Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Nov;87(22):8935–8939. doi: 10.1073/pnas.87.22.8935

Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis.

E Ahissar 1, E Vaadia 1
PMCID: PMC55075  PMID: 2247469

Abstract

Neuronal activity was extracellularly recorded in the cortex of an awake monkey (Macaca fascicularis). Single units displaying oscillatory firing patterns were found in the upper bank of the lateral sulcus in a region where most of the neurons responded to somatosensory stimuli. The spectral energies of the oscillating activity were distributed in a trimodal fashion--0-15, 15-50, and 80-250 Hz--with the most common frequencies around 30 Hz. The oscillatory activity was not affected by anesthesia, but it was often reduced by tactile stimulation or self-initiated movements. Analysis of the spike trains suggests that the majority of oscillatory activity was intrinsically generated by the neurons. A neural model of texture analysis is offered based on a corticothalamic phase-locked loop. The newly identified oscillators play a key role in this model. The relevance of the model to physiological, anatomical, and psychophysical data, as well as testable predictions, are discussed.

Full text

PDF
8935

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calvin W. H. Three modes of repetitive firing and the role of threshold time course between spikes. Brain Res. 1974 Apr 5;69(2):341–346. doi: 10.1016/0006-8993(74)90012-2. [DOI] [PubMed] [Google Scholar]
  2. Chagnac-Amitai Y., Connors B. W. Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J Neurophysiol. 1989 Nov;62(5):1149–1162. doi: 10.1152/jn.1989.62.5.1149. [DOI] [PubMed] [Google Scholar]
  3. Darian-Smith I., Kenins P. Innervation density of mechanoreceptive fibres supplying glabrous skin of the monkey's index finger. J Physiol. 1980 Dec;309:147–155. doi: 10.1113/jphysiol.1980.sp013500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Darian-Smith I., Oke L. E. Peripheral neural representation of the spatial frequency of a grating moving across the monkey's finger pad. J Physiol. 1980 Dec;309:117–133. doi: 10.1113/jphysiol.1980.sp013498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doetsch G. S., Standage G. P., Johnston K. W., Lin C. S. Thalamic connections of two functional subdivisions of the somatosensory forepaw cerebral cortex of the raccoon. J Neurosci. 1988 Jun;8(6):1873–1886. doi: 10.1523/JNEUROSCI.08-06-01873.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eckhorn R., Bauer R., Jordan W., Brosch M., Kruse W., Munk M., Reitboeck H. J. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern. 1988;60(2):121–130. doi: 10.1007/BF00202899. [DOI] [PubMed] [Google Scholar]
  7. Ferrington D. G., Rowe M. Differential contributions to coding of cutaneous vibratory information by cortical somatosensory areas I and II. J Neurophysiol. 1980 Feb;43(2):310–331. doi: 10.1152/jn.1980.43.2.310. [DOI] [PubMed] [Google Scholar]
  8. GIBSON J. J. Observations on active touch. Psychol Rev. 1962 Nov;69:477–491. doi: 10.1037/h0046962. [DOI] [PubMed] [Google Scholar]
  9. Gray C. M., Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1698–1702. doi: 10.1073/pnas.86.5.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johansson R. S., Landström U., Lundström R. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Res. 1982 Jul 22;244(1):17–25. doi: 10.1016/0006-8993(82)90899-x. [DOI] [PubMed] [Google Scholar]
  11. Johansson R. S., Vallbo A. B. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol. 1979 Jan;286:283–300. doi: 10.1113/jphysiol.1979.sp012619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mountcastle V. B., Talbot W. H., Sakata H., Hyvärinen J. Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J Neurophysiol. 1969 May;32(3):452–484. doi: 10.1152/jn.1969.32.3.452. [DOI] [PubMed] [Google Scholar]
  13. Oliveras J. L., Martin G., Montagne J., Vos B. Single unit activity at ventromedial medulla level in the awake, freely moving rat: effects of noxious heat and light tactile stimuli onto convergent neurons. Brain Res. 1990 Jan 1;506(1):19–30. doi: 10.1016/0006-8993(90)91194-l. [DOI] [PubMed] [Google Scholar]
  14. POGGIO G. F., VIERNSTEIN L. J. TIME SERIES ANALYSIS OF IMPULSE SEQUENCES OF THALAMIC SOMATIC SENSORY NEURONS. J Neurophysiol. 1964 Jul;27:517–545. doi: 10.1152/jn.1964.27.4.517. [DOI] [PubMed] [Google Scholar]
  15. Robinson C. J., Burton H. Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. J Comp Neurol. 1980 Jul 1;192(1):69–92. doi: 10.1002/cne.901920105. [DOI] [PubMed] [Google Scholar]
  16. Rougeul A., Bouyer J. J., Dedet L., Debray O. Fast somato-parietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. Electroencephalogr Clin Neurophysiol. 1979 Mar;46(3):310–319. doi: 10.1016/0013-4694(79)90205-0. [DOI] [PubMed] [Google Scholar]
  17. Talbot W. H., Darian-Smith I., Kornhuber H. H., Mountcastle V. B. The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol. 1968 Mar;31(2):301–334. doi: 10.1152/jn.1968.31.2.301. [DOI] [PubMed] [Google Scholar]
  18. Vaadia E., Gottlieb Y., Abeles M. Single-unit activity related to sensorimotor association in auditory cortex of a monkey. J Neurophysiol. 1982 Nov;48(5):1201–1213. doi: 10.1152/jn.1982.48.5.1201. [DOI] [PubMed] [Google Scholar]
  19. White E. L., Keller A. Intrinsic circuitry involving the local axon collaterals of corticothalamic projection cells in mouse SmI cortex. J Comp Neurol. 1987 Aug 1;262(1):13–26. doi: 10.1002/cne.902620103. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES