Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1966 Nov;41(9):1489-1495, 1497-1498. doi: 10.1104/pp.41.9.1489

Inositol Metabolism in Plants. III. Conversion of Myo-inositol-2-3H to Cell Wall Polysaccharides in Sycamore (Acer pseudoplatanus L.) Cell Culture 1

R M Roberts 1, F Loewus 1
PMCID: PMC550560  PMID: 16656430

Abstract

Prolonged growth of cell cultures of sycamore (Acer pseudoplatanus L.) on agar medium containing myo-inositol-2-3H resulted in incorporation of label predominately into uronosyl and pentosyl units of cell wall polysaccharides. Procedures normally used to distinguish between pectic substance and hemicellulose yielded carbohydrate-rich fractions with solubility characteristics ranging from pectic substance to hemicellulose yet the uronic acid and pentose composition of these fractions was decidedly pectic. Galacturonic acid was the only uronic acid present in each fraction. Subfractionation of alkali-soluble (hemicellulosic) polysaccharide by neutralization followed by ethanol precipitation gave 3 fractions, a water-insoluble, an ethanol-insoluble, and an ethanol-soluble fraction, each progressively poorer in galacturonic acid units and progressively richer in arabinose units; all relatively poor in xylose units.

Apparently, processes involved in biosynthesis of primary cell wall continued to produce pectic substance during cell enlargement while processes leading to biosynthesis of typically secondary cell wall polysaccharide such as 4-0-methyl glucuronoxylan were not activated.

Full text

PDF
1489

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARRETT A. J., NORTHCOTE D. H. APPLE FRUIT PECTIC SUBSTANCES. Biochem J. 1965 Mar;94:617–627. doi: 10.1042/bj0940617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  3. BRAUN A. C., WOOD H. N. On the activation of certain essential biosynthetic systems in cells of Vinca rosea L. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1776–1782. doi: 10.1073/pnas.48.10.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Earle E. D., Torrey J. G. Morphogenesis in cell colonies grown from Convolvulus cell suspensions plated on synthetic media. Am J Bot. 1965 Oct;52(9):891–899. [PubMed] [Google Scholar]
  5. FISCHER F. G., DORFEL H. Die Polyuronsäuren der Braunalgen. Hoppe Seylers Z Physiol Chem. 1955 Dec 22;302(4-6):186–203. [PubMed] [Google Scholar]
  6. GAILLARD B. D. Use of unneutralized hydrolysates in paper chromatography of sugars. Nature. 1953 Jun 27;171(4365):1160–1160. doi: 10.1038/1711160a0. [DOI] [PubMed] [Google Scholar]
  7. HIRST E. L., REES D. A., RICHARDSON N. G. SEED POLYSACCHARIDES AND THEIR ROLE IN GERMINATION. A SURVEY OF THE POLYSACCHARIDE COMPONENTS OF MUSTARD SEEDS WITH SPECIAL REFERENCE TO THE EMBRYOS. Biochem J. 1965 May;95:453–458. doi: 10.1042/bj0950453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KOLLAR S. J., JARAI M. Biochemical chlorination in Streptomvces aureofaciens. Nature. 1960 Nov 19;188:665–665. doi: 10.1038/188665a0. [DOI] [PubMed] [Google Scholar]
  9. LAMPORT D. T. CELL SUSPENSION CULTURES OF HIGHER PLANTS: ISOLATION AND GROWTH ENERGETICS. Exp Cell Res. 1964 Jan;33:195–206. doi: 10.1016/s0014-4827(64)81026-0. [DOI] [PubMed] [Google Scholar]
  10. LOEWUS F. A. INOSITOL METABOLISM IN PLANTS. II. THE ABSOLUTE CONFIGURATION OF D-XYLOSE-5-T DERIVED METABOLICALLY FROM MYO-INOSITOL-2-T IN THE RIPENING STRAWBERRY. Arch Biochem Biophys. 1964 Jun;105:590–598. doi: 10.1016/0003-9861(64)90055-4. [DOI] [PubMed] [Google Scholar]
  11. Loewus F. A., Kelly S., Neufeld E. F. METABOLISM OF MYO-INOSITOL IN PLANTS: CONVERSION TO PECTIN, HEMICELLULOSE, D-XYLOSE, AND SUGAR ACIDS. Proc Natl Acad Sci U S A. 1962 Mar;48(3):421–425. doi: 10.1073/pnas.48.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Loewus F. Inositol metabolism and cell wall formation in plants. Fed Proc. 1965 Jul-Aug;24(4):855–862. [PubMed] [Google Scholar]
  13. Loomis R. S., Torrey J. G. CHEMICAL CONTROL OF VASCULAR CAMBIUM INITIATION IN ISOLATED RADISH ROOTS. Proc Natl Acad Sci U S A. 1964 Jul;52(1):3–11. doi: 10.1073/pnas.52.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ruesink A. W., Thimann K. V. Protoplasts from the Avena coleoptile. Proc Natl Acad Sci U S A. 1965 Jul;54(1):56–64. doi: 10.1073/pnas.54.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. THORNBER J. P., NORTHCOTE D. H. Changes in the chemical composition of a cambial cell during its differentiation into xylem and phloem tissue in trees. I. Main components. Biochem J. 1961 Dec;81:449–455. doi: 10.1042/bj0810449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. THORNBER J. P., NORTHCOTE D. H. Changes in the chemical composition of a cambial cell during its differentiation into xylem and phloem tissue in trees. II. Carbohydrate constituents of each main component. Biochem J. 1961 Dec;81:455–464. doi: 10.1042/bj0810455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  18. WOOD H. N., BRAUN A. C. Studies on the regulation of certain essential biosynthetic systems in normal and crown-gall tumor cells. Proc Natl Acad Sci U S A. 1961 Dec 15;47:1907–1913. doi: 10.1073/pnas.47.12.1907. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES