Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Nov;87(22):8945–8949. doi: 10.1073/pnas.87.22.8945

Effects of gamma-aminobutyric acid on skate retinal horizontal cells: evidence for an electrogenic uptake mechanism.

R P Malchow 1, H Ripps 1
PMCID: PMC55077  PMID: 2247470

Abstract

In the retinae of many vertebrates, there are classes of horizontal cell that probably utilize gamma-aminobutyric acid (GABA) as a neurotransmitter. As with other amino acid transmitter agents, the postsynaptic action of GABA is thought to be terminated by uptake into neurons and glia surrounding the release site. The present study examined whether an uptake system for GABA could be detected in isolated skate horizontal cells by means of electrophysiological methods. Pressure ejection of GABA onto voltage-clamped horizontal cells produced an inward current that showed no sign of desensitization regardless of the GABA concentration. The dose-response relationship followed simple Michaelis-Menten kinetics, with a half-maximal response elicited at approximately 110 microM. Nipecotic acid produced a similar current and reduced the responses to GABA when introduced in the bath solution prior to the GABA pulse. On the other hand, application of 500 microM muscimol or 1 mM baclofen, GABAA and GABAB receptor agonists, respectively, were completely without effect. The GABA-induced current was not blocked by superfusion with 500 microM bicuculline, 500 microM picrotoxin, or 500 microM phaclofen. However, the responses to GABA were abolished when the cells were superfused in Ringer's solution in which choline or lithium had been substituted for sodium, and were reduced when the extracellular chloride concentration was decreased from 266 mM to 16 mM. Current-voltage data showed a maximal response to GABA when the cells were held at or below their resting potential. At more depolarized levels, the inward current became progressively smaller until, near +50 mV, it could no longer be detected; over the range tested (-90 to +50 mV), the response never reversed into an outward current. These findings suggest that the GABA-induced currents in skate horizontal cells are mediated by an electrogenic uptake mechanism.

Full text

PDF
8945

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R., Brown D. A. Actions of gamma-aminobutyric acid on sympathetic ganglion cells. J Physiol. 1975 Aug;250(1):85–120. doi: 10.1113/jphysiol.1975.sp011044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agardh E., Bruun A., Ehinger B., Ekström P., van Veen T., Wu J. Y. Gamma-aminobutyric acid- and glutamic acid decarboxylase-immunoreactive neurons in the retina of different vertebrates. J Comp Neurol. 1987 Apr 22;258(4):622–630. doi: 10.1002/cne.902580411. [DOI] [PubMed] [Google Scholar]
  3. Althaus J. S., Martin D. L. Entropy as a factor in the binding of gamma-aminobutyric acid and nipecotic acid to the gamma-aminobutyric acid transport system. Neurochem Res. 1989 Apr;14(4):311–316. doi: 10.1007/BF01000032. [DOI] [PubMed] [Google Scholar]
  4. Ayoub G. S., Lam D. M. The release of gamma-aminobutyric acid from horizontal cells of the goldfish (Carassius auratus) retina. J Physiol. 1984 Oct;355:191–214. doi: 10.1113/jphysiol.1984.sp015414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barker J. L., Mathers D. A. GABA analogues activate channels of different duration on cultured mouse spinal neurons. Science. 1981 Apr 17;212(4492):358–361. doi: 10.1126/science.6259733. [DOI] [PubMed] [Google Scholar]
  6. Barker J. L., McBurney R. N., Mathers D. A. Convulsant-induced depression of amino acid responses in cultured mouse spinal neurones studied under voltage clamp. Br J Pharmacol. 1983 Dec;80(4):619–629. doi: 10.1111/j.1476-5381.1983.tb10051.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brew H., Attwell D. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. 1987 Jun 25-Jul 1Nature. 327(6124):707–709. doi: 10.1038/327707a0. [DOI] [PubMed] [Google Scholar]
  8. Brunken W. J., Witkovsky P., Karten H. J. Retinal neurochemistry of three elasmobranch species: an immunohistochemical approach. J Comp Neurol. 1986 Jan 1;243(1):1–12. doi: 10.1002/cne.902430102. [DOI] [PubMed] [Google Scholar]
  9. Bruun A., Ehinger B., Sytsma V. M. Neurotransmitter localization in the skate retina. Brain Res. 1984 Mar 19;295(2):233–248. doi: 10.1016/0006-8993(84)90972-7. [DOI] [PubMed] [Google Scholar]
  10. Cohen J. L. The action of gamma-aminobutyric acid on the horizontal cells of the skate retina. Brain Res. 1988 Jul 12;455(2):366–369. doi: 10.1016/0006-8993(88)90096-0. [DOI] [PubMed] [Google Scholar]
  11. Dowling J. E., Ripps H. Effect of magnesium on horizontal cell activity in the skate retina. Nature. 1973 Mar 9;242(5393):101–103. doi: 10.1038/242101a0. [DOI] [PubMed] [Google Scholar]
  12. Dutar P., Nicoll R. A. A physiological role for GABAB receptors in the central nervous system. Nature. 1988 Mar 10;332(6160):156–158. doi: 10.1038/332156a0. [DOI] [PubMed] [Google Scholar]
  13. Edwards C. The selectivity of ion channels in nerve and muscle. Neuroscience. 1982 Jun;7(6):1335–1366. doi: 10.1016/0306-4522(82)90249-4. [DOI] [PubMed] [Google Scholar]
  14. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  15. Hill D. R., Bowery N. G. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Nature. 1981 Mar 12;290(5802):149–152. doi: 10.1038/290149a0. [DOI] [PubMed] [Google Scholar]
  16. Johnston G. A., Krogsgaard-Larsen P., Stephanson A. L., Twitchin B. Inhibition of the uptake of GABA and related amino acids in rat brain slices by the optical isomers of nipecotic acid. J Neurochem. 1976 May;26(5):1029–1032. doi: 10.1111/j.1471-4159.1976.tb06488.x. [DOI] [PubMed] [Google Scholar]
  17. Kanner B. I. Bioenergetics of neurotransmitter transport. Biochim Biophys Acta. 1983 Dec 30;726(4):293–316. doi: 10.1016/0304-4173(83)90013-7. [DOI] [PubMed] [Google Scholar]
  18. Kanner B. I., Kifer L. Efflux of gamma-aminobutyric acid by synaptic plasma membrane vesicles isolated from rat brain. Biochemistry. 1981 Jun 9;20(12):3354–3358. doi: 10.1021/bi00515a007. [DOI] [PubMed] [Google Scholar]
  19. Krogsgaard-Larsen P., Johnston G. A. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem. 1975 Dec;25(6):797–802. doi: 10.1111/j.1471-4159.1975.tb04410.x. [DOI] [PubMed] [Google Scholar]
  20. Lam D. M., Ayoub G. S. Biochemical and biophysical studies of isolated horizontal cells from the teleost retina. Vision Res. 1983;23(4):433–444. doi: 10.1016/0042-6989(83)90090-1. [DOI] [PubMed] [Google Scholar]
  21. Lam D. M., Lasater E. M., Naka K. I. gamma-Aminobutyric acid: a neurotransmitter candidate for cone horizontal cells of the catfish retina. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6310–6313. doi: 10.1073/pnas.75.12.6310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lasater E. M., Dowling J. E., Ripps H. Pharmacological properties of isolated horizontal and bipolar cells from the skate retina. J Neurosci. 1984 Aug;4(8):1966–1975. doi: 10.1523/JNEUROSCI.04-08-01966.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Malchow R. P., Qian H. H., Ripps H., Dowling J. E. Structural and functional properties of two types of horizontal cell in the skate retina. J Gen Physiol. 1990 Jan;95(1):177–198. doi: 10.1085/jgp.95.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Malchow R. P., Qian H. H., Ripps H. gamma-Aminobutyric acid (GABA)-induced currents of skate Muller (glial) cells are mediated by neuronal-like GABAA receptors. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4326–4330. doi: 10.1073/pnas.86.11.4326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marshall J., Voaden M. An autoradiographic study of the cells accumulating 3H gamma-aminobutyric acid in the isolated retinas of pigeons and chickens. Invest Ophthalmol. 1974 Aug;13(8):602–607. [PubMed] [Google Scholar]
  26. Pourch R. G., Goebel D. J., McReynolds J. S. Autoradiographic studies of [3H]-glycine, [3H]-GABA, and [3H]-muscimol uptake in the mudpuppy retina. Exp Eye Res. 1984 Jul;39(1):69–81. doi: 10.1016/0014-4835(84)90116-7. [DOI] [PubMed] [Google Scholar]
  27. Ripps H., Shakib M., MacDonald E. D. Peroxidase uptake by photoreceptor terminals of the skate retina. J Cell Biol. 1976 Jul;70(1):86–96. doi: 10.1083/jcb.70.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schwartz E. A. Calcium-independent release of GABA from isolated horizontal cells of the toad retina. J Physiol. 1982 Feb;323:211–227. doi: 10.1113/jphysiol.1982.sp014069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schwartz E. A. Depolarization without calcium can release gamma-aminobutyric acid from a retinal neuron. Science. 1987 Oct 16;238(4825):350–355. doi: 10.1126/science.2443977. [DOI] [PubMed] [Google Scholar]
  30. Takeuchi A., Takeuchi N. A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish. J Physiol. 1969 Nov;205(2):377–391. doi: 10.1113/jphysiol.1969.sp008972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Voaden M. J., Marshall J., Murani N. The uptake of [3H]gamma-amino butyric acid and [3H]glycine by the isolated retina of the frog. Brain Res. 1974 Feb 15;67(1):115–132. doi: 10.1016/0006-8993(74)90302-3. [DOI] [PubMed] [Google Scholar]
  32. Yazulla S., Kleinschmidt J. Carrier-mediated release of GABA from retinal horizontal cells. Brain Res. 1983 Mar 14;263(1):63–75. doi: 10.1016/0006-8993(83)91201-5. [DOI] [PubMed] [Google Scholar]
  33. Yazulla S. Stimulation of GABA release from retinal horizontal cells by potassium and acidic amino acid agonists. Brain Res. 1983 Sep 19;275(1):61–74. doi: 10.1016/0006-8993(83)90417-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES