Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Nov;87(22):8980–8984. doi: 10.1073/pnas.87.22.8980

Acylation-stimulatory activity in hyperapobetalipoproteinemic fibroblasts: enhanced cholesterol esterification with another serum basic protein, BP II.

P Kwiterovich Jr 1, M Motevalli 1, M Miller 1
PMCID: PMC55084  PMID: 2247473

Abstract

Cultured fibroblasts from patients with familial hyperapobetalipoproteinemia (hyperapoB) were used to determine if a defect in lipid metabolism was present. Three basic proteins (BP I, BP II, and BP III) were isolated from normal human serum by preparative isoelectric focusing, preparative SDS/PAGE, and reversed-phase HPLC. The Mr and pI values of these proteins were 14,000 and 9.10 for BP I, 27,500 and 8.48 for BP II, and 55,000 and 8.73 for BP III. These proteins differed significantly in their content of arginine, cysteine, proline, histidine, serine, and methionine. BP I appears to be the same protein as acylation-stimulating protein, but BP II and BP III appeared different from acylation-stimulating protein and other lipid carrier proteins. BP I, BP II, and BP III stimulated the incorporation of [14C]oleate into lipid esters in normal fibroblasts, an effect that was time and concentration dependent. In hyperapoB cells, BP II markedly increased (up to 9-fold) the incorporation of [14C]oleate into cholesteryl ester compared with that in normal cells; in addition, there was a 50% decrease in the stimulation of triglyceride acylation and cholesterol esterification with BP I. No difference between normal and hyperapoB cells was observed with BP III. In summary, the identification of another serum basic protein, BP II, led to the elucidation of another cellular defect in hyperapoB fibroblasts, enhanced cholesterol esterification, which may be related to the precocious atherosclerosis and abnormal lipoprotein metabolism seen in hyperapoB.

