40.6.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KEMPNER E. S., MILLER J. H. THE MECHANISM OF ACTION OF PURINE AND PYRIMIDINE ANALOGS IN MICROORGANISMS. Biochim Biophys Acta. 1963 Nov 22;76:341–346. [PubMed] [Google Scholar]
  11. KIT S., PIEKARSKI L. J., DUBBS D. R. EFFECTS OF 5-FLUOROURACIL, ACTINOMYCIN D AND MITOMYCIN C ON THE INDUCTION OF THYMIDINE KINASE BY VACCINIA-INFECTED L-CELLS. J Mol Biol. 1963 Nov;7:497–510. doi: 10.1016/s0022-2836(63)80097-2. [DOI] [PubMed] [Google Scholar]
  12. Kadowaki K., Hosoda J., Maruo B. Effects of actinomycin D and 5-fluorouracil on the formation of enzymes in Bacillus subtilis. Biochim Biophys Acta. 1965 Jun 8;103(2):311–318. doi: 10.1016/0005-2787(65)90170-x. [DOI] [PubMed] [Google Scholar]
  13. Key J. L., Ingle J. REQUIREMENT FOR THE SYNTHESIS OF DNA-LIKE RNA FOR GROWTH OF EXCISED PLANT TISSUE. Proc Natl Acad Sci U S A. 1964 Dec;52(6):1382–1388. doi: 10.1073/pnas.52.6.1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Key J. L. Ribonucleic Acid and Protein Synthesis as Essential Processes for Cell Elongation. Plant Physiol. 1964 May;39(3):365–370. doi: 10.1104/pp.39.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Key J. L., Shannon J. C. Enhancement by Auxin of Ribonucleic Acid Synthesis in Excised Soybean Hypocotyl Tissue. Plant Physiol. 1964 May;39(3):360–364. doi: 10.1104/pp.39.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lin C. Y., Key J. L., Bracker C. E. Association of D-RNA with Polyribosomes in the Soybean Root. Plant Physiol. 1966 Jun;41(6):976–982. doi: 10.1104/pp.41.6.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lindigkeit R., Handschack W. Some properties of ribonucleic acid obtained from ribosomal precursors of Escherichia coli. Biochim Biophys Acta. 1965 Jun 8;103(2):241–251. doi: 10.1016/0005-2787(65)90165-6. [DOI] [PubMed] [Google Scholar]
  18. MANDELL J. D., HERSHEY A. D. A fractionating column for analysis of nucleic acids. Anal Biochem. 1960 Jun;1:66–77. doi: 10.1016/0003-2697(60)90020-8. [DOI] [PubMed] [Google Scholar]
  19. NAKADA D., ANDERSON I. A., MAGASANIK B. FATE OF THE RIBOSOMAL RNA PRODUCED BY A "RELAXED" MUTANT OF ESCHERICHIA COLI. J Mol Biol. 1964 Aug;9:472–488. doi: 10.1016/s0022-2836(64)80220-5. [DOI] [PubMed] [Google Scholar]
  20. Nakada D. Formation of ribosomes by a "relaxed" mutant of Escherichia coli. J Mol Biol. 1965 Jul;12(3):695–725. doi: 10.1016/s0022-2836(65)80322-9. [DOI] [PubMed] [Google Scholar]
  21. Noodén L. D., Thimann K. V. EVIDENCE FOR A REQUIREMENT FOR PROTEIN SYNTHESIS FOR AUXIN-INDUCED CELL ENLARGEMENT. Proc Natl Acad Sci U S A. 1963 Aug;50(2):194–200. doi: 10.1073/pnas.50.2.194. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES