Abstract
Exotoxin A from Pseudomonas aeruginosa is a single polypeptide chain (Mr, 66,000) containing little if any adenosine 5′-diphosphate ribosyltransferase or oxidized nicotinamide adenine dinucleotide glycohydrolase activity. These activities have been demonstrated in the reduced intact toxin and in a peptide (Mr, 26,000) isolated from culture fluids or toxin preparations after storage. In this report we describe methods for generating enzymically active fragments by cleaving the fully or partially reduced exotoxin by proteolytic or chemical methods. Incubation of reduced toxin with chymotrypsin in the presence of oxidized nicotinamide adenine dinucleotide yielded an enzymically active peptide (Mr, 26,000) similar to the fragment characterized previously. Chemical cleavage by treatment of the reduced molecule with CNBr or 2-nitro-5-thiocyanobenzoate yielded fragments (Mr, 50,000 and 30,000, respectively) with similar activities. Also both adenosine 5′-diphosphate ribosyltransferase and oxidized nicotinamide adenine dinucleotide glycohydrolase activities were maximally expressed by the intact exotoxin after reduction of only two of its four disulfide bridges. Kinetic constants for activated whole toxin were similar to those of fragment A of diphtheria toxin. It is evident that in the native toxin the catalytic center is buried or distorted and that alterations in the covalent structure permit the center to become exposed or assume an active configuration. It is unknown whether reduction, proteolytic processing, or both occur during the course of toxin action on whole cells.
Full text
PDF![494](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5799/550962/750d8e24eea4/iai00173-0192.png)
![495](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5799/550962/eeafada7e9f6/iai00173-0193.png)
![496](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5799/550962/5b7cecd1617f/iai00173-0194.png)
![497](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5799/550962/9eec27ed49c9/iai00173-0195.png)
![498](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5799/550962/0e352befdd2d/iai00173-0196.png)
![499](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5799/550962/c8b93e0752eb/iai00173-0197.png)
![500](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5799/550962/72f961ac7d86/iai00173-0198.png)
![501](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5799/550962/0718c1e73425/iai00173-0199.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chung D. W., Collier R. J. Enzymatically active peptide from the adenosine diphosphate-ribosylating toxin of Pseudomonas aeruginosa. Infect Immun. 1977 Jun;16(3):832–841. doi: 10.1128/iai.16.3.832-841.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collier R. J. Diphtheria toxin: mode of action and structure. Bacteriol Rev. 1975 Mar;39(1):54–85. doi: 10.1128/br.39.1.54-85.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collier R. J., Kandel J. Structure and activity of diphtheria toxin. I. Thiol-dependent dissociation of a fraction of toxin into enzymically active and inactive fragments. J Biol Chem. 1971 Mar 10;246(5):1496–1503. [PubMed] [Google Scholar]
- Iglewski B. H., Kabat D. NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin,. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2284–2288. doi: 10.1073/pnas.72.6.2284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson G. R., Schaffer M. H., Stark G. R., Vanaman T. C. Specific chemical cleavage in high yield at the amino peptide bonds of cysteine and cystine residues. J Biol Chem. 1973 Oct 10;248(19):6583–6591. [PubMed] [Google Scholar]
- Kandel J., Collier R. J., Chung D. W. Interaction of fragment A from diphtheria toxin with nicotinamide adenine dinucleotide. J Biol Chem. 1974 Apr 10;249(7):2088–2097. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leppla S. H. Large-scale purification and characterization of the exotoxin of Pseudomonas aeruginosa. Infect Immun. 1976 Oct;14(4):1077–1086. doi: 10.1128/iai.14.4.1077-1086.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu P. V. Exotoxins of Pseudomonas aeruginosa. I. Factors that influence the production of exotoxin A. J Infect Dis. 1973 Oct;128(4):506–513. doi: 10.1093/infdis/128.4.506. [DOI] [PubMed] [Google Scholar]
- Liu P. V. The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. 3. Identity of the lethal toxins produced in vitro and in vivo. J Infect Dis. 1966 Oct;116(4):481–489. doi: 10.1093/infdis/116.4.481. [DOI] [PubMed] [Google Scholar]
- Liu P. V., Yoshii S., Hsieh H. Exotoxins of Pseudomonas aeruginosa. II. Concentration, purification, and characterization of exotoxin A. J Infect Dis. 1973 Oct;128(4):514–519. doi: 10.1093/infdis/128.4.514. [DOI] [PubMed] [Google Scholar]
- Nakayama T., Munoz L., Doi R. H. A procedure to remove protease activities from Bacillus subtilis sporulating cells and their crude extracts. Anal Biochem. 1977 Mar;78(1):165–170. doi: 10.1016/0003-2697(77)90020-3. [DOI] [PubMed] [Google Scholar]
- Reid M. S., Bieleski R. L. A simple apparatus for vertical flat-sheet polyacrylamide gel electrophoresis. Anal Biochem. 1968 Mar;22(3):374–381. doi: 10.1016/0003-2697(68)90278-9. [DOI] [PubMed] [Google Scholar]
- Vasil M. L., Kabat D., Iglewski B. H. Structure-activity relationships of an exotoxin of Pseudomonas aeruginosa. Infect Immun. 1977 Apr;16(1):353–361. doi: 10.1128/iai.16.1.353-361.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]