Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1980 Jun;28(3):724–734. doi: 10.1128/iai.28.3.724-734.1980

Natural and immune cytolysis of canine distemper virus-infected target cells.

W R Shek, R D Schultz, M J Appel
PMCID: PMC551011  PMID: 7399692

Abstract

Natural and immune cytolysis of canine distemper virus (CDV)-infected target cells in vitro is described. Lymphocytes expressing natural cytotoxicity were found in specific-pathogen-free beagle dogs and in beagle-coonhound crosses before vaccination with CDV and indefinitely after vaccination, when the ephemeral immune lymphocyte-mediated cytotoxicity (ILMC) had declined. In contrast to the natural lymphocyte-mediated cytotoxicity, the ILMC was genetically restricted, could not be blocked by CDV-specific antibody, and was effective against measles virus-infected as well as CDV-infectd target cells. Lymphocyte populations were depleted of Fc receptor and surface immunoglobulin-bearing cells by rosetting techniques and tested in comparison. An antibody-dependent cell-mediated cytotoxicity was demostrated against CDV-infected target cells that were preincubated with CDV antibody when Fc receptor-bearing lymphocytes were not removed. The ILMC was measurable for approximately 10 days beginning at 6 days post-vaccination. In contrast, CDV antibody measured by virus neutralization and humoral cytotoxicity was detectable by 6 days postvaccination and persisted at peak levels for at least 5 months.

Full text

PDF
724

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ada G. I., Jackson D. C., Blanden R. V., Hla R. T., Bowern N. A. Changes in the surface of virus-induced cells recognized by cytotoxic T cells. I. Minimal requirements for lysis of ectromelia-infected P-815 cells. Scand J Immunol. 1976;5(1-2):23–30. doi: 10.1111/j.1365-3083.1976.tb02988.x. [DOI] [PubMed] [Google Scholar]
  2. Akira D., Takasugi M. Loss of specific natural cell-mediated cytotoxicity with absorption of natural antibodies from serum. Int J Cancer. 1977 Jun 15;19(6):747–755. doi: 10.1002/ijc.2910190603. [DOI] [PubMed] [Google Scholar]
  3. Andersson T., Stejskal V., Harfast B. An in vitro method for study of human lymphocyte cytotoxicity against mumps-virus-infected target cells. J Immunol. 1975 Jan;114(1 Pt 1):237–243. [PubMed] [Google Scholar]
  4. Appel M. J. Pathogenesis of canine distemper. Am J Vet Res. 1969 Jul;30(7):1167–1182. [PubMed] [Google Scholar]
  5. Appel M., Robson D. S. A microneutralization test for canine distemper virus. Am J Vet Res. 1973 Nov;34(11):1459–1463. [PubMed] [Google Scholar]
  6. Braciale T. J. Immunologic recognition of influenza virus-infected cells. II. Expression of influenza A matrix protein on the infected cell surface and its role in recognition by cross-reactive cytotoxic T cells. J Exp Med. 1977 Sep 1;146(3):673–689. doi: 10.1084/jem.146.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown A. L., McCarthy R. E. Relationship between measles and canine distemper viruses determined by delayed type hypersensitivity reactions in dogs. Nature. 1974 Mar 22;248(446):344–345. doi: 10.1038/248344a0. [DOI] [PubMed] [Google Scholar]
  8. Bubbers J. E., Chen S., Lilly F. Nonrandom inclusion of H-2K and H-2D antigens in Friend virus particles from mice of various strains. J Exp Med. 1978 Feb 1;147(2):340–351. doi: 10.1084/jem.147.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  10. Chiba Y., Dzierba J. L., Morag A., Ogra P. L. Cell-mediated immune response to mumps virus infection in man. J Immunol. 1976 Jan;116(1):12–15. [PubMed] [Google Scholar]
  11. Dausset J., Rapaport F. T., Cannon F. D., Ferrebee J. W. Histocompatibility studies in a closely bred colony of dogs. 3. Genetic definition of the DL-A system of canine histocompatibility, with particular reference to the comparative immunogenicity of the major transplantable organs. J Exp Med. 1971 Nov 1;134(5):1222–1237. doi: 10.1084/jem.134.5.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dickmeiss E., Soeberg B., Svejgaard A. Human cell-mediated cytotoxicity against modified target cells is restricted by HLA. Nature. 1977 Dec 8;270(5637):526–528. doi: 10.1038/270526a0. [DOI] [PubMed] [Google Scholar]
  13. Doherty P. C., Blanden R. V., Zinkernagel R. M. Specificity of virus-immune effector T cells for H-2K or H-2D compatible interactions: implications for H-antigen diversity. Transplant Rev. 1976;29:89–124. doi: 10.1111/j.1600-065x.1976.tb00198.x. [DOI] [PubMed] [Google Scholar]
  14. Effros R. B., Bennink J., Doherty P. C. Characteristics of secondary cytotoxic T-cell responses in mice infected with influenza A viruses. Cell Immunol. 1978 Mar 15;36(2):345–353. doi: 10.1016/0008-8749(78)90278-2. [DOI] [PubMed] [Google Scholar]
  15. Evans R. L., Chess L., Levine H., Schlossman S. F. Antibody-dependent cellular cytotoxicity by allosensitized human T cells. J Exp Med. 1978 Feb 1;147(2):605–610. doi: 10.1084/jem.147.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ewan P. W., Lachmann P. J. Demonstration of T-cell and K-cell cytotoxicity against measles-infected cells in normal subjects, multiple sclerosis and subacute sclerosing panencephalitis. Clin Exp Immunol. 1977 Oct;30(1):22–31. [PMC free article] [PubMed] [Google Scholar]
  17. Friedman S. M., Neyhard N., Chess L. Cell-mediated lympholysis of trinitrophenyl-derivatized autologous human cells: in vitro triggering by nonspecific signals. J Immunol. 1978 Feb;120(2):630–637. [PubMed] [Google Scholar]
  18. Gardner I. D., Bowern N. A., Blanden R. V. Cell-medicated cytotoxicity against ectromelia virus-infected target cells. III. Role of the H-2 gene complex. Eur J Immunol. 1975 Feb;5(2):122–127. doi: 10.1002/eji.1830050210. [DOI] [PubMed] [Google Scholar]
  19. Gething M., Koszinowski U., Waterfield M. Fusion of Sendai virus with the target cell membrane is required for T cell cytotoxicity. Nature. 1978 Aug 17;274(5672):689–691. doi: 10.1038/274689a0. [DOI] [PubMed] [Google Scholar]
  20. Herberman R. B., Holden H. T. Natural cell-mediated immunity. Adv Cancer Res. 1978;27:305–377. doi: 10.1016/s0065-230x(08)60936-7. [DOI] [PubMed] [Google Scholar]
  21. Ho C. K., Babiuk L. A. Immune mechanisms against canine distemper. I. Identification of K cell against canine distemper virus infected target cells in vitro. Immunology. 1979 May;37(1):231–239. [PMC free article] [PubMed] [Google Scholar]
  22. Ho C. K., Babiuk L. A., Rouse B. T. Immune effector cell activity in canines: failure to demonstrate genetic restriction in direct antiviral cytotoxicity. Infect Immun. 1978 Jan;19(1):18–25. doi: 10.1128/iai.19.1.18-25.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Härfast B., Andersson T., Perlmann P. Human lymphocyte cytotoxicity against mumps virus-infected target cells. Requirement for non-T cells. J Immunol. 1975 Jun;114(6):1820–1823. [PubMed] [Google Scholar]
  24. Imagawa D. T. Relationships among measles, canine distemper and rinderpest viruses. Prog Med Virol. 1968;10:160–193. [PubMed] [Google Scholar]
  25. Joseph B. S., Cooper N. R., Oldstone M. B. Immunologic injury of cultured cells infected with measles virus. I. role of IfG antibody and the alternative complement pathway. J Exp Med. 1975 Apr 1;141(4):761–774. [PMC free article] [PubMed] [Google Scholar]
  26. KAPLOW L. S. SIMPLIFIED MYELOPEROXIDASE STAIN USING BENZIDINE DIHYDROCHLORIDE. Blood. 1965 Aug;26:215–219. [PubMed] [Google Scholar]
  27. Kibler R., Meulen V. T. Antibody-mediated cytotoxicity after measles virus infection. J Immunol. 1975 Jan;114(1 Pt 1):93–98. [PubMed] [Google Scholar]
  28. Krakowka S., Olsen R., Confer A., Koestner A., McCullough B. Serologic response to canine distemper viral antigens in gnotobiotic dogs infected with canine distemper virus. J Infect Dis. 1975 Oct;132(4):384–392. doi: 10.1093/infdis/132.4.384. [DOI] [PubMed] [Google Scholar]
  29. Krakowka S., Wallace A. L., Koestner A. Syncytia inhibition by immune lymphocytes: in vitro test for immunity to canine distemper. J Clin Microbiol. 1978 Mar;7(3):292–297. doi: 10.1128/jcm.7.3.292-297.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Krakowka S., Wallace A. L. Lymphocyte-associated immune responses to canine distemper and measles viruses in distemper-infected gnotobiotic dogs. Am J Vet Res. 1979 May;40(5):669–672. [PubMed] [Google Scholar]
  31. Kreth H. W., Meulen V. Cell-mediated cytotoxicity against measles virus in SSPE. I. Enhancement by antibody. J Immunol. 1977 Jan;118(1):291–295. [PubMed] [Google Scholar]
  32. Kreth H. W., ter Meulen V., Eckert G. Demonstration of HLA restricted killer cells in patients with acute measles. Med Microbiol Immunol. 1979 Jan 24;165(4):203–214. doi: 10.1007/BF02152920. [DOI] [PubMed] [Google Scholar]
  33. Kreth W. H., Käckell M. Y., ter Meulen V. Demonstration of in vitro lymphocyte-mediated cytotoxicity against measles virus in SSPE. J Immunol. 1975 Mar;114(3):1042–1046. [PubMed] [Google Scholar]
  34. Labowskie R., Edelman R., Rustigian R., Bellanti J. A. Studies of cell-mediated immunity to measles virus by in vitro lymphocyte-mediated cytotoxicity. J Infect Dis. 1974 Mar;129(3):233–239. doi: 10.1093/infdis/129.3.233. [DOI] [PubMed] [Google Scholar]
  35. McMichael A. HLA restriction of human cytotoxic T lymphocytes specific for influenza virus. Poor recognition of virus associated with HLA A2. J Exp Med. 1978 Dec 1;148(6):1458–1467. doi: 10.1084/jem.148.6.1458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mollen N., Cannon F. D., Ferrebee J. W., St John D. Lymphocyte typing in allografted beagles. Transplantation. 1968 Nov;6(8):939–940. doi: 10.1097/00007890-196811000-00009. [DOI] [PubMed] [Google Scholar]
  37. Moller-Larsen A., Heron I., Haahr S. Cell-mediated cytotoxicity to herpes-infected cells in humans: dependence on antibodies. Infect Immun. 1977 Apr;16(1):43–47. doi: 10.1128/iai.16.1.43-47.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pearson G. R. In vitro and in vivo investigations on antibody-dependent cellular cytotoxicity. Curr Top Microbiol Immunol. 1978;80:65–96. doi: 10.1007/978-3-642-66956-9_3. [DOI] [PubMed] [Google Scholar]
  39. Perrin L. H., Tishon A., Oldstone M. B. Immunologic injury in measles virus infection. III. Presence and characterization of human cytotoxic lymphocytes. J Immunol. 1977 Jan;118(1):282–290. [PubMed] [Google Scholar]
  40. Perrin L. H., Zinkernagel R. M., Oldstone M. B. Immune response in humans after vaccination with vaccinia virus: generation of a virus-specific cytotoxic activity by human peripheral lymphocytes. J Exp Med. 1977 Oct 1;146(4):949–969. doi: 10.1084/jem.146.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pfizenmaier K., Trinchieri G., Solter D., Knowles B. B. Mapping of H-2 genes associated with T cell-mediated cytotoxic responses to SV40-tumour-associated specific antigens. Nature. 1978 Aug 17;274(5672):691–693. doi: 10.1038/274691a0. [DOI] [PubMed] [Google Scholar]
  42. Rola-Pleszczynski M., Vincent M. M., Hensen S. A., Walser J., Crawford M., Bellanti J. A. 51Chromium-release microassay technique for cell-mediated immunity to mumps virus: correlation with humoral and delayed-type skin hypersensitivity responses. J Infect Dis. 1976 Dec;134(6):546–551. doi: 10.1093/infdis/134.6.546. [DOI] [PubMed] [Google Scholar]
  43. Steele R. W., Hensen S. A., Vincent M. M., Fuccillo D. A., Bellanti J. A. A 51 Cr microassay technique for cell-mediated immunity to viruses. J Immunol. 1973 Jun;110(6):1502–1510. [PubMed] [Google Scholar]
  44. Takasugi J., Koide Y., Takasugi M. Reconstitution of natural cell-mediated cytotoxicity with specific antibodies. Eur J Immunol. 1977 Dec;7(12):887–892. doi: 10.1002/eji.1830071213. [DOI] [PubMed] [Google Scholar]
  45. Timonen T., Saksela E. Human natural cell-mediated cytotoxicity against fetal fibroblasts. I. General characteristics of the cytotoxic activity. Cell Immunol. 1977 Oct;33(2):340–352. doi: 10.1016/0008-8749(77)90163-0. [DOI] [PubMed] [Google Scholar]
  46. Woodruff J. F., Woodruff J. J. T lymphocyte interaction with viruses and virus-infected tissues. Prog Med Virol. 1975;19:120–160. [PubMed] [Google Scholar]
  47. Zander A. R., Boopalam N., Epstein R. B. Surface markers on canine lymphocytes. Transplant Proc. 1975 Sep;7(3):369–373. [PubMed] [Google Scholar]
  48. Zinkernagel R. M., Althage A. Antiviral protection by virus-immune cytotoxic T cells: infected target cells are lysed before infectious virus progeny is assembled. J Exp Med. 1977 Mar 1;145(3):644–651. doi: 10.1084/jem.145.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zinkernagel R. M., Doherty P. C. Major transplantation antigens, viruses, and specificity of surveillance T cells. Contemp Top Immunobiol. 1977;7:179–220. doi: 10.1007/978-1-4684-3054-7_5. [DOI] [PubMed] [Google Scholar]
  50. Zinkernagel R. M., Oldstone M. B. Cells that express viral antigens but lack H-2 determinants are not lysed by immune thymus-derived lymphocytes but are lysed by other antiviral immune attack mechanisms. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3666–3670. doi: 10.1073/pnas.73.10.3666. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES