Abstract
Hox genes play a fundamental role in regulating animal development. However, less is known about their functions on homeostasis maintenance in adult stem cells. Here, we report that the repression of an important axial Hox gene, Abdominal-B (Abd-B), in cyst stem cells (CySCs) is essential for the homeostasis and cell identity maintenance in the adult Drosophila testis. Derepression of Abd-B in CySCs disrupts the proper self-renewal of both germline stem cells (GSCs) and CySCs, and leads to an excessive expansion of early stage somatic cells, which originate from both lineages. We further demonstrate that canonical Polycomb (Pc) and functional pathway of Polycomb group (PcG) proteins are responsible for maintaining the germline cell identity non-autonomously via repressing Abd-B in CySCs in the adult Drosophila testis.
Introduction
Adult stem cells and niches are indispensable in maintaining homeostasis of adult tissues. Misregulation of the cell identity in the adult stem cell lineage will go against the long-term tissue maintenance and injury repair1. The Drosophila testis is one of the best-characterized systems to study the interaction between niche and stem cells, and the function of adult stem cells1–3. There are two populations of stem cells, cyst stem cells (CySCs) and germline stem cells (GSCs) in the Drosophila testis3, 4. These two types of stem cells can directly contact with the niche, called hub, which is composed of several post mitotic somatic cells (Fig. 1d). Hub cells can secret signal ligands, including Upd, Hh and Dpp/Gbb to support the self-renewal and undifferentiated states of CySCs and GSCs5–13. In addition, CySCs not only receive the signals from hub cells, but also serve as an important part of the niche for GSCs to ensure their proper proliferation and differentiation via several signaling pathways, such as BMP and EGFR pathways4, 11, 14–16.
Homeotic genes are a group of genes encoding proteins that determine body pattern during the early embryonic development. Many previous studies have focused on the importance of signal pathways for the homeostasis of the adult Drosophila testis, but less is known about the functions of homeotic genes in this process. Hox genes are a subset of homeotic genes, which encode a group of highly conserved homeodomain-containing transcription factors, and are key regulators of morphogenesis17, but they are commonly repressed by Polycomb Group (PcG) proteins in the late development process. As an important axial Hox gene, Abd-B has been reported to be crucial for many development processes, such as early embryonic segment, left/right asymmetry establishment, gonad development and stem cell niche architecture establishment in larvae testes17–21. In addition, the homolog of Abd-B in humans have been shown to be critical for oncogenesis, and its upregulation is commonly found in several types of solid tumors22.
PcG proteins, grouped into PRC1 and PRC2, have been strongly implicated in development, differentiation and maintenance of cell fate. Their malfunction may lead to the failure of stem cell identity maintenance or cancers23–29. Among them, Pc is a key component of canonical PRC1, which can recognize the H3K27me3 deposited by PRC2 via its chromodomain26, 30, 31. Several previous studies have demonstrated that Pc functions in various tissues and developmental stages via repressive or positive manners24, 26, 32–35.
Although both Abd-B and Pc play significant roles in the early development, their functions and genetic interactions in homeostasis and cell identity maintenance in the adult Drosophila testis remain elusive. Here we demonstrate that the intrinsic Abd-B repression in CySCs is essential for homeostasis maintenance in the adult Drosophila testis, and forced CySC-specific overexpression of Abd-B affects the cell identity maintenance of germline cells. In addition, we clarify that Pc is functional in Drosophila testis CySCs, depending on the H3K27me3 modification.
Results
Constitutional repression of Abd-B in CySCs is essential for homeostasis maintenance in the adult Drosophila testis
In order to investigate the function of Abd-B in the adult Drosophila testis, we first detected Abd-B expression in wild type Drosophila testes via immunostaining. We found that the expression of Abd-B is generally in a repressed state in CySCs of adult testes (Supplementary Fig. 1a-a”’), but is highly active in the nuclei of sheath cells (Supplementary Fig. 1b-b”’). This finding suggests that Abd-B is intrinsically repressed in CySCs of the adult Drosophila testis. In addition, knockdown of Abd-B in CySCs does not affect the homeostasis of adult testes (Supplementary Fig. 1c-c”’).
In order to address the physiological importance of this CySC-specific repression of Abd-B, we induced Abd-B overexpression in CySCs by using c587-Gal4, a CySC-specific driver, to examine whether such disturbation would result in any disorder in adult testes. Subsequent immunostaining assays demonstrated that Abd-B overexpression in CySCs severely altered the homeostasis of the adult Drosophila testis (Fig. 1a-b””). Compared with controls in which CySCs scored as Zfh1 positive cells closely surround the hub (Fig. 1a-a””), CySC-specific Abd-B overexpression led to a substantial overpopulation of Zfh1 positive cells, and remote localization of those cells away from the hub (Fig. 1b). In addition, Abd-B overexpression also caused an obvious decrease of differentiated cyst cells as evidenced by a dramatic loss of Eye absent (Eya) positive cells36 (Fig. 1b”). Since CySCs can function as a part of GSC niche, we then examined the status of germline cells by staining Vasa, a germline cell marker, in the context of CySC-specific overexpression of Abd-B. Compared with controls, we found that Vasa expression is dramatically upregulated, and the differentiation of germline cells is significantly delayed, as evidenced by the increase of early stage germline cells (Fig. 1a’,a”’,b’,b”’).
Since CySC-specific Abd-B overexpression resulted in overpopulation of both Zfh1 positive cells and early stage germline cells, we then performed Edu incorporation assays to assess whether CySC-specific Abd-B overexpression could promote cell proliferation. Notably, compared with the control in which single- or double- dividing cells mainly locate near the hub region (Fig. 1e-e”), those dividing cells (stem cells or early stage cells) locate far away from the hub in the testis with CySC-specific Abd-B overexpression (Fig. 1f-f”). This finding suggested that CySC-specific Abd-B overexpression causes an excessive GSC/CySC self-renewal in the distant region from the hub. By contrast, the same Abd-B overexpression allele driven by germline specific driver nosGal4 or hub specific driver hhGal4 did not recapitulate these phenotypes (data not shown). Therefore, these above findings indicate that the repression of Abd-B in CySCs is crucial for maintaining proper self-renewal and differentiation of both CySCs and GSCs.
CySC-specific Abd-B overexpression disturbs the cell identity of germline cells non-autonomously
Each GSC is encapsulated by a pair of CySCs in wild type testes, so the staining signals of nuclear Zfh1 and cytoplasmic Vasa distribute alternately4, 9. Strikingly, we found a special cell population with both nuclear Zfh1 and cytoplasmic Vasa stainings when Abd-B was overexpressed in CySCs (Fig. 1b-c”’’), indicating the existence of an intermediate state and malfunction in cell identity maintenance. To clarify the origin of those abnormal Zfh1 and Vasa double positive cells, we conducted lineage tracing assays using c587-Gal4, uas-GFP > uas-Abd-B, by which we can label the cyst cell lineage with GFP, and overexpress Abd-B at the same time. Compared with controls whose Zfh1 positive cells are exclusively labeled with GFP (Fig. 2a-a”’), some GFP negative cells show both Zfh1 and Vasa signals in testes with CySC-specific Abd-B overexpression (Fig. 2b-c”’), suggesting that those Zfh1 and Vasa double positive cells are not derived from CySCs, but likely from germline cells. These findings indicate that the overexpression of Abd-B in CySCs can non-autonomously affect the cell identity maintenance of germline cells.
Pc knockdown phenocopies Abd-B overexpression in Drosophila CySCs
Given that PcG proteins are mainly responsible for Hox gene repression and the enrichment of H3K27me3 at Abd-B locus in CySCs and wing discs in Drosophila 26, 37, we hypothesized that the intrinsic repression of Abd-B in CySCs is possibly mediated by PcG proteins. Because of the linker role of Pc in canonical PcG proteins, we first conducted the Pc RNAi driven by different cell type specific Gal4 drivers in adult stage to investigate whether Pc knockdown could phenocopy the Abd-B overexpression. Compared with controls (Fig. 3a-b””), Pc knockdown in CySCs showed an apparent increase of Zfh1 positive cells (Fig. 3b,e and Supplementary Fig. 2g), a significant decrease of Eya positive cells and an interruption of germline cell differentiation, whereas Pc knockdown in either germline cells, late cyst cells or hub cells showed no obvious abnormality in testes (Supplementary Fig. 2). Moreover, enhanced cell proliferation (Supplementary Fig. 3a”,b”), and a delay of cell differentiation (Supplementary Fig. 3c-d’) was also observed adult testes with CySC-specific Pc knockdown.
More importantly, CySC-specific Pc knockdown led to the emergence of Zfh1 and Vasa double positive cells, which lack the expression of Tj, another early cyst cell marker, indicating that these cells are not derived from normal cyst cell lineage and cannot fully perform the function of CySCs9 (Supplementary Fig. 4). Then we further confirmed this phenotype by tracing assays, in which we used the c587-Gal4, uas-GFP > Pc RNAi to label the cyst cell lineage with GFP and knock down Pc at the same time. The subsequent immunostaining assays showed that CySC-specific Pc knockdown resulted in a portion of GFP negative cells with Zfh1 expression (Fig. 3c-c”’). In contrast, the lineage tracing assays, using the nosGal4, uas-GFP transgene to mark germline cells with GFP and simultaneously knock down Pc by heat shock, showed the emergence of a subset of GFP and Zfh1 double positive cells, suggesting that some germline cells turned on Zfh1 expression and lost their cell identity in the context of Pc knockdown (Fig. 3d-d”). To further confirm the phenotypes of Pc knockdown, we introduced the MARCM system to generate GFP positive PcXT109 CySC clones. Similar to the results in Pc RNAi, PcXT109 mutant clones showed an overpopulation of Zfh1 positive cells and displayed Zfh1 and Vasa double positive signals in GFP negative cells (Fig. 3f-g””), whereas the PcXT109 germline cell clone showed no phenotype (data not shown). Taken together, we concluded that knockdown of Pc in CySCs phenocopies CySC-specific Abd-B overexpression, indicating the genetic interaction between Pc and Abd-B in Drosophila testis CySCs.
Pc represses Abd-B in CySCs to maintain homeostasis of the adult Drosophila testis
To further validate the hypothesis that Pc contributes to the Abd-B repression in CySCs, we then detected Abd-B expression in CySCs when Pc was knocked down. Compared with controls, knocking down Pc led to dramatic Abd-B induction in CySCs (Fig. 4a-b”), suggesting that Abd-B is repressed by Pc. In order to test whether other canonical PcG proteins are involved in Pc mediated Abd-B repression and homeostasis in testes, we employed an RNAi of Sex combs extra (Sce, a core component of PRC1). Similar to the findings in Pc RNAi, both Abd-B expression and the number of Zfh1 positive cells were dramatically increased when Sce was knocked down in CySCs (Supplementary Fig. 5). These findings indicate that these canonical PcG proteins are responsible for Abd-B repression in CySCs of the adult Drosophila testis.
Then we combined the Abd-B RNAi and Pc RNAi to test whether downregulation of Abd-B could rescue the overpopulation of Zfh1 positive cells at the background of loss-of-function of Pc. In these rescue assays, we counted about 100 testes for each genotype, and found that knockdown of Abd-B could significantly rescue Zfh1 overpopulation caused by loss-of-function of Pc in CySCs (Fig. 4c), which further suggested that Pc represses Abd-B in CySCs to maintain the homeostasis and cell identity.
Considering that Zfh1 is a downstream target of JAK-STAT pathway, which plays an important role in homeostasis of the adult Drosophila testis10, 38, we then examined the JAK-STAT activity via detecting the mRNA levels of Upd or the levels of phosphorylated STAT (pSTAT). The activity of JAK-STAT pathway is almost unchanged in testes with either CySC-specific Pc RNAi or Abd-B overexpression (Supplementary Fig. 6). Previous studies have shown that Pc regulates multiple downstream target genes and functions by various ways in different tissues. For example, Pc can repress the cell cycle related genes E2f1 and CycA in the early development process39, 40; PcG proteins can modulate dpp to maintain the homeostasis in ovary41. To examine whether those Pc target genes are involved in Pc-related homeostasis in the adult Drosophila testis, we overexpressed E2f1 and CycA in CySCs driven by c587-Gal4, and found no similar phenotype as that when Pc was knocked down in CySCs (Fig. 5a-b”). Meanwhile, we found that although the overexpression of Dpp showed similar phenotypes to Pc knockdown or Abd-B overexpression (Fig. 5c-c”), downregulation of dpp could not rescue the phenotypes caused by Pc loss-of-function in the Drosophila testis (Fig. 5d). In addition, we also observed an apparent increase of Wingless (Wg) when Pc was knocked down in CySCs (Fig. 5e-f’). However, the Wg RNAi showed marginal rescue of Zfh1 overpopulation induced by Pc RNAi (data not shown), and there is no obvious increase of Zfh1 signals when Wg was overexpressed in CySCs (Fig. 5g-g”’). These findings indicate that although CycA, E2f1, dpp and Wg are putative target genes of Pc, they are not responsible for Pc-related homeostasis in the adult Drosophila testis. Thus, we concluded that Pc maintains cell identity mainly by repressing Abd-B in the adult Drosophila testis.
Pc mediated Abd-B repression is dependent on H3K27me3 in the Drosophila testis
It’s well known that Pc recognizes H3K27me3 and recruits other components to repress gene expression in the canonical PcG pathway29. Recently, some other studies showed the existence of some non-canonical PcG pathways in various tissues, which can function independently on H3K27me3 modification32, 34. In order to figure out whether Pc-mediated Abd-B repression is dependent on H3K27me3 in CySCs, we adopted a dominant-negative allele of Pc, PcΔ69–70, which lacks the amino acids at the 69th and 70th sites, resulting in its inability to recognize H3K27me326, 30, 31. Overexpression of wild type Pc (Pc WT) did not lead to any obvious disorder of testis homeostasis except a little bit decrease of Zfh1 positive cells (Fig. 6a-b”’ and Supplementary Fig. 7a), whereas overexpression of PcΔ69–70 in CySCs caused an obvious increase of Zfh1 positive cells and a delay of germline cell differentiation (Fig. 6c-d”’ and Supplementary Fig. 7b), indicating the requirement of the canonical PcG functional pathway in maintaining the homeostasis and cell identity of the adult Drosophila testis.
Discussion
Previous studies have shown the function of Abd-B in the early development or tissue architecture formation. Here, we mainly investigate the function of Abd-B in the adult Drosophila testis, especially in testis homeostasis and cell identity maintenance. In the Drosophila testis, CySCs and GSCs play important roles in tissue homeostasis maintenance. Interestingly, the expression of Abd-B is in a repressed state in those two cell types. To explore the function of Abd-B in testis homeostasis, we overexpressed Abd-B in CySCs and GSCs respectively, and found that CySC-specific Abd-B overexpression results in an increase of Zfh1 positive cells, a delay of germline cell differentiation and a cell identity disorder in germline cells. In addition, forced Abd-B expression in CySCs significantly enhances cell proliferation, a phenotype similar to aggressive tumor cell growth, which is consistent with the oncogenic function of Abd-B in humans. Taken together, these important findings indicate that the intrinsic repression of Abd-B in CySCs is indispensable for homeostasis and cell identity maintenance in the adult Drosophila testis.
In most cases, PcG-mediated Hox gene repression sustains during the late development and adult stages. This sustained Hox gene repression is important to homeostasis in many tissues. A recent study has been reported that E(z), a core component of PRC2, is crucial for maintaining germline cell identity in the adult Drosophila testis37, and CySC-specific knockdown of E(z) results in overpopulation of Zfh1 positive cells, which is similar to Abd-B overexpression. Given the enrichment of H3K27me3 on Abd-B locus in CySCs in the adult Drosophila testis, we hypothesize that the homeostasis of the adult Drosophila testis is achieved through canonical PcG pathway mediated Abd-B repression in CySC lineages. In the canonical PcG pathway, Pc plays an essential role in connecting H3K27me3 recognition with gene repression, but its function is not specifically investigated in adult testes. In the present study, we targeted Pc to explore the genetic relationship between the canonical PcG pathway and Abd-B in the homeostasis and cell identity maintenance in adult Drosophila testis. We demonstrate that Abd-B is constitutionally repressed by PcG proteins in a canonical manner and such Abd-B repression is essential for homeostasis in the adult Drosophila testis.
Although a previous study has shown that Psc and Su(z)2 function redundantly in the Drosophila testis in restricting the proliferation of cyst cells through repression of Abd-B expression20, the detailed relationship between PcG and Abd-B was not explored. In addition, they concluded that Pc does not participate in the canonical PRC1 in CySC lineage in the adult Drosophila testis. However, in the present study, we demonstrate that CySC-specific Pc knockdown leads to derepression of Abd-B, overpopulation of Zfh1 positive cells, and cell identity disorder, indicating that Pc is functional in CySC lineage. Moreover, these abnormal phenomena were further confirmed in the PcXT109 mutant MARCM system. What’s more, CySC-specific loss-of-function of Sce, another core component of PRC1, also results in the derepression of Abd-B and leads to similar abnormal phenotypes in the adult Drosophila testis. These findings indicate that canonical PRC1 complex functions in the Drosophila testis CySC lineage to promote adult stem cell differentiation and maintain cell identity via repressing Abd-B.
Recently, Dr Xin Chen’ group42 reported an important role of a putative PcG protein Enhancer of Polycomb (E(Pc)) in promoting the differentiation of both cyst (autonomously) and germline (non-autonomously) stem cell by coordinating with multiple signaling pathways including JAK-STAT and EGF. They demonstrate that CySC-specific knockdown of E(Pc) results in overpopulation of Zfh1 and delayed differentiation of GSCs, which are similar to the findings in knockdown of Pc, Sce and E(z) and overexpression of Abd-B, further suggesting that the CySC-specific repression of Abd-B may function as a key event in PcG-mediated homeostasis maintenance in the adult Drosophila testis.
The loss-of-function of E(z) or E(Pc) causes disorders in the adult Drosophila testis via coordinating with multiple signaling pathways in previous studies37, 42. In the present study, we believe that signaling pathways may also contribute to this Pc-Abd-B mediated homeostasis in the adult Drosophila testis, given that the phenotype of Abd-B overexpression is similar to the disorder of several signaling pathways, like JAK/STAT, EGFR and BMP. We excluded the involvement of JAK/STAT in this Pc-Abd-B mediated homeostasis, suggesting that other signaling pathways may be important for this regulation. However, unlike the phenotype observed in CySC-specific Abd-B overexpression showing the overpopulation of Zfh1 positive cells in nearly all adult testes, only around 20–30% testes displayed this phenotype when knocking down Pc or Sce in CySCs (Fig. 4c and Supplementary Figs 2g and 5b). This discrepancy may not be due to the RNAi efficiency because introducing dicer2 does not further increase the percentage of Zfh1 positive cells (data not shown here). Interestingly, similar partial overpopulation of Zfh1 positive cells was also observed in loss-of-function of PRC2 component, Su(z)1237. The possible explanation is: 1. the expression of Abd-B could be regulated by H3K27me3 directly, or 2. the possible existence of other redundant repressors or noncanonical PcG proteins for Abd-B expression in addition to canonical PcG proteins.
In summary, the repression of Abd-B in CySCs is essential for maintenance of germline cell identity and homeostasis in the adult Drosophila testis. This Abd-B repression mediated by PcG proteins is in a canonical PcG manner (Supplementary Fig. 8). Our findings further uncovered the relationship between epigenetic regulation and homeostasis maintenance in the adult Drosophila testis and further conformed that epigenetic regulators in CySCs serve as the non-autonomous cell fate barrier to regulate the proper cell behavior.
Experimental Procedures
Fly strains
Flies were raised on the standard medium at 25 °C unless stated otherwise. The uas-Abd-B (BS913), uas-GFP (BS4774), tubulin-Gal80ts (BS7017), E(z) RNAi (BS33659), Dpp RNAi (BS31531), uas-Dpp (BS53716, BS1486), Wg RNAi (BS32994), Abd-B RNAi (BS35647), uas-CycA (BS6633) stocks were obtained from the Bloomington Drosophila Stock Center. Pc RNAi (32443R-4), Pc RNAi (32443R-1), Sce RNAi (5595R-1) were obtained from the NIG.
The FRT2APcXT109 was a gift from Dr. Rongwen Xi28, c587-Gal4 (X) and nanos-Gal4 (III) were gifts from Dr. Dahua Chen and Dr. Xun Huang9. The uas-Wg transgene was a gift from Dr. Haiyun Song. The uas-E2f1 transgene was a gift from Dr. Wei Du43. The attp-Pc WT/PcΔ69–70 transgenes were generated with a P element-mediated insertion at the 25C6 site (attp40) of the second chromosome in this study26. The heat shock Pc RNAi (hs Pc RNAi) transgene was generated using the pCaSper plasmid with the random insertion in the background of yw flies in this study, the targeted sequence was selected as the 32443R-4.
Induction of gene RNAi or overexpression
All gene RNAi and overexpression related experiments were performed in the Gal4-Gal80ts system44. All flies were raised in 18 °C until eclosion, adult flies of indicated genotypes were then shifted from 18 °C to 29 °C, at which temperature Gal80ts is inactivate and Gal4 is permitted to drive the gene expression44. All controls are crossed with the yw flies.
Clonal analysis
To generate positive Pc-null homozygous clones45, we adopted the FRT2APcXT109, which was crossed with hs-Flp, tubGal4, uas-GFPnls; FRT2AGal80. Crosses were maintained at 25 °C. Adult male flies were collected 0–2 days after eclosion and heat shocked for two rounds of 30-min heat shock at 37 °C and 1-hour rest at 25 °C. After final heat shock, flies were returned to 25 °C and dissected on 15 days ACI.
Immunofluorescence microscopy analyses
Testes of adult male Drosophila were dissected in 1xPBS and fixed in 1 ml 4% formaldehyde in 1xPBS for 30 min at room temperature (RT). After fixation, testes were rinsed three times with 0.1% Triton X-100 in 1xPBS (PBST), 20 min each time at RT, followed by incubation with primary antibody overnight at 4 °C. Testes were then rinsed four times with PBST, 15 min each time, followed by incubation with secondary antibody in darkness for 1 hour at RT. After rinsing three times with PBST 15 min each time, testes were mounted in 40% glycerol. Leica LAS SP8 confocal microscope was employed to take immunostaining images. The obtained images were processed using Adobe Photoshop CS6.
Antibodies used in this study: goat anti-Vasa (1:400, Santa Cruz, sc-26877), mouse anti-Fasciclin III (FasIII, 1:500, Developmental Studies Hybridoma Bank), mouse anti Eya (1:100, Developmental Studies Hybridoma Bank), mouse anti GFP (1:1000, Molecular Probes), rabbit anti-phospho-histone 3 (1:1000, Millipore), rabbit anti-Zfh-1 (1:5000, a gift from Dr. Ruth Lehmann, New York University, USA and ABclonal), mouse anti Traffic jam (1:5000, a gift from Dahua Chen, Institute of Zoology, CAS, China), mouse anti-lacZ (1:1000, a gift from Dr Qing Zhang, Nanjing University, China), mouse anti Abd-A (1:200, Santa Cruz), mouse anti pSTAT (1:1000, a gift from Dr Dahua Chen, Institute of Zoology, CAS, China). Secondary antibodies conjugated to A488, Cy3, or Cy5 (Jackson ImmunoResearch) were used at 1:1000. Testes were stained for 15 min at RT with DAPI (Sigma) at 1.0 μg/ml to reveal DNA.
EdU incorporation assay
Testes of adult male flies were dissected in S2 medium, and incubated in 100 μg/ml EdU (Invitrogen, Click-iT® EdU Alexa Fluor® 647 Imaging Kit) in S2 medium for 30 min at 25 °C. Samples were then rinsed with PBST. For staining with other primary antibodies, subsequent immunostaining procedures were as described above. Before mounting, EdU was labelled following Click-iT® EdU Imaging Kits Protocol.
Statistics
All of the statistical analyses were one-tailed, unpaired, t-tests with equal variances. All of the experiments were repeated three independent times with similar results unless stated otherwise. The number of flies in each group is more than 50 in one quantification assay unless stated otherwise. Images shown are representative of the images obtained.
Electronic supplementary material
Acknowledgements
We thank Drs Dahua Chen, Wei Du, Rongwen Xi, Xun Huang, Ruth Lehmann, Haiyun Song, Qing Zhang, Brian Gebelein, DSHB, VDRC, NIG, DGRC and the Bloomington Stock Center for reagents and fly stocks. We thank Dr. Jinqiu Zhou for discussions and comments on the manuscript. This work was supported by grants from the National Key Research and Development Program of China (2017YFA0503600), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDB19020100), and also from the National Natural Science Foundation of China (31171414, 31630047, 31371492, 31671453) and sponsored by Program of Shanghai Academic/Technology Research Leader (17XD1404100).
Author Contributions
S.Z. conceived and designed the study, performed experiments, analyzed data, and drafted the manuscript; C.P., X.L., W.W. (Wei Wu)., H.C., W.W. (Wenqing Wu). and L.Z. contributed reagents and materials, and performed experiments; H.W. performed experiments and analyzed data; and Y.Z. supervised this project, analyzed data, and prepared the manuscript.
Competing Interests
The authors declare that they have no competing interests.
Footnotes
Electronic supplementary material
Supplementary information accompanies this paper at doi:10.1038/s41598-017-05359-0
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Spradling A, Fuller MT, Braun RE, Yoshida S. Germline stem cells. Cold Spring Harb Perspect Biol. 2011;3:a002642. doi: 10.1101/cshperspect.a002642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Lehmann R. Germline stem cells: origin and destiny. Cell stem cell. 2012;10:729–739. doi: 10.1016/j.stem.2012.05.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Fuller MT, Spradling AC. Male and female Drosophila germline stem cells: two versions of immortality. Science. 2007;316:402–404. doi: 10.1126/science.1140861. [DOI] [PubMed] [Google Scholar]
- 4.Greenspan LJ, de Cuevas M, Matunis E. Genetics of Gonadal Stem Cell Renewal. Annual review of cell and developmental biology. 2015 doi: 10.1146/annurev-cellbio-100913-013344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Kawase E, Wong MD, Ding BC, Xie T. Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development. 2004;131:1365–1375. doi: 10.1242/dev.01025. [DOI] [PubMed] [Google Scholar]
- 6.Melanie, Issigonis et al. JAK-STAT Signal Inhibition Regulates Competition in the Drosophila Testis Stem Cell Niche. Science326 (2009). [DOI] [PMC free article] [PubMed]
- 7.Amoyel M, Sanny J, Burel M, Bach EA. Hedgehog is required for CySC self-renewal but does not contribute to the GSC niche in the Drosophila testis. Development. 2013;140:56–65. doi: 10.1242/dev.086413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Michel M, Kupinski AP, Raabe I, Bokel C. Hh signalling is essential for somatic stem cell maintenance in the Drosophila testis niche. Development. 2012;139:2663–2669. doi: 10.1242/dev.075242. [DOI] [PubMed] [Google Scholar]
- 9.Zhang Z, Lv X, Jiang J, Zhang L, Zhao Y. Dual roles of Hh signaling in the regulation of somatic stem cell self-renewal and germline stem cell maintenance in Drosophila testis. Cell research. 2013;23:573–576. doi: 10.1038/cr.2013.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Leatherman JL, Dinardo S. Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell stem cell. 2008;3:44–54. doi: 10.1016/j.stem.2008.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Chen H, Chen X, Zheng Y. The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signaling. Cell stem cell. 2013;13:73–86. doi: 10.1016/j.stem.2013.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Issigonis M, Matunis E. SnapShot: stem cell niches of the Drosophila testis and ovary. Cell. 2011;145:994–994 e992. doi: 10.1016/j.cell.2011.05.037. [DOI] [PubMed] [Google Scholar]
- 13.Singh SR, Chen X, Hou SX. JAK/STAT signaling regulates tissue outgrowth and male germline stem cell fate in Drosophila. Cell research. 2005;15:1–5. doi: 10.1038/sj.cr.7290255. [DOI] [PubMed] [Google Scholar]
- 14.Zoller R, Schulz C. The Drosophila cyst stem cell lineage: Partners behind the scenes? Spermatogenesis. 2012;2:145–157. doi: 10.4161/spmg.21380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Matunis EL, Stine RR, de Cuevas M. Recent advances in Drosophila male germline stem cell biology. Spermatogenesis. 2012;2:137–144. doi: 10.4161/spmg.21763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Kiger AA, White-Cooper H, Fuller MT. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature. 2000;407:750–754. doi: 10.1038/35037606. [DOI] [PubMed] [Google Scholar]
- 17.Papagiannouli F, Lohmann I. Stage-specific control of stem cell niche architecture in the Drosophila testis by the posterior Hox gene Abd-B. Comput Struct Biotechnol J. 2015;13:122–130. doi: 10.1016/j.csbj.2015.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.DeFalco T, Le Bras S, Van Doren M. Abdominal-B is essential for proper sexually dimorphic development of the Drosophila gonad. Mech Dev. 2004;121:1323–1333. doi: 10.1016/j.mod.2004.07.001. [DOI] [PubMed] [Google Scholar]
- 19.Papagiannouli F, Schardt L, Grajcarek J, Ha N, Lohmann I. The Hox gene Abd-B controls stem cell niche function in the Drosophila testis. Developmental cell. 2014;28:189–202. doi: 10.1016/j.devcel.2013.12.016. [DOI] [PubMed] [Google Scholar]
- 20.Morillo Prado JR, Chen X, Fuller MT. Polycomb group genes Psc and Su(z)2 maintain somatic stem cell identity and activity in Drosophila. PloS one. 2012;7:e52892. doi: 10.1371/journal.pone.0052892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Coutelis JB, et al. Drosophila left/right asymmetry establishment is controlled by the Hox gene abdominal-B. Developmental cell. 2013;24:89–97. doi: 10.1016/j.devcel.2012.11.013. [DOI] [PubMed] [Google Scholar]
- 22.Bhatlekar S, Fields JZ, Boman BM. HOX genes and their role in the development of human cancers. J Mol Med (Berl) 2014;92:811–823. doi: 10.1007/s00109-014-1181-y. [DOI] [PubMed] [Google Scholar]
- 23.Lanzuolo C, Orlando V. Memories from the polycomb group proteins. Annu Rev Genet. 2012;46:561–589. doi: 10.1146/annurev-genet-110711-155603. [DOI] [PubMed] [Google Scholar]
- 24.Schwartz YB, Pirrotta V. A new world of Polycombs: unexpected partnerships and emerging functions. Nature reviews. Genetics. 2013;14:853–864. doi: 10.1038/nrg3603. [DOI] [PubMed] [Google Scholar]
- 25.Steffen PA, Ringrose L. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol. 2014;15:340–356. doi: 10.1038/nrm3789. [DOI] [PubMed] [Google Scholar]
- 26.Lv X, et al. A positive role for polycomb in transcriptional regulation via H4K20me1. Cell research. 2016 doi: 10.1038/cr.2016.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Aloia L, Di Stefano B, Di Croce L. Polycomb complexes in stem cells and embryonic development. Development. 2013;140:2525–2534. doi: 10.1242/dev.091553. [DOI] [PubMed] [Google Scholar]
- 28.Li X, Han Y, Xi R. Polycomb group genes Psc and Su(z)2 restrict follicle stem cell self-renewal and extrusion by controlling canonical and noncanonical Wnt signaling. Genes & development. 2010;24:933–946. doi: 10.1101/gad.1901510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–349. doi: 10.1038/nature09784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Messmer S, Franke A, Paro R. Analysis of the functional role of the Polycomb chromo domain in Drosophila melanogaster. Genes & development. 1992;6:1241–1254. doi: 10.1101/gad.6.7.1241. [DOI] [PubMed] [Google Scholar]
- 31.Fischle W, et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes & development. 2003;17:1870–1881. doi: 10.1101/gad.1110503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Tavares L, et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell. 2012;148:664–678. doi: 10.1016/j.cell.2011.12.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Gao Z, et al. An AUTS2-Polycomb complex activates gene expression in the CNS. Nature. 2014;516:349–354. doi: 10.1038/nature13921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Blackledge NP, et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell. 2014;157:1445–1459. doi: 10.1016/j.cell.2014.05.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Morey L, et al. Polycomb Regulates Mesoderm Cell Fate-Specification in Embryonic Stem Cells through Activation and Repression Mechanisms. Cell stem cell. 2015;17:300–315. doi: 10.1016/j.stem.2015.08.009. [DOI] [PubMed] [Google Scholar]
- 36.Fabrizio JJ, Boyle M, DiNardo S. A somatic role for eyes absent (eya) and sine oculis (so) in Drosophila spermatocyte development. Developmental Biology. 2003;258:117–128. doi: 10.1016/S0012-1606(03)00127-1. [DOI] [PubMed] [Google Scholar]
- 37.Eun SH, Shi Z, Cui K, Zhao K, Chen X. A non-cell autonomous role of E(z) to prevent germ cells from turning on a somatic cell marker. Science. 2014;343:1513–1516. doi: 10.1126/science.1246514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Leatherman JL, Dinardo S. Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nature cell biology. 2010;12:806–811. doi: 10.1038/ncb2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Ji JY, Miles WO, Korenjak M, Zheng Y, Dyson NJ. In vivo regulation of E2F1 by Polycomb group genes in Drosophila. G3 (Bethesda) 2012;2:1651–1660. doi: 10.1534/g3.112.004333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Martinez AM, Colomb S, Dejardin J, Bantignies F, Cavalli G. Polycomb group-dependent Cyclin A repression in Drosophila. Genes & development. 2006;20:501–513. doi: 10.1101/gad.357106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Li X, et al. Control of germline stem cell differentiation by polycomb and trithorax group genes in the niche microenvironment. Development. 2016 doi: 10.1242/dev.137638. [DOI] [PubMed] [Google Scholar]
- 42.Feng L, Shi Z, Chen X. Enhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis. PLoS genetics. 2017;13:e1006571. doi: 10.1371/journal.pgen.1006571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Zhang T, Du W. Groucho restricts rhomboid expression and couples EGFR activation with R8 selection during Drosophila photoreceptor differentiation. Dev Biol. 2015;407:246–255. doi: 10.1016/j.ydbio.2015.09.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Lv X, et al. SUMO regulates somatic cyst stem cells maintenance and directly targets hedgehog pathway in adult Drosophila testis. Development. 2016 doi: 10.1242/dev.130773. [DOI] [PubMed] [Google Scholar]
- 45.Lee TM, Luo LQ. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development (vol 24, pg 251, 2001) Trends Neurosci. 2001;24:385–385. doi: 10.1016/S0166-2236(00)01791-4. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.