Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1966 Dec;41(10):1591–1600. doi: 10.1104/pp.41.10.1591

Effect of Hydrolytic Enzymes on the Photosynthetic Efficiency and Morphology of Chloroplasts 1

Elchanan S Bamberger 1,2,3,2, Roderic B Park 1,2,3
PMCID: PMC550580  PMID: 16656445

Abstract

Both lipase from runner beans and a protease (pronase) initially cause increased intensity dependence of the DCPIP Hill reaction of spinach chloroplasts. This is followed by an increase in the extrapolated zero intensity quantum requirement. Pronase treatment of the chloroplasts causes rapid changes in absorption and ORD spectra, whereas the effect of lipase treatment is much less pronounced. Long treatments of the thylakoids with the lipase and protease cause unique morphological changes within the membrane. These changes are used to assign chemical compositions to some of the structures revealed by freeze-etching.

Full text

PDF
1591

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARNON D. I., ALLEN M. B., WHATLEY F. R. Photosynthesis by isolated chloroplasts. Nature. 1954 Aug 28;174(4426):394–396. doi: 10.1038/174394a0. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benson A. A., Wintermans J. F., Wiser R. Chloroplast Lipids as Carbohydrate Reservoirs. Plant Physiol. 1959 May;34(3):315–317. doi: 10.1104/pp.34.3.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GRESSEL J., AVRON M. THE EFFECTS OF STRUCTURAL DEGRADATION ON THE COUPLED PHOTOCHEMICAL ACTIVITIES OF ISOLATED CHLOROPLASTS. Biochim Biophys Acta. 1965 Jan 25;94:31–41. doi: 10.1016/0926-6585(65)90005-1. [DOI] [PubMed] [Google Scholar]
  6. Izawa S., Good N. E. The number of sites sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea,3-(4-chlorophenyl)-1,1-dimethylurea and 2-chloro-4-(2-propylamino)-6-ethylamino-s-triazine in isolated chloroplasts. Biochim Biophys Acta. 1965 May 25;102(1):20–38. doi: 10.1016/0926-6585(65)90200-1. [DOI] [PubMed] [Google Scholar]
  7. McCarty R. E., Jagendorf A. T. Chloroplast damage due to enzymatic hydrolysis of endogenous lipids. Plant Physiol. 1965 Jul;40(4):725–735. doi: 10.1104/pp.40.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. PARK R. B., PON N. G. Chemical composition and the substructure of lamellae isolated from Spinacea oleracea chloroplasts. J Mol Biol. 1963 Feb;6:105–114. doi: 10.1016/s0022-2836(63)80126-6. [DOI] [PubMed] [Google Scholar]
  9. PARK R. B., PON N. G. Correlation of structure with function in Spinacea oleracea chloroplasts. J Mol Biol. 1961 Feb;3:1–10. doi: 10.1016/s0022-2836(61)80002-8. [DOI] [PubMed] [Google Scholar]
  10. Park R. B., Biggins J. Quantasome: Size and Composition. Science. 1964 May 22;144(3621):1009–1011. doi: 10.1126/science.144.3621.1009. [DOI] [PubMed] [Google Scholar]
  11. Park R. B., Kelly J., Drury S., Sauer K. The Hill reaction of chloroplasts isolated from glutaraldehyde-fixed spinach leaves. Proc Natl Acad Sci U S A. 1966 May;55(5):1056–1062. doi: 10.1073/pnas.55.5.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Park R. B. Substructure of chloroplast lamellae. J Cell Biol. 1965 Oct;27(1):151–161. doi: 10.1083/jcb.27.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SASTRY P. S., KATES M. LIPID COMPONENTS OF LEAVES. V. GALACTOLIPIDS, CEREBROSIDES, AND LECITHIN OF RUNNER-BEAN LEAVES. Biochemistry. 1964 Sep;3:1271–1280. doi: 10.1021/bi00897a015. [DOI] [PubMed] [Google Scholar]
  14. SAUER K., PARK R. B. MOLECULAR ORIENTATION IN QUANTASOMES. II. ABSORPTION SPECTRA, HILL ACTIVITY AND FLUORESCENCE YIELDS. Biochim Biophys Acta. 1964 May 25;79:476–489. doi: 10.1016/0926-6577(64)90213-x. [DOI] [PubMed] [Google Scholar]
  15. Sauer K., Biggins J. Action spectra and quantum yields for nicotinamide--adenine dinucleotide phosphate reduction by chloroplasts. Biochim Biophys Acta. 1965 May 25;102(1):55–72. doi: 10.1016/0926-6585(65)90202-5. [DOI] [PubMed] [Google Scholar]
  16. Sauer K., Park R. B. The Hill reaction of chloroplasts. Action spectra and quantum requirements. Biochemistry. 1965 Dec;4(12):2791–2798. doi: 10.1021/bi00888a032. [DOI] [PubMed] [Google Scholar]
  17. TREBST A. V., TSUJIMOTO H. Y., ARNON D. I. Separation of light and dark phases in the photosynthesis of isolated chloroplasts. Nature. 1958 Aug 9;182(4632):351–355. doi: 10.1038/182351a0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES