Abstract
The genetic basis for natural resistance to lethal infection with Rickettsia akari was studied in over 25 inbred strains, inbred hybrids, and outbred stocks of mice. Inbred mice infected intraperitoneally with the Kaplan strain of R. akari demonstrated three levels of response, susceptible (C3H/HeJ), intermediate (A/HeJ, A/J, A/WySn, BALB/cDub, BALB/cJ, and SJL/J), and resistant (AKR/J, AL/N, BALB/cAnN, BALB/cNCr1BR, C3H/HeN, C57BL/6J, C57L/J, CBA/J, DBA/2J, and SWR/J). No correlation was evident between the six H-2 haplo-types tested and susceptibility to Kaplan infection. Four outbred mouse stocks, Dub: (ICR), Wrc:(ICR), Caw:(CF1), and Mai:(S) were all resistant. The F1 inbred hybrids of resistant X resistant (AKD2F1/J), resistant X intermediate (CB6F1/U), intermediate X intermediate (CAF1/J), and resistant X susceptible (C3D2F1/J) parents were all resistant. The F2 and parental backcross generations of C3H/HeJ and DBA/2J hybrids yielded ratios of resistant to susceptible mice that suggested resistance was under multigeneic control. Susceptible mice (C3H/HeJ) were capable of mounting an immune response, since prior infection with the avirulent Hartford strain of R. akari rendered them resistant to subsequent lethal challenge with the Kaplan strains.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradley D. J. Letter: Genetic control of natural resistance to Leishmania donovani. Nature. 1974 Jul 26;250(464):353–354. doi: 10.1038/250353a0. [DOI] [PubMed] [Google Scholar]
- Cheers C., McKenzie I. F. Resistance and susceptibility of mice to bacterial infection: genetics of listeriosis. Infect Immun. 1978 Mar;19(3):755–762. doi: 10.1128/iai.19.3.755-762.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darnell M. B., Koprowski H., Lagerspetz K. Genetically determined resistance to infection with group B arboviruses. I. Distribution of the resistance gene among various mouse populations and characteristics of gene expression in vivo. J Infect Dis. 1974 Mar;129(3):240–247. doi: 10.1093/infdis/129.3.240. [DOI] [PubMed] [Google Scholar]
- EUSTIS E. B., FULLER H. S. Rickettsialpox. II. Recovery of Rickettsia akari from mites Allodermanyssus sanguineus, from West Hartford, Conn. Proc Soc Exp Biol Med. 1952 Jul;80(3):546–549. doi: 10.3181/00379727-80-19685. [DOI] [PubMed] [Google Scholar]
- Glode L. M., Scher I., Osborne B., Rosenstreich D. L. Cellular mechanism of endotoxin unresponsiveness in C3H/HeJ mice. J Immunol. 1976 Feb;116(2):454–461. [PubMed] [Google Scholar]
- Groves M. G., Osterman J. V. Host defenses in experimental scrub typhus: genetics of natural resistance to infection. Infect Immun. 1978 Feb;19(2):583–588. doi: 10.1128/iai.19.2.583-588.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kokorin I. N., Kabanova E. A., Chyong-din-Kyet, Miskarova E. D., Abrosimova G. E. Differences in the susceptibility of mouse lines to the rickettsial pox agent. Acta Virol. 1978 Nov;22(6):497–501. [PubMed] [Google Scholar]
- LILLY F., BOYSE E. A., OLD L. J. GENETIC BASIS OF SUSCEPTIBILITY TO VIRAL LEUKAEMOGENESIS. Lancet. 1964 Dec 5;2(7371):1207–1209. doi: 10.1016/s0140-6736(64)91043-8. [DOI] [PubMed] [Google Scholar]
- Lopez C. Genetics of natural resistance to herpesvirus infections in mice. Nature. 1975 Nov 13;258(5531):152–153. doi: 10.1038/258152a0. [DOI] [PubMed] [Google Scholar]
- Plant J., Glynn A. A. Genetics of resistance to infection with Salmonella typhimurium in mice. J Infect Dis. 1976 Jan;133(1):72–78. doi: 10.1093/infdis/133.1.72. [DOI] [PubMed] [Google Scholar]
- Plant J., Glynn A. A. Natural resistance to Salmonella infection, delayed hypersensitivity and Ir genes in different strains of mice. Nature. 1974 Mar 22;248(446):345–347. doi: 10.1038/248345a0. [DOI] [PubMed] [Google Scholar]
- Public Health Weekly Reports for MAY 30, 1947. Public Health Rep. 1947 May 30;62(22):777–823. [PMC free article] [PubMed] [Google Scholar]
- Public Health Weekly Reports for NOVEMBER 8, 1946. Public Health Rep. 1946 Nov 8;61(45):1605–1640. [PMC free article] [PubMed] [Google Scholar]
- Ruco L. P., Meltzer M. S. Macrophage activation for tumor cytotoxicity: tumoricidal activity by macrophages from C3H/HeJ mice requires at least two activation stimuli. Cell Immunol. 1978 Nov;41(1):35–51. doi: 10.1016/s0008-8749(78)80026-4. [DOI] [PubMed] [Google Scholar]
- Sammons L. S., Kenyon R. H., Hickman R. L., Pedersen C. E., Jr Susceptibility of laboratory animals to infection by spotted fever group rickettsiae. Lab Anim Sci. 1977 Apr;27(2):229–234. [PubMed] [Google Scholar]
- Staats J. Standardized nomenclature for inbred strains of mice: fifth listing. Cancer Res. 1972 Aug;32(8):1609–1646. [PubMed] [Google Scholar]
- Wike D. A., Tallent G., Peacock M. G., Ormsbee R. A. Studies of the rickettsial plaque assay technique. Infect Immun. 1972 May;5(5):715–722. doi: 10.1128/iai.5.5.715-722.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams D. M., Grumet F. C., Remington J. S. Genetic control of murine resistance to Toxoplasma gondii. Infect Immun. 1978 Feb;19(2):416–420. doi: 10.1128/iai.19.2.416-420.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]