Full text

PDF
8980

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaty T. H., Kwiterovich P. O., Jr, Khoury M. J., White S., Bachorik P. S., Smith H. H., Teng B., Sniderman A. Genetic analysis of plasma sitosterol, apoprotein B, and lipoproteins in a large Amish pedigree with sitosterolemia. Am J Hum Genet. 1986 Apr;38(4):492–504. [PMC free article] [PubMed] [Google Scholar]
  2. Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. Rapid analysis of amino acids using pre-column derivatization. J Chromatogr. 1984 Dec 7;336(1):93–104. doi: 10.1016/s0378-4347(00)85133-6. [DOI] [PubMed] [Google Scholar]
  3. Chatterjee S., Ghosh N. Neutral sphingomyelinase from human urine. Purification and preparation of monospecific antibodies. J Biol Chem. 1989 Jul 25;264(21):12554–12561. [PubMed] [Google Scholar]
  4. Chatterjee S., Kwiterovich P. O. Glycosphingolipids of human plasma lipoproteins. Lipids. 1976 Jun;11(6):462–466. doi: 10.1007/BF02532836. [DOI] [PubMed] [Google Scholar]
  5. Chatterjee S., Sekerke C. S., Kwiterovich P. O., Jr Effects of tunicamycin on the cell-surface binding, internalization and degradation of low-density lipoproteins in human fibroblasts. Eur J Biochem. 1981 Dec;120(3):435–441. doi: 10.1111/j.1432-1033.1981.tb05721.x. [DOI] [PubMed] [Google Scholar]
  6. Cianflone K. M., Maslowska M. H., Sniderman A. D. Impaired response of fibroblasts from patients with hyperapobetalipoproteinemia to acylation-stimulating protein. J Clin Invest. 1990 Mar;85(3):722–730. doi: 10.1172/JCI114497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cianflone K. M., Sniderman A. D., Walsh M. J., Vu H. T., Gagnon J., Rodriguez M. A. Purification and characterization of acylation stimulating protein. J Biol Chem. 1989 Jan 5;264(1):426–430. [PubMed] [Google Scholar]
  8. Cianflone K., Kwiterovich P. O., Walsh M., Forse A., Rodriguez M. A., Sniderman A. D. Stimulation of fatty acid uptake and triglyceride synthesis in human cultured skin fibroblasts and adipocytes by a serum protein. Biochem Biophys Res Commun. 1987 Apr 14;144(1):94–100. doi: 10.1016/s0006-291x(87)80480-1. [DOI] [PubMed] [Google Scholar]
  9. Cianflone K., Vu H., Walsh M., Baldo A., Sniderman A. Metabolic response of Acylation Stimulating Protein to an oral fat load. J Lipid Res. 1989 Nov;30(11):1727–1733. [PubMed] [Google Scholar]
  10. Genest J., Sniderman A., Cianflone K., Teng B., Wacholder S., Marcel Y., Kwiterovich P., Jr Hyperapobetalipoproteinemia. Plasma lipoprotein responses to oral fat load. Arteriosclerosis. 1986 May-Jun;6(3):297–304. doi: 10.1161/01.atv.6.3.297. [DOI] [PubMed] [Google Scholar]
  11. Ginsberg H. N., Le N. A., Short M. P., Ramakrishnan R., Desnick R. J. Suppression of apolipoprotein B production during treatment of cholesteryl ester storage disease with lovastatin. Implications for regulation of apolipoprotein B synthesis. J Clin Invest. 1987 Dec;80(6):1692–1697. doi: 10.1172/JCI113259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  13. Kwiterovich P. O., Jr, White S., Forte T., Bachorik P. S., Smith H., Sniderman A. Hyperapobetalipoproteinemia in a kindred with familial combined hyperlipidemia and familial hypercholesterolemia. Arteriosclerosis. 1987 May-Jun;7(3):211–225. doi: 10.1161/01.atv.7.3.211. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Ladias J. A., Kwiterovich P. O., Jr, Smith H. H., Miller M., Bachorik P. S., Forte T., Lusis A. J., Antonarakis S. E. Apolipoprotein B-100 Hopkins (arginine4019----tryptophan). A new apolipoprotein B-100 variant in a family with premature atherosclerosis and hyperapobetalipoproteinemia. JAMA. 1989 Oct 13;262(14):1980–1988. doi: 10.1001/jama.262.14.1980. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. McLean M. P., Puryear T. K., Khan I., Azhar S., Billheimer J. T., Orly J., Gibori G. Estradiol regulation of sterol carrier protein-2 independent of cytochrome P450 side-chain cleavage expression in the rat corpus luteum. Endocrinology. 1989 Sep;125(3):1337–1344. doi: 10.1210/endo-125-3-1337. [DOI] [PubMed] [Google Scholar]
  18. Moos M., Jr, Nguyen N. Y., Liu T. Y. Reproducible high yield sequencing of proteins electrophoretically separated and transferred to an inert support. J Biol Chem. 1988 May 5;263(13):6005–6008. [PubMed] [Google Scholar]
  19. Morton R. E., Zilversmit D. B. Purification and characterization of lipid transfer protein(s) from human lipoprotein-deficient plasma. J Lipid Res. 1982 Sep;23(7):1058–1067. [PubMed] [Google Scholar]
  20. Sniderman A. D., Wolfson C., Teng B., Franklin F. A., Bachorik P. S., Kwiterovich P. O., Jr Association of hyperapobetalipoproteinemia with endogenous hypertriglyceridemia and atherosclerosis. Ann Intern Med. 1982 Dec;97(6):833–839. doi: 10.7326/0003-4819-97-6-833. [DOI] [PubMed] [Google Scholar]
  21. Sniderman A., Shapiro S., Marpole D., Skinner B., Teng B., Kwiterovich P. O., Jr Association of coronary atherosclerosis with hyperapobetalipoproteinemia [increased protein but normal cholesterol levels in human plasma low density (beta) lipoproteins]. Proc Natl Acad Sci U S A. 1980 Jan;77(1):604–608. doi: 10.1073/pnas.77.1.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sniderman A., Teng B., Genest J., Cianflone K., Wacholder S., Kwiterovich P., Jr Familial aggregation and early expression of hyperapobetalipoproteinemia. Am J Cardiol. 1985 Feb 1;55(4):291–295. doi: 10.1016/0002-9149(85)90363-7. [DOI] [PubMed] [Google Scholar]
  23. Teng B., Sniderman A. D., Soutar A. K., Thompson G. R. Metabolic basis of hyperapobetalipoproteinemia. Turnover of apolipoprotein B in low density lipoprotein and its precursors and subfractions compared with normal and familial hypercholesterolemia. J Clin Invest. 1986 Mar;77(3):663–672. doi: 10.1172/JCI112360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Teng B., Thompson G. R., Sniderman A. D., Forte T. M., Krauss R. M., Kwiterovich P. O., Jr Composition and distribution of low density lipoprotein fractions in hyperapobetalipoproteinemia, normolipidemia, and familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6662–6666. doi: 10.1073/pnas.80.21.6662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vahouny G. V., Chanderbhan R., Kharroubi A., Noland B. J., Pastuszyn A., Scallen T. J. Sterol carrier and lipid transfer proteins. Adv Lipid Res. 1987;22:83–113. doi: 10.1016/b978-0-12-024922-0.50007-2. [DOI] [PubMed] [Google Scholar]
  26. Wellner D., Panneerselvam C., Horecker B. L. Sequencing of peptides and proteins with blocked N-terminal amino acids: N-acetylserine or N-acetylthreonine. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1947–1949. doi: 10.1073/pnas.87.5.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES